Al-Driven Verification:

Accelerating Quality and Coverage
in the Era of Complex Silicon

Abstract

The rising complexity of modern SoCs, Al accelerators, and advanced digital-IP subsystems has stressed
traditional verification methodologies to their limits. Manual testbench creation, coverage closure, and
debug consume the majority of development time and cost. This white paper explores how Al
techniques—particularly generative models, reinforcement learning, and hybrid Al-formal approaches
—are transforming the verification engineering landscape. We present a framework for how Al
augments and automates key verification tasks, quantify the expected gains, discuss practical
challenges and mitigations, and provide guidance for integration into existing flows. Finally, we
introduce Moores Lab Al's VerifAgent™ as a vendor-agnostic, but production-grade example of how an
Al-driven verification assistant can lower cost, shorten schedules, and elevate verification quality.

https://gamma.app/?utm_source=made-with-gamma

Introduction

The verification burden in modern silicon design is overwhelming:

e Simulation cycles are long and regressions take hours.
e Verification teams require large headcounts to meet coverage and corner-case goals.
e Manual testbench design, stimulus writing, and debugging are error-prone and slow.

e Coverage closure (especially functional coverage) often becomes a "whack-a-bug" iteration late in
the schedule.

e Thetalent gap is widening: it's hard to attract and retain top verification engineers at scale.

e Variation in methodology, environment, assertion coverage, and IP reuse quality means inconsistent
verification quality across teams.

In many projects, verification takes more than 60% of the RTL-to-tapeout schedule, and costs can run
into the tens of millions of dollars. Management often demands faster timeto-market, but verifying
correctness and corner-case behavior is non-negotiable in today's safety, security, and reliability

domains.

The central challenge is: How to reduce the human burden and accelerate verification without
compromising coverage, quality, or debug effectiveness.

https://gamma.app/?utm_source=made-with-gamma

Traditional Verification Methodologies

FUNCTIONAL égg;?]%?ng MioRtas O
VERIFICATION complexity of IP
INPUT B OUTPUT Q@
érchijtfgcutxre @ Testplan J WJ
i @ UVM Test Bench J m
RTL Design WFICATION @ @ Implemented Testcases }
ries il [g/y] Scoreboards & Checkers J
3+ MONTHS
o @ Cover Points & Groups J
Additional EDA
gg"ie: e TOG!S @ Coverage Report }

Over the past two decades, verification teams have adopted layered, methodology-driven flows:

Test plan » Environment » Stimulus » Coverage & assertions » Debug & refine » Signoff.
@ Methodology frameworks like UVM (Universal Verification Methodology) and its ancestors

(e.g., OVM) provide structured reuse, sequence layering, transaction-level abstraction,
factory overrides, and constrained-random stimulus.

{é} Formal and equivalence checking are used for certain data paths, corner-case assertions,
or design equivalence (RTL vs higher-level model).

@ Hardware acceleration / emulation (e.g. ZeBu) helps with system-level handoff and
firmware-driven verification.

o(i Incremental regression and coverage feedback loops; human engineers review coverage
and decide what strategy to use to close coverage holes.

These flows have matured, but they still heavily rely on human insight: deciding stimulus strategy,
writing corner-case sequences, managing coverage dependencies, triaging failures, and debugging
interactions among modules.

https://gamma.app/?utm_source=made-with-gamma

Early Al / ML in EDA & Verification

Over the last few years, Al and ML have begun to appear in EDA tools in limited roles:

e Synopsys introduced VSO.ai and TSO.ai to accelerate coverage closure and test generation,
leveraging machine learning to predict coverage holes or optimize test patterns.

e AWS published generative Al approaches to design assistants and prompting-based exploration of
design alternatives.

e Academic work, such as MAVF (Multi-Agent Generative Verification Framework), demonstrates that
dividing verification tasks across specialized Al agents (spec parser, strategy generator, code emitter)
outperforms single-LLM approaches in generating testbenches and verification artifacts.

e Other academic approaches, such as generative induction in formal verification, show how Al can
assist or accelerate proof search.

e The Saarthi agent demonstrates a proof-of-concept "autonomous Al formal verification engineer"
that can take RTL and verify end-to-end under a constrained domain.

e Intelligent coverage closure strategies (e.g. auto-feedback of coverage holes to stimulus generation)
have been used to reduce manual effort. This is sometimes referred to as "intelligent verification."

These developments suggest that Al/ML can be more than a helper; they can become an integral co-
engineer in verification.

https://arxiv.org/abs/2502.16662
https://gamma.app/?utm_source=made-with-gamma

The Al-Driven Verification Solution

This section describes how Al techniques can be applied to key subdomains of verification, how they
work in concert, and what benefits accrue (both technical and business). Note that these verification
solutions apply exclusively to UVM testbenches.

