
Gapfruit OS for the Internet of Things in

Critical Infrastructures

Sid Hussmann

CTO & Co-Founder

Gapfruit

February 19, 2025

Abstract

Digitalizing critical infrastructures and industrial automation requires a new holistic ap-
proach, especially given the exponentially rising cyber security threats. Securing these sectors
needs a solid foundation, part of which is the operating system that drives the infrastructure.
This is where Gapfruit OS comes into play.

Gapfruit OS is a microkernel operating system with capability-based security developed
using the Genode Framework [2]. The capability-based architecture of Gapfruit allows gov-
erning the trust relationship of each subsystem down to the hardware root of trust. This
"capabilities all the way down" approach provides rational arguments as to why the system
is trustworthy. Gapfruit OS is in production use in �nancial services as part of a TEE and in
manufacturing as a secure IoT gateway.

This paper describes the bene�ts of Gapfruit OS for highly secure, mass deployment of
IoT devices. IoT is a �eld where the domains OT (Operational Technology), IT (Informa-
tion Technology), and Telco (Telecommunications) come together. We explain the individual
challenges of these �elds and propose a solution.

We then bring seven properties of highly secured devices into the context of hardware,
operating system, and the cloud. Section 4 explains how Gapfruit OS holistically leverages
these seven properties.

Further, we will show why critical infrastructures still have ancient and vulnerable operat-
ing systems deployed and how Gapfruit OS mitigates this problem and why green�eld products
based on Gapfruit OS are future-proof. Section 5 describes a concrete setup of an industrial
IoT gateway deployed on a factory �oor and managed via Azure DPS/IoT Hub [3].

The appendix contains a threat analysis of a deployment containing Gapfruit OS as part
of a secure door system for banks.

©2025 gapfruit AG. All rights reserved.

1

Contents

1 The Internet of Things 3

1.1 IoT: Converging Domains . 3
1.2 Di�erence in Security Priorities . 4
1.3 Challenges of Scaling IoT . 4
1.4 Safety vs Security . 5

2 The Problem with Current Operating Systems 5

2.1 Why are Linux BSP's Chronically Outdated? . 6

3 Properties of Highly Secured Devices 7

4 Gapfruit OS Technology Overview 8

4.1 Core Principles . 8
4.1.1 Strong Isolation . 8
4.1.2 Control Over all Dependencies . 8

4.2 Comparison of Attack Surface . 10
4.3 Resilience and Availability . 10
4.4 TPM and PKI . 11
4.5 Linux Device Driver Environment . 11

5 Case-Study: Industrial IoT Gateway 12

5.1 Challenges in the Realm of Digitalization of the Factory Floor 12
5.2 Zero-Trust in OT . 13
5.3 Enable Plug and Produce with Azure DPS . 14
5.4 Bene�ts . 14

6 Threat Models 16

6.1 Attack Trees . 16
6.2 STRIDE Model . 18

2

1 The Internet of Things

We consider IoT devices as interconnected products that are not directly operated by end-users. In
contrast to end-user devices such as personal computers, laptops, and smartphones, IoT products
are often in use for decades. Additionally, IoT devices are being trusted for safety, security, and
privacy. The need for such products is rapidly rising in sectors such as energy, industrial, health,
transportation, logistics, retail, building, agriculture, security, and public safety [7].

Many IoT solutions are used to automate critical systems where the utilization of the machine
directly a�ects productivity, safety, and the supply chain of goods and bring enormous �nancial
opportunities.

1.1 IoT: Converging Domains

IoT lies in the middle of OT (Operational Technology), IT (Information Technology), and Telco
(Telecommunications) systems. OT, IT, and Telco systems all involve similar technologies to man-
age and control various aspects of business and industry. However, each domain has its strengths
and weaknesses.

OT systems monitor and control physical processes in industries such as energy, water, in-
dustrial automation, and transportation. These systems often use sensors, actuators, and control
systems to collect data, monitor, automate, and control processes.

IT systems store, retrieve, transmit, and manipulate data in the context of business and orga-
nizations.

Telco systems interconnect millions of devices and maintain communication between these
connections.

OT IT

Telco

IoT

Figure 1: Converging domains

The main di�erence between IT and OT is that IT is primarily concerned with managing
and processing information - while OT focuses on operating and controlling physical devices and
processes. While IT and OT systems may use similar technologies, they are typically designed and
used for di�erent purposes and environments.

IT engineering practices evolved in a way to meet the constant-changing business needs. The
established agile development practices made the technological leaps we see every day possible.
These practices resulted in a �ship fast - �x later� mentality that often is at odds with the OT
mentality �never touch a running system�. OT systems need to run uninterrupted for decades and
their availability - or lack of - are critical for the success or failure of the manufacturing company.
In the past 15 years, IT has made massive progress in developing tools to write, build and ship
software as rapidly as possible. Further, Docker [8] innovated this �eld to de-couple software
components so that these containers can be written by di�erent teams and deployed to any Linux
server in the cloud. These micro-services communicate with each other over clearly de�ned APIs.
The rise of WebAssembly [9] and WASI [10] is taking this concept to the next level by making
executables platform-independent and very lightweight.

3

Telco systems excel at managing and interconnecting millions of devices and are designed to
guarantee the availability and integrity of communication. To ensure these requirements, Telco
systems have their strengths in con�guration management, monitoring, and the provisioning and
discovery of devices.

1.2 Di�erence in Security Priorities

OT, IT, and Telco share similar security goals, however the priorities are often quite di�erent.
The security goals of IT systems generally focus on protecting the con�dentiality, integrity, and

availability (CIA) of data at rest, in transit, and in use.
In contrast, the security goals of OT systems typically focus on ensuring the safety, integrity,

reliability, and availability of physical processes and devices. This includes protecting against
unauthorized access or tampering with physical systems, protecting against system failures or dis-
ruptions, and ensuring that processes and devices are functioning as intended. These requirements
can make OT systems more challenging to secure, as delays or disruptions could have serious con-
sequences. Further, updates in OT systems are only allowed in constrained time windows. Any
downtime massively impacts productivity, cost, and the overall supply chain. Another di�erence
is that OT systems are often deployed in more challenging or hazardous environments, such as
industrial manufacturing, oil rigs, or power plants. Integrity is an often underestimated priority,
as a change in a con�guration, e.g., a composition of materials for the automobile industry, could
lead to expensive recall campaigns of already sold cars.

