

CIBP

CAST IRON BRIDGE PLUG

DESCRIPTION

The Cast Iron Bridge Plug (CIBP) is a reliable, cost-effective tool designed to provide temporary or permanent zonal isolation in oil and gas wells. It is typically run on wireline, slickline, or tubing and is set mechanically or hydraulically, depending on the application.

CIBPs are commonly used for:

- Well abandonment and suspension operations.
- Temporary isolation during well interventions.
- Zonal isolation for selective stimulation or production.
- A base for cement plugs.

The tool is constructed of high-strength cast iron and drillable components, which allow for easy and efficient removal by conventional drilling or milling methods. This makes it an industry-standard solution when a bridge plug is required for dependable sealing and later drill-out.

FEATURES

- Can withstand up to 10,000 psi differential pressure from both above and below
- Full metal (cast-iron) body – robust and drillable
- Suitable for both temporary and permanent applications
- Can be set on wireline, slickline, or tubing
- Provides a reliable seal against differential pressures
- Easily drilled out with conventional bits

Casing size in - [mm]	Casing Weight Min-Max [lbs/ft]	Plug OD in - [mm]	Min Setting Range in - [mm]	Max Setting Range in - [mm]	Pressure Rating Psi - [Bar]	Setting Force klbf - [t]	Setting Tool
2.375 [60.3]	4.6 - 6.6	1.71 [43.4]	1.785 [45.34]	1.867 [47.4]	10000 [689]	12 [5.4]	1-11/16 MSST / #5
2.875 [73]	6.4 - 7.8	2.1 [53.3]	2.323 [59]	2.441 [62]	10000 [689]	12 [5.4]	1-11/16 MSST / #5
3.5 [88.9]	7.7 - 10.2	2.75 [69.9]	2.922 [74.21]	3.068 [77.92]	10000 [689]	12 [5.4]	1-11/16 MSST / #5
3.5 [88.9]	12,5	2.5 [63.5]	2.75 [69.9]	2.75 [69.9]	10000 [689]	12 [5.4]	1-11/16 MSST / #5
4 [101.6]	9.5 - 10.2	3.12 [79.2]	3.62 [91.95]	3.648 [92.66]	10000 [689]	25 [11.3]	2-1/8 MSST / #10
4.5 [114.3]	9.5 - 15.1	3.562 [90.47]	3.826 [97.2]	4.09 [103.9]	10000 [689]	30 [13.6]	2-1/8 MSST / #10
5 [127]	11.5 - 21.4	3.71 [94.2]	4.126 [104.8]	4.56 [115.8]	10000 [689]	30 [13.6]	2-1/8 MSST / #10
5.5 [139.7]	14 - 23	4.24 [107.7]	4.67 [118.6]	5.012 [127.7]	10000 [689]	30 [13.6]	20
5.75 [146.1]	21.9 - 24.4	4.24 [107.7]	4.908 [124.65]	5.002 [127.05]	10000 [689]	30 [13.6]	20
6.625 [168.3]	17 - 32	5.34 [135.6]	5.675 [144.2]	6.135 [155.83]	10000 [689]	50 [22.7]	20
7 [177.8]	23 - 40	5.34 [135.6]	5.595 [142.1]	6.366 [161.7]	10000 [689]	50 [22.7]	20
7 [177.8]	17 - 35	5.61 [142.5]	6.004 [152.5]	6.538 [166.1]	10000 [689]	50 [22.7]	20
7.625 [193.7]	20 - 39	6.09 [154.7]	6.625 [168.3]	7.125 [180.98]	10000 [689]	50 [22.7]	20
8.625 [219.1]	24 - 49	6.96 [176.8]	7.31 [185.67]	8.097 [205.66]	8000 [552]	50 [22.7]	20
9.625 [244.5]	29.3 - 53.5	7.71 [195.8]	8.535 [216.8]	9.063 [230.2]	8000 [552]	50 [22.7]	20
10.75 [273.1]	32.7 - 60.7	9.44 [239.78]	9.525 [241.94]	10.325 [262.26]	5000 [345]	50 [22.7]	20
11.75 [298.5]	38 - 60	9.5 [241.3]	10.641 [270.28]	11.284 [286.61]	5000 [345]	50 [22.7]	20
13.375 [339.7]	48 - 72	12 [304.8]	12.347 [313.6]	12.715 [323]	3000 [207]	50 [22.7]	20
16 [406.4]	65 - 109	14.25 [362]	14.688 [373.1]	15.25 [387.4]	2000 [138]	50 [22.7]	20
20 [508]	94 - 133	18.375 [466.73]	17.655 [448.4]	19.124 [485.75]	2000 [138]	50 [22.7]	20