Task Decomposition: Where Al Fits

Below, the verification problem is broken into subdomains and shows the Al augmentation
opportunities for each one:

Subdomain

Specification / Requirements
Parsing

Test Plan Generation /
Strategy

Testbench / Environment
Code Generation

Traditional Process

Manual reading, deriving
features, corner-case
identification

Human crafts a plan with
constrained-random,
directed tests, corner-case
enumeration

Manual scaffolding of
monitors, drivers,
scoreboard, interface
infrastructure, constraints

Al-Augmented [Automated
Role

Use vLLMs or domain-tuned
models to parse spec
documents (protocols, state
machines) and propose
candidate coverage items,
edge-case scenarios, or
protocol fuzzers

Al suggests prioritized test
plan templates, gap-driven
tests, scenario permutations,
and cross dependencies

Agent-based generative-Al
emits transaction-level or
UVM-style boilerplate,
connectivity wrappers,
assertion skeletons,
environment scaffolds

https://gamma.app/?utm_source=made-with-gamma

Stimulus / Sequence
SGESE

Coverage Analysis & Closure
Guidance

Bug Triage / Debug / Root-
Cause Analysis

Formal Assistance & Hybrid
Al-Formal

Regression Prioritization /
Risk Estimation

Writing constrained-random
sequences, directed corner-
case sequences, scenario-
based stimuli

Engineers analyze coverage
reports, identify unhit bins,
infer dependencies, iterate

Engineers trace failing tests,
isolate signal-assertion
interactions, collaborate with
RTL designers

Formal proofs or bounded
model checking performed
with manual

abstraction/hinting

Human picks which test
regressions to run first

Together, these form a "stack" of Al-augmented verification capabilities.

Al-driven sequence
generation targeting
coverage holes, edge-case
generation, reinforcement-
learning based adaptive
stimulus

Al clusters coverage holes,
suggests stimulus or
constraint modifications,
predicts which holes are
feasible toA improve the
coverage

Al-assisted failure clustering,
trace-to spec mapping, likely
root-cause ranking, hints for
additional assertions or
exclusions

Al can propose abstraction,
lemmas, induction
invariants, or direction
heuristics to help formal
engines scale

ML models score regressions'
likely coverage yield or bug-
finding power, schedule
regressions accordingly

https://gamma.app/?utm_source=made-with-gamma

Architecture: Multi-Agent & Feedback Loops

A practical Al verification system
should be architected as a multi-
agent system rather than a
monolithic LLM. Al agents
perform functions such as:

Specification

Processes natural-language spec, extracts
state machines, transactions, legal behaviors

Generation

Emits testbench code, sequences,
environments

Feedback

Ingests coverage/bucket data and suggests
improvements

Planning

Translates spec features into coverage plan
and test goals

Stimulus

Dynamically generates or mutates stimulus
during regression

Debugging

Processes failures, signals, assertions and
suggests root-cause hypotheses

These specialized agents communicate, refine each other's outputs, and loop until a verification closure

target is reached (or diminishing returns kick in). MAVF, for example, shows better performance than

single-LLM pipelines.

The system should include feedback loops from coverage results and debug outcomes back into the Al
agents. As regressions run, new data is ingested (e.g. coverage maps, assertion hits, bug history), and

the Al adapts for better future generations.

https://gamma.app/?utm_source=made-with-gamma

Integration into Existing Flows

To be realistic and adoptable, the Al stack should be:

Vendor-agnostic

Integrate via script interfaces, open APIs, or
adapters to standard EDA tools and flows

Reviewable & controllable

Engineers should be able to review and
override Al suggestions

Secure & confidential

Models should run on-prem or in secure
enclaves, not require IP exposure to public
clouds

Prompt-free / Minimal prompt
engineering

Users shouldn't need to reverse-engineer
prompts or micromanage the Al

Incrementally adoptable

Begin with assistance in a subset (say,
testbench generation or coverage closure)
before scaling

Performance-aware

Generation should scale for large modules,
with modularization, streaming, and

caching

https://gamma.app/?utm_source=made-with-gamma

Quantified Benefits & Empirical Gains

Metric

Testbench & environment
scaffolding time

Coverage closure cycle count

Regression runtime
utilization

Bug-detection yield earlier,
including documentation

errors

Human headcount burden

Cost savings

Typical Baseline

Weeks to months

Many nested loops

Conservative ordering / serial

Late-stage surprises

Large teams per IP

High verification spend

Based on industry claims, internal studies, and academic benchmarks, here are realistic expectations:

Expected Improvement

10x-30x faster

Reduction by 30-50% or

more

Better prioritization, fewer
wasted runs

Shift-left coverage and more
bugs caught earlier

Up to 50% fewer manual
engineers needed

Reductions in cost up to 40-
70% (depending on IP
complexity)

Moores Lab Al VerifAgent™ customers have experienced up to 7x faster time-to-market and 86% cost
reduction on IP verification. In the academic domain, MAVF shows competitive or superior results vs
manual approaches for multi-module verification. Other industry sources (e.g., Tessolve) highlight
manual-effort reductions and better coverage closure via Al + formal techniques.