Telco companies are responsible for protecting their network and customers' data and complying
with many standards and regulations such as GDPR [4] or PCI DSS [5]. On a network management
level, they have security principles such as role-based access control [6] in use.

1.3 Challenges of Scaling IoT

This section summarizes the challenges to massively scale IoT projects described in the Beecham
report "Getting to Mass IoT Deployment: Challenges and Opportunities" [7].

IoT projects are now mainstream in that they exist in all market sectors and have been shown
to bring bene�ts. Therefore, the time has come to expand these projects from proof of concept to
large-scale deployments. More sensors will be deployed at lower costs, providing more data across
a broader range of use cases; early results show this is not straightforward.

Once a deployment starts to scale, manually performing even the most basic operations, such
as onboarding, con�guration, security patches, and maintenance, will be increasingly di�cult.

Low data rate connectivity may take a very long time to upgrade a piece of �rmware unless
it is organized for e�cient upgrade. Thus, managing a large �eet of devices remotely is a whole
di�erent ballgame than managing a few. An IoT solution designed for a small deployment may be
totally unable to scale to a large deployment.

The paper also addresses security concerns: "having good data security has never been more
important". Security in IoT and digital transformation solutions can't be an afterthought and has
to be an integral part of any development. Unfortunately, many companies still rely on inadequate
legacy solutions. They cannot detect and respond to today's advanced attack strategies. Moreover,
there is a cybersecurity skills shortage. Relying on manual threat analysis and detection, as
well as a security-as-you-go strategy, cannot keep pace with the advanced capabilities of today's
cybercriminals. This calls for a zero-trust architecture in contrast to the legacy perimeter approach.
In a nutshell, zero trust is security by design on an infrastructure level.

Gartner says SASE (Secure Access Service Edge) will transform the "legacy perimeter" into "a
set of cloud-based, converged capabilities created when and where an enterprise needs them, and
edge computing is one of many drivers. The key di�erence (to other endpoint computing solutions)
will be the assumption that the edge computing location will have intermittent connectivity and
the risk of physical attacks on the system.

According to one of the experts, "The purpose of IT is literally to support IoT maintenance. It
needs to either be completely maintenance-free or near to it. What is very important is the update
mechanism is designed from the very beginning. And very importantly, it is using a powerful
network management platform."

4

1.4 Safety vs Security

The engineering principles required for products used in safety-critical scenarios are at odds with
best practices for security. In a nutshell, here are the goals between these two categories:

� Safety: The system must not harm the outside world.

� Security: The outside world must not be able to harm the system.

Industries such as aerospace, med-tech, automotive, or OT have rigorous certi�cation procedures
for their products. Domain-speci�c certi�cation agencies review the development process, the
design, the testing, etc., and sometimes even each line in the source code. Certifying a safety-
critical product can therefore become tremendously expensive. Any change to the product would
lead to a costly re-certi�cation of the system. This fact incentivizes manufacturers never to change
running systems. E.g., many hospitals or industrial production factories still have life-preserving
devices running a speci�c version of Windows XP or even older.

Systems with a focus on security are handled di�erently. Some software components are complex
by nature. The more features a software product has, the larger is their complexity - and ultimately,
the larger the attack surface. Commercial software typically has 20 to 30 bugs for every 1000 lines
of code, according to Carnegie Mellon University's CyLab [11]. If a bug or vulnerability is found,
that component needs an update. Very quick. Even with a secure operating system, such as
Gapfruit OS, where the impact of bugs is signi�cantly reduced (see section Comparison of Attack
Surface), it is essential to update certain aspects such as e.g., OpenSSL/libcrypto [12] rapidly.

We are returning to our example with the hospital's medical device running Windows XP
above. The call for more digitalization in hospitals results in interconnecting these devices that
contain vulnerable software. Any script kiddie can hack these devices remotely, resulting in fatal
incidences. In other words, there is no safety without security. The same is true in other �elds
such as OT, where machines are built to be used for 15 to 30 years and, until recently, were not
intended to be connected to external networks - especially not the hostile internet [13].

2 The Problem with Current Operating Systems

Current operating systems were designed more than half a century ago. At the time, there were
di�erent requirements important than we have today. Systems needed to work, be stable and �t the
constrained computing resources that were common back then. They were not designed to face the
hostile interconnected world we live in today. After the design was set in stone, di�erent generations
tried to add some security concepts. However, the core concepts of these operating systems are
still used today. And among the most popular operating systems, the rough architecture is very
much the same:

They lack proper isolation mechanisms so that any subsystem has a global impact on the overall
system.

Here a rough overview of this legacy design: Figure 2 shows the hardware on the bottom. The
kernel is abstracting that hardware. On the top, applications use this abstraction via system calls.

Now, what is wrong with this approach?
One major security issue with monolithic operating systems is that the entire system may be

at risk if a single process is compromised. For example, if an attacker can exploit a vulnerability in
something inherently complex such as a network driver, they can gain access to the entire system
with potentially devastating consequences. Linux, for instance, contains close to 40 Million lines
of code, where each line is critical. Each line you have to trust.

Software that runs on these operating systems can access a vast number of system calls provided
by the kernel. Applications use these syscalls to access system resources such as �le systems,
networking sockets, devices, etc. While user applications run in a de-privileged mode, the attack
vector to other applications and to that monolithic kernel with over 300 syscalls is enormous.
Further, applications operate within one global namespace and typically share one common �le
system, which results in having to trust all applications not to misbehave.

5

Monolithic Kernel

User Applications

> 300 Syscalls

Driver

Driver Driver
Memory Management

Scheduling

Filesystem

Filesystem

eBPF

Open Sound System

Network Driver
Bluetooth Stack

VPN
kexec

Crypto API

Firewalld

Privileged Mode

User Mode

USB Stack

36M LOC (Linux)

DriverDriver

Driver

Driver

Filesystem VPN

AppArmor LXC

Chroot

NFS

LVM

Hardware

Application / Process

Network Stack

Figure 2: Attack surface of monolithic operating systems

2.1 Why are Linux BSP's Chronically Outdated?

A blog post [14] by Kees Cook, a Linux security expert and Google security engineer, illustrates
the challenges in maintaining the security of the Linux kernel. One of the main takeaways from
the blog is: "If you're not using the latest kernel, you don't have the most recently added security
defenses (including bug �xes)."

