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Abstract

The clinical implementation of polygenic scores (PGSs) for disease risk prediction, particularly
in reproductive health applications, requires rigorous validation. Here, we develop seventeen
disease PGSs by conducting large-scale GWAS meta-analyses, and we validate our scores in
out-of-sample prediction analyses. We achieve state-of-the-art predictive performance, con-
sistently matching or outperforming academic and commercial benchmarks, with liability R2

reaching up to 0.21 (type 2 diabetes). The performance of a PGS for embryo screening depends
on its predictive ability within-family, which can be lower than its prediction ability among
unrelated individuals. However, very few disease PGSs have been tested within-family. We
perform systematic within-family validation of our disease PGSs, finding no decrease in pre-
dictive performance within-family for 16 of 17 scores. PGS performance typically declines
with genetic distance from training data, an effect that needs to be accounted for to give
properly calibrated predictions across ancestries. We perform extensive calibration of our
scores’ performance across different ancestries, finding improved cross-ancestry performance
compared to previous approaches, especially in African and East Asian populations. This is
likely due to the fact our scores are constructed using a method that incorporates functional
genomic annotations on more than 7 million variants, enabling a degree of fine-mapping of
causal variants shared across ancestries. We illustrate clinical utility through examining the
risk reduction that could be achieved through embryo screening for type 2 diabetes: selecting
among 10 embryos is expected to reduce absolute disease risk by 12-20% in families where
both parents are affected, with similar relative risk reductions across ancestries. These findings
establish a framework for implementing PGS in reproductive medicine while demonstrating
both the technology’s potential for disease prevention and the methodological standards re-
quired for responsible clinical translation.

Introduction

Disease polygenic scores (PGS) aim to quantify an individual’s genetic liability for developing
specific diseases over the course of his or her life1. The development of PGSs relies on genome-
wide association studies (GWAS) that quantify the marginal association between primarily com-
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mon genetic variants and the disease of interest. The collection of large cohorts with genetic and
health data has enabled well-powered GWASs2, leading to an increasing number of PGSs that
attain useful predictive ability across traits and diseases3.

PGSs have shown great promise for risk stratification for common diseases, including breast
cancer and coronary artery disease. By 2018, breast cancer PGS identified nearly an order of
magnitude more women at equivalent risk as those carrying classic monogenic risk alleles such
as those in the BRCA1/2 genes4. Likewise, a coronary artery disease PGS—leveraging GWAS
data from biologically related traits such as LDL—classified 20.0% of the population at 3-fold risk
compared to the average5. Such results demonstrate the potential for PGSs to be used alongside
conventional disease risk factors in risk stratification, with increasing awareness of their utility
in informing clinical practice and preventative medicine6, 7, 8.

However, most GWASs to date have relied heavily on European populations9. As a con-
sequence, PGS often exhibit substantially reduced predictive performance when applied to ge-
netically distant populations10, 11. Although the underlying causal genetic architecture of traits
appears to be broadly conserved across ancestries12, this reduced portability poses both method-
ological challenges and bioethical concerns regarding the potential exacerbation of existing health
disparities13. Addressing this issue requires diversifying study cohorts14 and implementing im-
proved statistical methods for cross-ancestry prediction15.

Although the target of disease GWASs is estimation of direct genetic effects—effects of alle-
les in an individual on that individual, relevant for within-family prediction—the associations
also include contributions from factors not relevant to within-family prediction: indirect genetic
effects through the family environment (“genetic nurture”16) and confounding from population
stratification and assortative mating17. These factors can lead to attenuation of PGS prediction
ability within-families. Although behavioral and social science genetics increasingly quantify
and address these biases through within-family designs18, 19, medical genetics typically neglects
such controls20, presuming their irrelevance to biologically proximal traits. Consequently, dis-
ease PGS are rarely validated within families, with existing studies either focusing primarily
on non-disease traits19 or inadequately measuring within-family attenuation21, 22. Furthermore,
recent large-scale family-GWAS have revealed imperfect correlations between direct genetic ef-
fects for biomedical and disease traits compared to standard population effects (as estimated by
non-family-based GWAS), challenging prevailing assumptions23.

