

DATASHEET V1.0

Power-Efficient Supercomputing

Unlock In-Orbit
Artificial Intelligence

Mission-Ready Radiation Hardening

Flight-Ready for 3 Missions Launching Q1 2026

www.edgx.space
sales@edgx.space

Supercomputing Onboard

Waiting on a downlink is a lost opportunity.

Sterna's raw computational power lets you act on critical intelligence the instant it's captured.

- **01** Deliver up to **157 TOPS** of in-orbit compute
- 02 Command power modes from 10W to 40W
- 03 Unlock the NVIDIA ecosystem

Uncompromising Reliability

Sterna is engineered for mission certainty. It has been validated against every extreme, ensuring it doesn't just survive, but thrives.

- 01 Qualified for Launch Vibrations
- 02 Proven in Thermal & Vacuum Conditions
- 03 Validated against Radiation Effects

Operate with our SpaceFeather™ Software

Powerful hardware is only half the equation. The SpaceFeather™ software ecosystem provides the functions you need for mission success.

Operating System

A custom, spacehardened Linux operating system.

Application Framework

Deploys and manages your containerised applications in-orbit.

Real-Time Supervisor

Monitors system health and safeguards critical hardware.

Radiation Shielding

Actively mitigates radiation-induced functional interrupts.

Technical Specifications

STERNA

Sterna is a high-performance **Data Processing Unit (DPU)** bringing the power of the **NVIDIA Jetson Orin NX** to space.

It is engineered to provide mission-critical compute power to CubeSats and SmallSats in Low Earth Orbit (LEO) and Sun Synchronous Orbit (SSO).

MAIN COMPONENTS

NVIDIA Jetson Orin NX + Supervisor MCU

- [CPU] 8-Core ARM Cortex-A78AE (@ 2 GHz)
- [GPU] 1024 CUDA Core Ampere (@ 1GHz)
- [NPU] 2x NVDLA 2.0 (@ 600MHz)

SOFTWAR

- Optimised Linux OS (Yocto / JetPack 6)
- Containerised Applications (Docker)
- Health monitoring and logging (FreeRTOS)

STORAGE & MEMORY

- 16 GB of 128-bit LPDDR5: Shared System Memory
- 2 TB NVMe SSD (TLC): Boot & Application Storage

Underwent TID (5°Co) and SEE (200 MeV proton) testing

SIZE, WEIGHT & POWER

- Size: 0.3U (96 x 90 x 30 mm)
- Form-factor: PC/104 (mounting)
- Weight: ± 350g w/o harness
- Power: 15W (avg) / 30W (peak) / 45W (super)
- 15V 30V (Normal) or 23V 30V (Super)

INTERFACES - SUPERVISOR

Connector(s): Harwin Gecko-SL

- 1x CAN (for C&C of Sterna)
- 1x UART (for Debug and Recovery)

C&C interfaces can be customised on request

INTERFACES - NVIDIA JETSON ORIN NX

Connector(s): Harwin Gecko-SL | Samtec ERF8

- 1x Gigabit Ethernet (for OTA, Recovery and Data)
- 2x USB 3.2 Gen 1.0 (for Data)
- 1x 4-Lane PCle Gen 4.0 (for Data)

Data interfaces can be customised on request

THERMAL & VACUUM

- Operational range: -20°C to +65°C
- Qualified in a Thermal Vacuum Chamber (TVAC) for an operational range of -25°C to +70°C (8 cycles) and a non-operational range of -40°C to +80°C (1 cycle)

VIBRAIION

- Qualified for use on Falcon 9, Ariane 6, VEGA-C and other launch systems
- Tested according to the General Environmental Verification Standard (GEVS) for random vibrations and quasi-static sine bursts.

ELECTROMAGNETIC COMPATIBILITY (EMC)

- Tested for emissions according to MIL-STD-461 standards.
- Tested for immunity according to MIL-STD-461 standards.

Detailed test reports and compliance matrices are available on request.

RADIATION

- Components tested for a Destructive SEE LETth of 38 MeV $\rm cm^2/mg$
- Components selected for a minimum TID resilience of 30kRad
- Board-level validation and characterisation under 200 MeV proton