Going the "upstream �rst" route is the absolute best way of keeping the Linux kernel secure.
However, it is only part of the story. The challenges faced by device manufacturers running Linux
on embedded devices are vastly di�erent.

Most device manufacturers rely on the semiconductor vendor-provided Linux kernel as part of
the Board Support Package (BSP), particularly for non-x86 devices. In the interest of going to
market early, the semiconductor vendors typically freeze a version of the upstream kernel and add
their patches to support their System On Chip (SoC) / Processor.

Now, the device manufacturers are stuck on a version of the Linux kernel that no longer
receives security or bug �xes. In contrast, the �xes are available in both the stable and long-term
supported (LTS) upstream kernel releases. To get these �xes, the device manufacturer must apply
the semiconductor vendor patches (vary from 10s to 10000s) on top of the upstream kernel, which
tends to result in con�icts that are di�cult to resolve. Once the con�icts are resolved, testing the
updated kernel poses a whole other set of challenges where all the sub-systems and drivers need to
be retested to ensure they did not break anything.

Now imagine doing this over and over every week because, on average, that is how frequently
a new version of the LTS kernel is released [15]!

In an ideal world, the semiconductor vendors would timely upstream all of the SoC-speci�c
patches so that the device manufacturers could use the upstream kernel as-is to get security/bug
�xes. Unfortunately, the reality is far from that. Upstreaming patches is time-consuming, and
semiconductor vendors typically rush to support new processors/variants while �xing bugs in their
older BSP releases. While many semiconductor vendors actively contribute back their SoC-speci�c
patches to the upstream kernel, only a subset makes it to the upstream kernel. Hence, the next
BSP release from the SoC vendor ends up with a combination of patches supporting old and new
processors/variants, resulting in the number of vendor patches in the frozen vendor kernel being
more or less the same. . . and the cycle repeats with each release. As a device manufacturer, it is
not apparent if the vendor has upstreamed all of the patches for your processor. Hence, the safest
starting point for the Linux kernel is the vendor-provided kernel. This means that "upstream �rst"
is not an option for most device manufacturers [16].

In other words, devices running Linux are not only architecturally vulnerable; the fact that
they have all known security �xes applied is rather the exception than the norm.

6

3 Properties of Highly Secured Devices

Microsoft Research published an outstanding paper regarding what it takes to build highly secured
devices [17]. The researchers identi�ed seven necessary properties, which we bring into the context
of HW, OS, and cloud. Figure 3 illustrates which parts of the computing stack are a�ected by a
particular property.

Device

HW OS Cloud

Hardware Root of Trust

Defense in Depth

Small TCB

Dynamic Compartments

Passwordless Authentication

Error Reporting

Renewable Security

Figure 3: 7 Properties of Highly Secured Devices

A hardware root of trust (RoT) is a hardware-based security feature that highly secured devices
use to establish a secure foundation for the trustworthiness of the device's computing stack. This
trust anchor is typically a TPM [18], which is a discrete chip or part of the SoC. For a trusted boot,
all of the boot stages verify the next one. As the name states, this requires hardware. However,
the OS must also be capable of establishing the trust graph up to the applications.

Defense in depth is a mechanism that involves implementing multiple layers of security controls
to protect against threats. With this approach, an attacker will have a signi�cantly harder time
breaching the system. If they breach one line of defense, the other lines can still provide protection.
Devices achieve e�ective in-depth defense with the right combination of hardware primitives, a
small trusted computing base (TCB), and compartmentalization.

A small trusted computing base (TCB) is a concept that refers to the subset of a system's
components that enforce other security concepts. The goal of a small TCB is to minimize the
complexity of components and hardware primitives that must be trusted to ensure the system's
integrity, con�dentiality, and availability. A common misbelief is that this goal stops at the hard-
ware. For e�ective guarantees, e.g., for isolation, we must also consider the choice of hardware
primitives. E.g., the usage of virtual memory in combination with nested page tables is magnitudes
less complex and can therefore be veri�ed for correctness. This simplicity contrasts with complex
o�erings such as Intel TDX, which implements a whole virtual machine monitor in micro-code,
which some consider "hardware" - that hides the complexity from the average software developer
[20].

Compartmentalization is a mechanism to isolate di�erent parts of a system from each other.
The last few years have proven that the trust relationship between these compartments is very
nuanced, and we cannot categorize them in ultimate trusted vs. untrusted. Hence, the need for
dynamic compartments. The isolation mechanism for these compartments needs to be designed
with a small TCB to be e�ective. Compartmentalization acknowledges that software is generally
�awed, which is proven by reality. It allows for the planning for the worst case. When a breakage
happens, the damage remains constrained.

Password-less authentication in the context of IoT boils down to using certi�cates to authen-
ticate a device to a cloud o�ering or other remote systems. We can achieve the highest level of
security when we anchor this property cryptographically with a hardware RoT that attests to the
trustworthiness of the entire device.

Error reporting states the need for each subsystem to report its state and any failures that
a�ect the system's overall health. This error reporting needs to be accessible from the cloud that

7

manages the �eet of devices.
Renewable security is a concept that allows you to update the security measures of a device.

We can divide this into proactive updates and a technique that involves detection and recovery.
Proactive updates are necessary when, e.g., a vulnerability has been found in a crypto library such
as OpenSSL/libcrypto. The con�dentiality and integrity of data in transit of any component that
uses this library may be at risk. Thus, it is essential to update this library as fast as possible. In
contrast, some system faults, such as zero-day exploits, have been unknown for a long time. To
protect from these threats, we need isolation. And if this does not help, the system needs a way
to detect and recover from these vulnerabilities.

It becomes apparent that contemporary operating systems do not �t the properties required to
build highly secured devices (see section The Problem with Current Operating Systems).