This is of particular importance for the application of PGS in the context of polygenic embryo
screening (preimplantation genetic testing for polygenic traits, PGT-P), which uses genome-wide
data to predict embryos’ genetic risk for complex diseases, and which has garnered attention
due to its potential to substantially reduce lifetime disease burden24. The disease risk reduction
in PGT-P is primarily determined by the direct effect of a PGS (i.e., its association with the trait
or disease within-family25). Without stringent validation, including estimation of the PGS direct
effect within-family, no trustworthy statement on the utility of a PGS for embryo screening can
be made.

Despite these methodological concerns, comprehensive validations of state-of-the-art disease
PGS remain scarce. Existing studies seldom systematically benchmark PGS across multiple an-
cestries, and none employ within-family validation strategies to distinguish direct genetic effects
from population-level confounding. To address these gaps, we constructed seventeen disease
PGS using state-of-the-art methods aiming at maximising prediction ability, and we rigorously
assessed their predictive performance in both population-based and within-family contexts. Ad-
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ditionally, we quantify the attenuation of predictive accuracy along the genetic ancestry con-
tinuum. Using consistent metrics, we benchmark our newly developed PGS against existing
state-of-the-art academic and commercial scores, finding that our models achieve either superior
or statistically equivalent performance. Finally, leveraging the validated within-family predictive
ability, we illustrate the practical implications of our approach by demonstrating the potential
risk reduction achievable through embryo screening using our type 2 diabetes (T2D) PGS.

Results

PGS performance between and within families with genetically inferred European
ancestries

We constructed a set of seventeen disease PGSs using a curated set of GWAS summary statistics
generated by meta-analyzing individual GWAS studies from FinnGen26, the Million Veterans
Program (MVP)27, the Global Biobank Meta-analysis Initiative (GBMI)28, trait-specific consortia
and the UK Biobank (UKBB)29. For UKBB in particular, we ran GWAS on a subset of self-reported
white British individuals with genetically inferred Northwestern European ancestry (hereafter
the ’United Kingdom’ group), holding out related individuals and small test sets for later use in
PGS validation. We used SBayesRC30, a method that uses genomic annotations to improve effect
estimates, to construct our PGSs.

Performance was initially evaluated using a held-out sample of UKBB individuals genetically
inferred to have predominantly European ancestries, using relevant disease outcomes ascertained
via electronic health records and self reported disease status (Supplementary Table 1). For
these validations and for later comparisons, predictive performance was evaluated as liability
R2, or the proportion of variance explained on an underlying, continuous measure of disease
predisposition. This quantity relies on the liability threshold model of disease, whereby those
with liability exceeding that corresponding to a given population prevalence are considered cases.
Among the evaluated PGSs, the highest predictive performance was observed for prostate cancer,
type 2 diabetes (T2D), hypertension, and Alzheimer’s disease (AD) (Figure 1A, Supplementary
Table 2). The superior performance of these PGSs can be attributed to distinct factors. T2D and
hypertension, which are highly polygenic traits, had the largest effective GWAS sample sizes
in our analysis (Table 1). Complex diseases demonstrate extensive polygenicity31, 32, 33, whereas
cancers, while still polygenic, typically show lower degrees of polygenicity34. Prostate cancer
demonstrated the highest predictive accuracy among malignancies, corresponding to its larger
GWAS sample size relative to other cancers (Table 1). Similarly, the exceptional performance of
the AD PGS is likely attributable to the presence of the APOE ε4 haplotype with an unusually
large effect size for complex diseases, which confers a 2–3 fold increased risk with one copy and
10–15 fold increased risk with two copies35. These findings suggest that both GWAS sample size
and the genetic architecture of traits are primary determinants of PGS predictive performance36.
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Figure 1: Fraction of the variance in disease liability explained by PGSs between and within
families in UK Biobank.
A) Variance explained in disease liability by its corresponding PGS on the liability scale. B) The ratio of effect sizes observed in
population and within-family regression analyses in identical samples, where the dotted line at 1 indicates identical strength of
association between and within families. The numbers below the point estimates indicate the number of probands identified in
UKBB as cases. Bands indicate bootstrapped 95% confidence intervals.
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Disease N cases N control Effective N