Risks, Limitations & Mitigations

No Al system is magic; prudent engineering is required to mitigate risks:

Over-reliance / complacency

NP Engineers may accept suboptimal or incorrect generated tests.

Mitigation: require human-in-the-loop review, offer transparency, and ensure code is
auditable.

https://gamma.app/?utm_source=made-with-gamma

B

Q0
o'0

Model generalization failures

Edge-case domains or niche IP may lie outside training experience.

Mitigation: allow domain-specific fine tuning and feedback learning.

Scalability and runtime

Model generation latency might be high for large modules.

Mitigation: modular generation, caching, parallelism, streaming generation.

Debug complexity

Generated testbench may produce failures that are hard to interpret.

Mitigation: couple debug agent, logging, and trace mapping.

False coverage confidence

There's a risk of treating Al-generated coverage as "complete" prematurely.

Mitigation: retain manual coverage goals, assertion-based guardrails, and sanity checks.

Tool & methodology compatibility

Generated code may not match local coding style or methodology.

Mitigation: provide adapters, style templates, constraint configuration.

Security / IP leakage

While not an Al risk per se, the use of cloud LLMs could expose proprietary RTL or
specifications. Mitigation: on-prem/private deployment, federated models, encryption.

With careful safeguards (especially reviewability and feedback), these risks are manageable, and the

benefits outweigh them in most IP-level flows.

https://gamma.app/?utm_source=made-with-gamma

Conclusion

The semiconductor industry is under intense pressure to shrink schedules, reduce headcount, and
maintain high assurance in increasingly complex Ips. Verification engineering is arguably the greatest
bottleneck in many tapeout flows. Al offers a transformative path — not by replacing verification
engineers, but by augmenting them, reducing manual toil, and accelerating coverage convergence.

To those leading verification teams and their management, the message is: start small, prove value,
then scale. Begin by adopting Al assistance for modules where testbench scaffolding or stimulus
generation is expensive. Use the ROI to build confidence and expand the role of Al agents deeper into
your flow.

Your road map might look like:

Ol 02

Pilot Al-assisted testbench Compare auto-generated vs human

generation on a mature IP. stimulus in functional coverage and
bug yield.

03 04

Incorporate coverage-feedback Add debug / triage agent for failure

agents to suggest missing analysis.

scenarios.

05 06

Expand to cover hybrid formal/Al Finally, adopt the full multi-agent
for difficult corner-case properties. Al verification stack across multiple
Ips in parallel.

The urgency is real: companies that adopt Al early will out-compete in silicon delivery. Verification
teams should be proactive, not reactive, in embracing this shift.

https://gamma.app/?utm_source=made-with-gamma

About Moores Lab Al

Moores Lab Al is dedicated to bringing Al-
native automation to silicon verification.
Our initial product, VerifAgent, is an agentic
Al verification assistant that integrates into

@ Moor‘es I_ObAl standard EDA flows and automates test

plan generation, testbench and stimulus
creation, assertion scaffolding, coverage
guidance, and debug assistance.

Some of the benefits our VerifAgent™ customers have experienced include:

7% 86%

faster time-to-market cost reduction

(i.e. reducing verification cycle time) in IP verification expenditure

e Seamless integration with existing flows (vendor-agnostic, prompt-free)

e Automated generation of full UVM testbenches, coverage models, and assertions delivered in hours
EIOEIRGERRWVETS

e Corner-case bugs that had previously escaped human test benches caught in "preverified" IPs

e The choice of on-prem or cloud deployment

We provide not just software but an IP verification package (test plan, test bench, test cases with
coverage) via a structured engagement flow. Other agentic Al silicon engineering products are under

development and on our roadmap.

If you're leading a verification group and evaluating Al adoption, contact us for a pilot on a moderately
complex IP and benchmark the results against your internal metrics. Consider broader deployment
once validated.

Visit: www.mooreslab.ai

https://gamma.app/?utm_source=made-with-gamma