4 Gapfruit OS Technology Overview

Gapfruit OS solves the seven properties of highly secured devices in a holistic approach. Gapfruit
OS is a microkernel operating system with capability-based security developed using the Genode
Framework [2]. The capability-based architecture of Gapfruit allows governing the trust relation-
ship of each subsystem down to the hardware root of trust. This "capabilities all the way down"
approach provides rational arguments as to why the system is trustworthy.

4.1 Core Principles

This section describes a short overview of the core principles of Gapfruit OS.
There are two core principles of Gapfruit OS: Strong isolation and control over the trusted

computing base (TCB) of all software stacks. Control over the TCB of all software stacks means
that each component's dependency graph is concisely de�ned and veri�ed during build, deployment,
and run time.

4.1.1 Strong Isolation

The building blocks in a Gapfruit system are called components. Each component on Gapfruit OS
runs within a strict sandbox. The microkernel guarantees strong isolation to protect the application
and data at runtime.

The microkernel guarantees the quality of the isolation, containing a minimal trusted computing
base of roughly 10k lines of code. With such a small TCB, there is a realistic chance that the kernel
is entirely free from vulnerabilities.

Each component only receives access to the resources and services it absolutely requires. Com-
ponents are grouped into a deployable subsystem called SLICE (Secure and Light Instance of
Contained Enclave). A nested con�guration mechanism de�nes the SLICE topology, which forms
a mandatory access control system [19] for every possible resource.

4.1.2 Control Over all Dependencies

Apart from the strong isolation, another core concept is how Gapfruit OS governs dependencies.
The �rst type of dependency is Resource Distribution. A child component depends on its parent.
Each dependee is designed as simple as possible so we can verify it for correctness. At the root of
this dependency tree lies the microkernel. A parent component provides its children with resources
and establishes service connections to other components.

These connections form the second type of dependency: Service Topology. Components and
SLICEs are connected via a service-oriented architecture. A service is a means of abstraction
that provides access to a resource or functionality. There are roughly two dozen service types in
Gapfruit OS, like �le system, networking, GPU, USB, and real-time clock, to name a few. A client
depends on a server providing a service. The topology inherently governs the access control to
the di�erent services. The underlying technique is called capability-based security. Note that even
though the server is more critical regarding availability to the client, con�dentiality and integrity
are still guaranteed.

8

platform slice_runtime

slice_1

slice_2 slice_3

slice_4 slice_1 slice_2 slice_3

slice_4

Parent-Child Relationship Service Oriented Architecture

Resource Distribution Service Topology

platform

microkernel

management

microkernel

Figure 4: Resource distribution and service topology

The third type of dependency shown in Figure 5 controls the supply chain of Software Dependen-
cies where a SLICE depends on binaries, libraries, or other artifacts that are part of distributable
packages. When people in software engineering talk about dependencies, they often mean a form of
library dependency. The transactional package management system of Gapfruit OS lets you de�ne
and verify the Software Bill of Material (SBoM) for each SLICE during build, deployment, and
run-time. The declarative dependency de�nition solves the trade-o� between deploying subsystems
independently and e�ectively sharing common libraries. The package management system makes
updates as lightweight as possible since only the delta is being deployed.

lib_xbin_a

pkg_1

bin_b

pkg_2 pkg_3

pkg_b

pkg_4

lib_z bin_c

Lightweight Package Management

Software Dependencies

slice_1 slice_2 slice_3 slice_4

pkg_a

Figure 5: Software dependencies

Figures 4 and 5 show these three types of dependencies in three views of the same system.
Having this level of control over all dependencies lets you de�ne the components that can impact a
speci�c feature's computation and data �ow. E.g., the components highlighted in green are part of
the Trusted Computing Base (TCB) of that particular feature. No other component can interfere
with that speci�c TCB due to the isolation guarantees and the governance over the dependencies.
These are very powerful properties. This separation allows you to design a system where only the
components in green have to be, e.g., certi�ed for safety-critical criteria. Any other components
- such as internet-facing network components - can be rapidly updated without re-certifying the
whole product.

This property solves the problem described in section Safety vs Security. With Gapfruit OS,
you can now respond quickly on a disclosed vulnerability in, e.g., OpenSSL/libcrypto without
expensive re-certi�cation for safety.

Furthermore, the isolation of every component in the system combined with the capability-
based security, protects potentially malicious code from breaking out and protecting data in use.

9

An analogy would be the objectives of enclaves [20] combined with what virtual machines or other
sandboxing mechanisms try to achieve. (Figure 6). Hence, Gapfruit OS guarantees the isolation
of components from the outside-in and inside-out. This duality of isolation is essential, as it is
sometimes unclear which stakeholder considers which component of a system as trustworthy.

Enclave Sandbox/
VM

Component

Figure 6: The isolation of a component in Gapfruit OS in contrast to enclaves and sandboxes

4.2 Comparison of Attack Surface

Section 2 describes how an exploit in the network stack on typical operating systems results in the
complete compromise of the whole system. Figure 7 shows the attack surface from a compromised
network driver between Linux and Gapfruit OS. E.g., when there is an exploitable vulnerability in
a Linux network driver, the whole Linux system is compromised. Gapfruit OS supports running
Linux drivers strongly isolated in userspace. In this case, the vulnerability is still part of the driver.
However, that compromised driver is only another hop in an already untrusted network. In other
words, the con�dentiality and the integrity of the communication between the management agent
and its cloud counterpart stay intact. When it comes to availability, the self-healing resilience
system of Gapfruit OS will detect a misbehaving component and restart that component without
any impact to the rest of the system (see section Resilience and Availability).

Compared to other trusted computing approaches, such as ARM Trustzone [21], which divides
the world into two compartments (secure and non-secure world), Gapfruit OS o�ers truly dynamic
compartments (as required in 7 Properties of Highly Secured Devices). Any exploit of third-
party code, such as device drivers or network stacks, is isolated and only a�ects that particular
component.

Compared with monolithic operating systems where each feature has a global access to the rest
of the system, such as Linux, Gapfruit OS reduces the attack surface by more than 99%.