Vitiligo 2,853 37,405 10,603
Testicular cancer 9,885 302,233 37,550
Gout 11,472 360,137 44,471
Multiple sclerosis 19,973 882,985 58,653
Psoriasis 23,362 393,072 69,768
Atopic dermatitis 25,996 397,093 90,164
Inflammatory bowel disease 34,125 438,013 93,862
Osteoporosis 27,078 744,249 103,764
Melanoma 34,431 795,873 107,205
Alzheimer’s disease 35,565 646,311 129,587
Glaucoma 37,880 1,060,839 144,229
Venous thromboembolism 60,812 1,255,839 231,543
Prostate cancer 112,901 374,563 276,762
Basal cell carcinoma 80,110 1,132,732 299,181
Breast cancer 168,404 470,884 373,165
Hypertension 305,027 565,625 784,649
Type 2 diabetes 254,150 1,487,323 860,791

Table 1: Effective sample size and composition of the GWAS data used in PGS training.
Effective sample size was computed as the sum of per-study effective sample sizes following eq. (6) in Grotzinger et al. 37 Where
input GWASs were themselves meta-analyses, cohort-level information was extracted to compute overall meta-analytic effective
sample sizes. If such information was not available, recommendations from Tucker-Drob 202538 were instead implemented.

To estimate direct genetic effects and evaluate the predictive validity of PGSs in an embryo
screening context, we performed within-family analyses that control for parental genotypes. We
leveraged first-degree relatives in the UK Biobank cohort to impute parental genotypes using the
snipar package18. This approach enabled us to calculate PGSs for both focal individuals and their
(imputed) parents, allowing us to evaluate the degree to which the previously observed effects
were driven by direct genetic effects versus other factors.

We found that the within-family predictive power of the PGSs was not significantly dif-
ferent from the population-based associations for sixteen out of the seventeen PGSs consid-
ered, with only the PGS for osteoporosis having a nominally significant lower within-family
effect (Figure 1B). For the remaining PGSs, all point estimates of the ratio of within-family to
population-based effect size estimates were greater than 0.9 and not significantly different from
one (P > 0.05), suggesting that the predictive ability of these PGSs derives almost entirely from
direct genetic effects (Supplementary Table 6).

Attenuation of PGS performance with increasing genetic distance from training co-
horts

The reduced performance of PGSs in individuals with ancestries genetically distant from those
used in the training GWAS is widely appreciated. This phenomenon is likely due to differences in
the linkage disequilibrium structure of genomes with ancestry, with differences increasing with
genetic distance, as well as other potential factors10. As the majority of GWASs conducted thus
far have used samples of individuals with predominantly European genetic ancestries (including
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those developed here), it is crucial to evaluate the performance reduction along the continuum
of genetic ancestries.

Figure 2: PGS effect size attenuation across ancestries.
A) Scatterplots showing the R2 attained by a given PGS in the United Kingdom ancestry subsample on the x axis versus that
attained in the given non-UK ancestry sample on the y axis. Intervals indicate standard errors, the red lines indicate the Deming
regression slope (intercept fixed at 0), and the dotted gray line indicates the y=x line. See Table 2 for slope values and 95%
confidence intervals. B) A scatterplot comparing the effect reduction slopes inferred from Prive et al. 10 versus the ratio of the
slopes we observed in (A) to Prive et al. for the different groups analyzed. The intervals indicate standard errors for the Deming
regression coefficients.
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Group Deming regression slope (CI) Prive et al. slope

Poland 0.971 (0.912, 1.03) 0.938
Italy 0.894 (0.821, 0.967) 0.856
India 0.794 (0.692, 0.896) 0.647
Iran 0.748 (0.627, 0.869) 0.722
Ashkenazi 0.856 (0.764, 0.948) 0.857
China 0.587 (0.495, 0.679) 0.486
Caribbean 0.321 (0.255, 0.388) 0.252
Nigeria 0.283 (0.214, 0.352) 0.180

Table 2: Attenuation in PGS performance across ancestries.
Observed Deming regression slopes with 95 % confidence intervals for the regressions reported in Figure 2 and corresponding
slopes from Prive et al.