Monolithic Kernel

User Applications

Driver

Driver Driver
Memory Management

Scheduling

Filesystem

Filesystem

eBPF

Open Sound System

Network Driver
Bluetooth Stack

VPN
kexec

Crypto API

Firewalld

USB Stack

DriverDriver

Driver

Driver

Filesystem VPN

AppArmor LXC

Chroot

NFS

LVM

Linux

Untrusted Network

 Edge Gateway

eth1:fec_nic_drv

nic_router

microkernel

Cloud

AzureNIC

mgmt_agent

Gapfruit OS

Network Stack

Figure 7: Reduction of attack surface by >99%

4.3 Resilience and Availability

The desired state of the SLICE topology is de�ned using a declarative con�guration interface.
Gapfruit OS supports analyzing the health of each SLICE during run-time and, depending on

di�erent criteria, restarting SLICEs when required. Even device drivers are designed so they can
be restarted while keeping the impact on the overall system to a bare minimum.

Via the system con�guration, it is possible to pin a SLICE to one or more speci�c CPU cores.
Product developers can use this to prevent interruption of a critical SLICE so that its functionality

10

is deterministic and its availability is guaranteed - a necessity for hard real-time requirements.
Each SLICE is restricted by resource usage. The microkernel enforces this limit and stops

(and may restart) components that exceed the con�gured limit. This prevents the system from
becoming unstable due to, e.g., exceeding the memory consumption of individual SLICEs.

4.4 TPM and PKI

Trusted Platform Modules (TPM) [18] are a hardware root of trust with a standardized crypto-
graphic API. Here is a list of topics for which Gapfruit uses TPM features:

� Authenticated Boot

� Measured Boot

� Attestation of Integrity

� Hybrid Secure Counters for Dynamic Disk Integrity

� Protect Secrets with Policy

� Strong Digital Identity for Authentication

An important topic in the context of zero-trust is using TPMs for authentication. For example,
from an application perspective, a POSIX application may utilize the credential management sys-
tem of Gapfruit OS for authentication to cloud services. The application can read the certi�cate
and the private key for the mTLS connection using POSIX read functions. The credential man-
agement system will then issue short-lived credentials from TPM-backed certi�cates issued from
external public-key infrastructures (PKI).

In other words, Gapfruit enables application engineers to leverage the bene�ts of PKI in com-
bination with strong digital identities without requiring them to be security experts. More on that
subject in section Case-Study: Industrial IoT Gateway.

4.5 Linux Device Driver Environment

Gapfruit OS leverages the Linux Device Driver Environment from Genode [2] - an absolute game-
changer in the microkernel community. It enables Gapfruit to bene�t from the vast Linux ecosystem
regarding hardware support (see section 2.1). The Linux driver is embedded in a lightweight shim
that provides the Linux kernel internal API to the driver and transforms this API to sessions as
described in section 4.1.2. Note that this Linux driver also runs within a strict sandbox in userland
and, therefore, is not critical for the trustworthiness of the overall system - even when the driver
is compromised.

Hardware vendors struggle to keep their Linux board support package (BSP) up-to-date with
upstream Linux. This often makes hardware deployed in the �eld obsolete after 2-4 years since
critical vulnerabilities in the Linux kernel remain unpatched. Devices running Gapfruit OS have
a signi�cantly longer lifespan since the drivers can be buggy without impacting the rest of the
system.

11

5 Case-Study: Industrial IoT Gateway

The bene�ts of Gapfruit OS are relevant for many industries. This section describes a solution
to bring a zero-trust strategy to the industrial automation sector: An IoT Gateway that Gapfruit
provides in collaboration with hardware vendors and solution providers.

5.1 Challenges in the Realm of Digitalization of the Factory Floor

The industry has hugely underestimated the challenges of digitalization on the factory �oor. We
can observe that the industry and its various stakeholders have positioned themselves in a deadlock.
To illustrate the problem, let's assume a scenario with the following stakeholders:

� The factory which produces goods with machines from di�erent manufacturers.

� The machine manufacturer who wants to explore new business models, such as predictive
maintenance or machine-as-a-service.

� The IIoT solution builder that designs and implements the digital solution for the machine
manufacturer.

� The managed service provider which maintains the infrastructure to ensure a smooth service.

From the factory's perspective, maximizing productivity is an important priority. Any incident
that jeopardizes this productivity has an extreme �nancial impact. Cyber attacks, therefore, have
severe consequences. According to Bitkom [22], cyberattacks cost the German economy ¿178.6
billion in the most recent reporting period. In 2023, 25.7% of all global cyberattacks targeted the
manufacturing industry, making it one of the hardest-hit sectors [23]. Therefore, many factories
hesitate to interconnect machines to the cloud or on-premise solutions. Additionally, updating the
machines' �rmware within a factory leads to downtime. Any downtime incentivizes maintenance
technicians not to update the �rmware of the machines. On the other hand, not updating the
�rmware increases the vulnerabilities of the whole factory �oor. It becomes apparent how this
situation becomes a negative feedback loop. While there is a shortage of maintenance technicians
for the factory, an o�ering from the machine manufacturer regarding predictive maintenance or
machine-as-a-service would be very welcome. However, the data that the machine manufacturer
needs for their o�ering is not accessible.

From the machine manufacturers' perspective, they are experts in building the machine but
often lack expertise in software engineering, IT, Linux, and security best practices. Therefore, the
machine manufacturer is forced to shift the responsibility regarding security to their customers
(factories). Hence, their machines don't connect to the cloud, and they don't get the much-needed
telemetry and insights for their new business opportunities. However, starting in 2027, the machine
manufacturer is liable regarding the security of their machines [8].

Machine manufacturers seek help from IIoT solution builders to digitalize their machines for
new business opportunities. With the currently available technology, the IIoT solution builders
are forced to have deep security expertise (PKI, TPM, application hardening) and deep operating
systems expertise (OS Hardening, Docker [8] tooling, etc.). They are, therefore, struggling to focus
on their core expertise. This fact forces them to shift the responsibility of maintaining security to
either the factories or the managed service providers.

From the managed service provider perspective, constantly patching and maintaining the �eets
of devices is an uphill battle (see section 2.1). Guaranteeing high availability with existing solutions
results in extensive manual labor, which results in low margins. Further, the imperative deployment
and provisioning of the solution with existing solutions is time-consuming and error-prone. From
a security perspective, zero-day exploits have severe consequences and result in too much manual
labor.

From a network security perspective, the cleanest solution is to move from a perimeter network
model to a zero-trust model.

12

5.2 Zero-Trust in OT

Zero-trust refers to a security approach in which all devices and users are treated as untrusted and
must be continuously authenticated and authorized before being granted access to resources. This
approach mitigates the risk of insider threats and reduces the attack surface of OT systems, which
are critical to the operations of many organizations.

However, implementing a zero-trust strategy in OT environments can be challenging for several
reasons:

� Computing power: Many sensors, actuators, or simple IoT devices lack the computing re-
sources for the cryptographic computations necessary for password-less authentication (see
section 3).

� Interoperability: Many OT systems need to work with speci�c protocols and a mix of mod-
ern and legacy technologies, making integrating them with a zero-trust security solution
challenging.

� Visibility: It can be di�cult to obtain a complete and accurate view of the devices and users
within an OT environment, which is necessary for implementing a zero-trust approach.

� Maintenance: OT systems often have long life cycles and may not be regularly updated or
maintained, making it di�cult to ensure that they are secure and compliant with zero-trust
best practices.

These challenges call for a hybrid approach of moving this �last perimeter� as close as possible to
devices incapable of many security mechanisms. The IoT Gateway running Gapfruit OS protects
this last perimeter. The gateway shown in Figure 8 forms a �rst line of defense that makes a
zero-trust transformation possible in OT.

Cloud
 Edge Gateway

 Data Plane

CPU GPU

 Management Plane

Gapfruit OS

NVMeRAM TPM LTE/5G

Device Twin

Protocol Adapter Edge Processing Cloud Adapter Cloud
Processing

Mgmt AgentPkg ManagerHealth Monitor Credentials

Provisioning
Service

CA root

Figure 8: IoT Gateway running Gapfruit OS

We can divide the IoT Gateway into two core functionalities: The management plane and the
data plane.

The data plane connects the OT world with the IT world. It is responsible for connecting
and pre-processing the payload from sensors, actuators, and other devices behind the gateway.
Gapfruit provides several building blocks for connecting sensors and actuators via �eld buses and
IP-based protocols. We also provide building blocks for cloud connectivity to various cloud vendors.
Gapfruit o�ers extensive tooling to combine and adapt these building blocks to create deployable
SLICEs.

The management plane is responsible for con�guring and managing the gateway itself and
providing access to the managed solution provider for monitoring and maintenance purposes. To
manage truly scalable IoT deployments, we collaborated with OT experts such as Device Insight [25]
and Axiros [26], one of the leading Telco technology providers. We're currently o�ering management
capabilities over Azure DPS/IoT Hub [3] and the Telco standard TR369 [28], which are easy to
integrate into existing management solutions. TR369 is designed to bring the scaling of Telco
equipment to the internet of things. Note that these management agents are interchangeable to
other management protocols, such as NETCONF/RESTCONF.

13

5.3 Enable Plug and Produce with Azure DPS

Figure 8 shows a setup with a gateway that connects to Azure Device Provisioning Server (DPS) for
zero-touch deployments. A precondition is the physical provisioning of the gateway. The way this
works is that the Certi�cate Authority (CA) creates a new root certi�cate for a cluster, product
line, customer, or any other similar group of devices. The managed solution provider creates a new
enrollment group for that cluster, de�nes the initial desired twin, and imports the root certi�cate.
Any device registering with an intermediate certi�cate is granted access, and the Azure DPS will
then create a device twin on the Azure IoT Hub for each device.

On the device side, the system creates a new key pair within the TPM. The system will then
issue a Certi�cate Sign Request (CSR) to the CA. The system attests to the CA that the private
key has been generated within the TPM and that the key is non-exportable.

Later, the credential manager will issue short-lived certi�cates with TPM-backed long-lived
keys for the management agent and data-plane SLICEs.

All gateways of a cluster connect to the same Azure DPS. A precondition is to de�ne the initial
desired state for all devices. Once a gateway is installed and powered on, the management agent
will connect to Azure DPS and authenticate itself with TPM-backed credentials. Azure DPS will
create a device twin with the initial desired state con�guration. The device twin has two main
sections:

� Desired Properties: The declarative desired state con�guration

� Reported Properties: The actual state of the device

Given the desired state con�guration, the gateway will pull the required packages and all their
dependencies.

Once all the packages are downloaded, veri�ed, and extracted, Gapfruit OS spawns the respec-
tive SLICEs and sets the con�guration, ultimately automatically coming to the desired state.

From that moment on, the device is being managed via the declarative device management
system CENTERSIGHT scale [27].

5.4 Bene�ts

In the context of the digitalization of the factory �oor, we can see how we can address the challenges
of the respective stakeholders described in section 5.1 using an industrial IoT gateway running
Gapfruit OS:

From the factory's perspective, we can leverage zero-trust principles in a case-by-case iterative
approach. The bene�ts of zero-touch provisioning, zero downtime upgrades, and end-to-end prod-
uct lifecycle management guarantee maximum productivity of the shop�oor while enabling a path
towards outsourcing complex machine maintenance to the machine manufacturer so they can o�er
predictive maintenance or machine-as-a-service business models.

Due to the connectivity, the machine manufacturer can now get real-time insights and telemetry
of their machine. This data enables them to improve their existing products and o�er new business
models. Additionally, they now have a way to separate OT and IT-speci�c software, which helps
them to be CRA [24] compliant.

The IoT solution builder can leverage Gapfruit OS and its tools to focus on their core expertise
and build a resilient, scalable, and secure solution. There is no need to harden the operating
system, and although they still need to take care of some application hardening techniques, they
are limited to the application's intrinsic features. Further, there is no vendor lock-in because the
custom SLICEs built for Gapfruit OS can be directly exported to Docker [8] images.

The managed solution builder can scale to massive IoT deployments with minimal total cost-
of-ownership (TCO). Additionally, they can guarantee high availability while keeping the �eet
secure with lightweight transactional upgrades. Minimizing risk and manual labor enables them to
maximize revenue with minimal costs while conforming to their service level agreements (SLAs).
Last, they can signi�cantly shorten the time to value for their deployments as they move from an
imperative setup to a declarative management system.