To assess the reduction in PGS performance in samples of individuals with diverse genetic
ancestries, we replicated the analyses introduced in Prive et al.10 Firstly, we used an identical
PGS generation pipeline as that used for the disease PGSs to generate around 40 to 80 PGSs
— with the number varying depending on the sample size for each ancestry — for a variety
of additional traits, including continuous biomarker traits for which PGS performance is more
easily estimated (Supplementary Table 1). Secondly, we constructed a diverse set of eight dis-
cretized groups based on genetically-inferred ancestries, using reference panels of individuals
with self-reported countries of origin (or religious affiliation in the case of Ashkenazi Jewish in-
dividuals). Specifically, we identified groups that genetically resembled self-reported individuals
from Poland, Italy, Iran, India, China, the African Caribbean population and Nigeria and those
identifying as being of Ashkenazi Jewish descent. Thirdly, we calculated the R2 for each PGS
(e.g., BMI, apolipoprotein A) in the UK Biobank United Kingdom ancestry group and compared
it to the R2 attained in each group. Finally, we regressed the R2 attained in each group on the
value attained in the UK Biobank United Kingdom ancestry group which allowed us to assess
the performance reduction factor (Figure 2A).

We found that PGS performance decreased as the centroid of a given group in common
variant PC space increased in distance from the centroid of the training GWAS data (Figure 2).
Notably, we found that the relative attenuation in our PGS construction pipeline was less se-
vere than that observed in Prive et al., observing significantly better performance particularly
in the more genetically distant groups from the ancestries represented in the training GWASs
(Figure 2B). This improvement in portability was likely due to the fact SBayesRC leverages ge-
nomic functional annotations that are independent of ancestry, enabling fine-mapping of causal
loci, as the authors of SBayesRC similarly observed, albeit on a more limited set of traits30.
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Performance of PGS compared to academic and commercial entities

We next sought to compare the performance of the disease PGS we developed here to those devel-
oped by various academic groups and other commercial providers. Thompson et al. (2024)39 and
Mars et al. (2022)40 generated several disease PGS that overlap with those generated here and
reported the odds ratio associated with a one standard deviation increase in the PGS in UKBB
and Finngen, respectively26, 29. Across all scores where we could identify a comparable PGS-
disease pair, we found that our scores outperformed or performed as well as those generated by
Thompson et al. and Mars et al. (Figure 3A). We note substantially improved performance with
respect to breast cancer, melanoma, gout, and multiple sclerosis, with our scores having higher
point estimates across all disease with the exception of glaucoma, for which Thompson et al.
reported a slightly higher though statistically indistinguishable odds ratio point estimate. Our
liability R2 was on average 28% and 87% higher than those of Thompson et al. and Mars et al.,
respectively. When compared to the liability R2 reported by two commercial entities (assuming
identical population prevalence), we similarly found the PGSs reported here showed substan-
tially better performance: 122% better than Orchid and 193% better than Genomic Prediction on
average (Figure 3B). In several cases, the point estimates suggest the PGSs we trained explain
more than two times as much variance in disease liability as explained by the PGSs developed
by other commercial entities. Notably, Orchid provided PGS validations for only five out of the
17 traits included here, and we were unable to determine appropriate confidence intervals for
their reported performance metrics. When the documented validation methodology of a com-
mercial entity was illegitimate or incompatible with ours, we omitted the score in question (e.g.,
validation results reported by Orchid for Alzheimer’s disease are therefore not shown as the re-
ported validation includes age as a covariate, which likely had an outsized contribution to their
reported performance.)41. While we made extensive efforts to evaluate Nucleus Genomics, we
were unable to reconcile their performance estimates with established theoretical and empirical
boundaries of polygenic prediction, necessitating their exclusion from our primary analysis (see
Supplementary Note for technical details)
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Figure 3: Comparison of PGS performance to external academic and commercial entities.
Variance explained in disease liability by its corresponding PGS on the liability scale, comparing results for PGS constructed
in the current work by Herasight to those reported by A) two academic groups: Thompson et al. and Mars et al. and B) two
commercial entities: Genomic Prediction and Orchid. Bands indicate bootstrapped 95% confidence intervals. Note that we were
not able to ascertain 95% confidence intervals for Orchid. Equivalent population prevalences were used in the conversion to
liability R2 (see Methods).

Case Study: The utility of polygenic embryo screening in reducing lifetime risk of
T2D

To demonstrate the utility of our PGSs in the context of embryo screening, we used T2D polygenic
screening as a case study. We calculated the expected absolute and relative risk reduction for type
2 diabetes in couples with varied continental genetic ancestries and disease status. These are
calculated using mean expected attenuations based on centroids calculated in PC space. Since

9



the true attenuation for any given couple will doubtlessly vary, these calculations are largely
illustrative. Even with as few as five embryos, the expected reduction in absolute risk for type 2
diabetes ranges from 5% to 15% depending on parental ancestries and disease status (Figure 4).
If screening were applied to twenty embryos, the expected reduction in disease risk becomes
substantial to the degree that when both parents are affected, the expected relative risk reduction
ranges from 23% to 51% and absolute risk reduction ranges from 14% to 24% depending on
parental ancestries.