14

About Gapfruit AG

Gapfruit is a deep-tech company based in Switzerland with a proven track record in systems
security, product development, and software engineering. The founding team developed a military-
grade operating system ful�lling the requirements set by national governments and security agencies
across the world for ironclad security. With this expertise, Gapfruit brings scienti�cally recognized
academic research to real-world products for today's and future challenges. The developers at
Gapfruit have been contributing to the Genode Framework [2] for over a decade.

If you want to deliver trustworthy products yet focus on your core expertise, contact us today.
https://gapfruit.com

Abbreviations

Abbreviation Meaning

API Application Programming Interface
App Application
CA Certi�cate Authoroty
CIA Con�dentiality, Integrity and Availability
DPS Device Provisioning Service
DRTM Dynamic Root of Trust Measurement
GDPR General Data Protection Regulation
IoT Internet of Things
IT Information Technology
JVM Java Virtual Machine
LOC Lines of Code
MAC Mandatory Access Control
mTLS Mutual TLS
NIC Network Interface Card
OT Operational Technology
PCI DSS Payment Card Industry Data Security Standard
PKI Public Key Infrastructure
PLC Programmable Logic Controller
ROM Read-only Memory
SBoM Software Bill of Materials
SE Secure Element
SLA Service Level Agreement
SLICE Secure and Light Instance of Contained Enclave
SoC System on Chip
SRTM Static Root of Trust Measurement
STRIDE A threat modeling technique
TCB Trusted Computing Base
TEE Trusted Execution Environment
Telco Telecommunication
TLS Transport Layer Security
TOC Time of Check
TOU Time of Use
TPM Trusted Platform Module

15

https://gapfruit.com

Appendix

6 Threat Models

Threat models are used to de�ne the scope of security guarantees for products. This section uses
attack trees and the STRIDE models. For these models, there are the following assets: The IoT
Gateway, the cloud, the sensor(s), and the actuator(s).

6.1 Attack Trees

This section describes how an adversary would attack a door system. Figure 9 shows how they
would try to open the door.

Malicious act with
liegitimate device

Tamper with device/
firmware state

Tamper with the app Send request for
malicious act

Manipulated
request

Send malicious
input

TLS
protection

Load malicious app

Software signatureGapfruit OS

Steal TLS
credentials

TPM

Legend:

Attack

Mitigation

Priviledge
escalation

Strong isolation &
control over TCB

Figure 9: Attack Tree Actuator

While being able to open the door is not desired, spoo�ng the state of the door can also be
disastrous. The analysis can be seen in Figure 10.

Report false door
information

Modifiy legitimate
information

Report forged
information

Impersonate device

Modify on device Modify on network

TLS authentication

Steal private key

TPM

TLS integrity
protectionTamper with

the app
Tamper with device/

firmware state

Legend:

Attack

Mitigation

Firmware protection Gapfruit OS

Figure 10: Attack Tree Sensor Information

Figures 9 and 10 reference mitigations that involve the protection of the �rmware, shown in
Figure 11.

16

Tamper with device/
firmware state

Run modified
firmware

Priviledge
escalationRemote exploitAttack CPU or RAM

Strong isolation &
control over TCBSecure-Boot

Run modified apps

Disk Integrity Updated softwareTamper protection &
RAM encryption

Legend:

Attack

Mitigation

Gapfruit OS

Figure 11: Attack Tree Gapfruit OS

17

6.2 STRIDE Model

This section describes the threat model of IoT gateway built with Gapfruit OS. The threat model
here is derived from the STRIDE model.

Table 1: Threat for Asset - IoT Gateway
Threat Example

Spoo�ng

S1: The attacker may impersonate the cloud, device, or an app
S2: The attacker may spoof to or from another legitimate device or
app
S3: The attacker may replace the legitimate device or app with a
forged one
S4: The attacker may send commands to the actuator as a spoofed
device

Tampering
T1: The attacker may modify the �rmware or apps of the device
T2: The attacker may modify a command sent to the device

Repudiation
R1: The attacker may prevent logging
R2: The attacker may erase or truncate the log

Information disclosure
I1: The attacker may steal the data collected on the device
I2: The attacker may intercept data transferred between sensors
and the device
I3: The attacker may intercept data transferred between the device
and the cloud

Denial of service
D1: The attacker may overload the device or data connection
D2: The attacker may disable the device

Elevation of privilege
E1: The attacker may gain access to other apps on the device
E2: The attacker may gain administrative privilege on the device

18

Table 2: Adversary for Asset - IoT Gateway
Adversary Example

Network attacker

N1: The attacker may eavesdrop, modify, or spoof packets on the
network.
N2: The attacker may connect to the device to exploit a
vulnerability in the �rmware or an app
N3: The attacker may send an unauthorized request to the device
N4: The attacker may overload the data connection with
super�uous network tra�c

Unprivileged software
attacker

U1: The attacker may insert malicious code in an app to take
control of the device
U2: The attacker may send an authorized request or sensor input to
exploit a vulnerability in the �rmware or an app
U3: The attacker may overload the device with a malicious app

Privileged software
attacker

P1: The attacker may modify settings or apps
P2: The attacker may steal credentials

Simple hardware
attacker

H1: The attacker may modify the �rmware or data on the
nonvolatile storage
H2: The attacker may copy the data from the nonvolatile storage
H3: The attacker may turn o� the device
H4: The attacker may eavesdrop or modify the communication to
the secure element
H5: The attacker may attach a debug probe

Skilled hardware
attacker

K1: The attacker reads or modi�es the device's RAM
K2: The attacker may perform side-channel attacks on the CPU or
secure element

Table 3: Mitigation for Asset - IoT Gateway
Mitigation Example

Protection

Communication with the cloud is encrypted and authenticated (S1,
S2, S3, I3, N1, N3)
Keys are stored and used in the secure-element (S1, S2, S3, P2, H1,
H2)
Nonvolatile storage is encrypted and integrity-protected (T1, I1, H1,
H2)
The device will only boot �rmware signed by the manufacturer (T1,
H1)
System components are strongly isolated and governed (T1, R1, R2,
I1, E1, E2, N2, U1, P1, P2)
The casing of the device is tamper-protected (H5)
Sensors, actors, and their communication to the IoT Gateway are
physically protected (S4, I3)

Detection
The heartbeat monitor will detect non-responsive software
components (D1, U3, N4)
The cloud will detect non-responsive devices (D1, D2, N4)
The casing of the device has tamper detection (K1, K2)

Recovery
The heartbeat monitor will restart non-responsive software
components (D1, U3, N4)
If the integrity check of the �rmware fails, the device boots into
recovery mode and installs an authentic �rmware (P1, H1)

19

References

[1] Gapfruit - A new era of operating systems
https://www.gapfruit.com

[2] Genode Framework
https://www.genode.org

[3] Azure DPS/IoT Hub
https://learn.microsoft.com/en-us/azure/iot-dps/

[4] General Data Protection Regulation
https://gdpr-info.eu/

[5] PCI Security Standards Council
https://www.pcisecuritystandards.org/

[6] Role-based Access Control
https://en.wikipedia.org/wiki/Role-based_access_control

[7] Getting to Mass IoT Deployment
https://mass-iot.com/wp-content/uploads/2022/11/BR_Getting-to-Mass-IoT-Deployment.

pdf

[8] Docker
https://www.docker.com/

[9] WebAssembly (WASM)
https://www.w3.org/TR/wasm-core-2/

[10] WebAssembly System Interface (WASI)
https://wasi.dev/

[11] Carnegie Mellon University's CyLab Sustainable Computing Consortium
http://www.cylab.cmu.edu/

[12] OpenSSL Library
https://openssl-library.org/

[13] Max Weidele, Whitepaper: Der grosse Industrial Security Guide (German)
https://www.sichere-industrie.de/ressourcen/

[14] Kees Cook, Google Security Blog: Linux Kernel Security Done Right
https://security.googleblog.com/2021/08/linux-kernel-security-done-right.html

[15] Linux Kernel Stats
https://github.com/gregkh/kernel-history/blob/master/kernel_stats.ods

[16] Akshay Bhat: The �upstream �rst� strategy is only half of the story for embedded devices
https://www.timesys.com/security/challenges-linux-os-bsp-security-maintenance/

[17] Galen Hunt, George Letey, and Edmund B. Nightingale, The Seven Properties of Highly
Secured Devices
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/

Seven-Properties-of-Highly-Secured-Devices-2nd-Edition-R1.pdf

[18] Trusted Platform Module
https://trustedcomputinggroup.org/resource/tpm-library-specification/

[19] Mandatory Access Control
https://en.wikipedia.org/wiki/Mandatory_access_control

20

https://www.gapfruit.com
https://www.genode.org
https://learn.microsoft.com/en-us/azure/iot-dps/
https://gdpr-info.eu/
https://www.pcisecuritystandards.org/
https://en.wikipedia.org/wiki/Role-based_access_control
https://mass-iot.com/wp-content/uploads/2022/11/BR_Getting-to-Mass-IoT-Deployment.pdf
https://mass-iot.com/wp-content/uploads/2022/11/BR_Getting-to-Mass-IoT-Deployment.pdf
https://www.docker.com/
https://www.w3.org/TR/wasm-core-2/
https://wasi.dev/
http://www.cylab.cmu.edu/
https://openssl-library.org/
https://www.sichere-industrie.de/ressourcen/
https://security.googleblog.com/2021/08/linux-kernel-security-done-right.html
https://github.com/gregkh/kernel-history/blob/master/kernel_stats.ods
https://www.timesys.com/security/challenges-linux-os-bsp-security-maintenance/
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Seven-Properties-of-Highly-Secured-Devices-2nd-Edition-R1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Seven-Properties-of-Highly-Secured-Devices-2nd-Edition-R1.pdf
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://en.wikipedia.org/wiki/Mandatory_access_control

[20] Julian Stecklina, The Flawed Design of Intel TDX
https://x86.lol/generic/2023/02/07/intel-tdx.html

[21] ARM TrustZone
https://developer.arm.com/ip-products/security-ip/trustzone

[22] Andreas Streim, Bitkom, Angri�e auf die Wirtschaft nehmen zu
https://www.bitkom.org/Presse/Presseinformation/Wirtschaftsschutz-2024

[23] Produktion, Cyberangri�e: Fertigungsunternehmen am stärksten betro�en
https://www.produktion.de/technik/cybersecurity/cyberangriffe-fertigungsunternehmen-am-staerksten-betroffen-264.

html

[24] European Cyber Resilience Act
https://www.european-cyber-resilience-act.com/

[25] Device Insight
https://device-insight.com/

[26] Axiros, Any Device. Any Protocol. Any Service. Any Time | We manage all THINGS.
https://www.axiros.com/

[27] Device Insight, CENTERSIGHT scale
https://device-insight.com/en/centersight-scale/

[28] Broadband Forum, TR369: The User Services Platform
https://usp.technology/

21

https://x86.lol/generic/2023/02/07/intel-tdx.html
https://developer.arm.com/ip-products/security-ip/trustzone
https://www.bitkom.org/Presse/Presseinformation/Wirtschaftsschutz-2024
https://www.produktion.de/technik/cybersecurity/cyberangriffe-fertigungsunternehmen-am-staerksten-betroffen-264.html
https://www.produktion.de/technik/cybersecurity/cyberangriffe-fertigungsunternehmen-am-staerksten-betroffen-264.html
https://www.european-cyber-resilience-act.com/
https://device-insight.com/
https://www.axiros.com/
https://device-insight.com/en/centersight-scale/
https://usp.technology/

	The Internet of Things
	IoT: Converging Domains
	Difference in Security Priorities
	Challenges of Scaling IoT
	Safety vs Security

	The Problem with Current Operating Systems
	Why are Linux BSP's Chronically Outdated?

	Properties of Highly Secured Devices
	Gapfruit OS Technology Overview
	Core Principles
	Strong Isolation
	Control Over all Dependencies

	Comparison of Attack Surface
	Resilience and Availability
	TPM and PKI
	Linux Device Driver Environment

	Case-Study: Industrial IoT Gateway
	Challenges in the Realm of Digitalization of the Factory Floor
	Zero-Trust in OT
	Enable Plug and Produce with Azure DPS
	Benefits

	Threat Models
	Attack Trees
	STRIDE Model