Figure 4: Expected reduction in T2D risk with embryo screening using the Herasight PGS.
We calculated the absolute lifetime risk (left) and relative risk reduction (right) parents with different continental ancestries could
expect via embryo screening, under various scenarios of parental T2D affectation status and the number of screened embryos (see
Methods). Lifetime T2D risk estimates are reported in Supplementary Tables 3 and 4. EUR: European, SAS: South Asian,
EAS: East Asian, AFR: African genetic ancestries.

Another determinant of potential risk reductions is the predictive power of the PGS, which
as noted above varies both by target disease and model developer. Table 3 displays absolute
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and relative risk reductions for a hypothetical couple of European continental genetic ancestry
in which either the father or mother is affected. Selection among five embryos in this scenario
yields relative risk reductions exceeding 40% where PGS liability R2 is high, but commensurately
lower reductions of 21% to 36% where the PGS only captures a few percentage points of liability
variance.

Disease Company PGS Population Family Absolute risk Relative risk
R2 (%) baseline (%) baseline (%) reduction (%) reduction (%)

Breast cancer
Herasight 14.3 13.9 19.8 8.1 41.0
Orchid 8.8 13.9 19.8 6.4 32.3
GP 3.3 13.9 19.8 4.1 20.6

Prostate cancer
Herasight 19.0 12.6 24.5 10.8 44.2
Orchid 12.3 12.6 24.5 8.8 36.2
GP 6.7 12.6 24.5 6.7 27.4

Type 2 diabetes
Herasight 20.7 21.4 27.5 12.1 43.8
Orchid 5.0 21.4 27.5 6.1 22.0
GP 5.5 21.4 27.5 6.6 23.8

Table 3: Expected reduction in disease risk with embryo screening using validated PGS from
providers of preimplantation genetic testing for polygenic diseases (PGT-P) (Herasight,
Orchid, and Genomic Prediction (GP)).
We calculated the absolute and relative risk reductions a couple of European continental genetic ancestry with one parent affected
could expect when screening five embryos using various PGS models. Lifetime breast cancer, prostate cancer and T2D risk
estimates are reported in Supplementary Table 3. “Population baseline” refers to the risk pertaining to all families in the
population and “Family baseline” only to those with one parent affected by the disease, which are therefore higher than the former
for each disease.

Conclusion

We have generated PGSs for seventeen diseases spanning several disease groups. We demon-
strated state-of-the-art performance relative to academic and commercial benchmarks across dis-
eases, attaining superior or statistically indistinguishable performance to other groups in all
cases. Our work represents the first systematic within-family validation across multiple disease
PGS at this scale, demonstrating that predictive accuracy is predominantly driven by direct ge-
netic effects for sixteen of seventeen diseases evaluated. The exception, osteoporosis, serves as a
proof of principle that PGS prediction of disease traits can exhibit reduced performance within-
family due to confounding, underscoring the importance of within-family validation for any PGS
intended for embryo screening. A PGS exhibiting reduced performance within-family can still
be used for embryo screening, but the reduced prediction ability needs to be accounted for when
calibrating predictions

By applying Bayesian mixture models to more than seven million SNPs while utilising ge-
nomic functional annotations30, we observed improved cross-ancestry portability compared to
previous approaches, with predictive accuracy maintained at higher levels in individuals ge-
netically distant from the training data. Although this represents progress toward addressing
disparities in PGS performance, achieving more equal accuracy across all ancestries remains a
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central challenge requiring continued development of diverse cohorts and methodology.
Our results show that polygenic embryo screening holds promise for reducing disease risk,

particularly when a family history of disease is present. As the T2D case study illustrates
(Figure 4), the absolute risk reductions are most pronounced when one or both parents are
affected. However, current PGS implementations, including ours, primarily capture common
variant contributions to disease risk. Family history often additionally reflects the segregation
of rare, high-effect variants that substantially influence disease liability but are not captured by
PGSs. Comprehensive risk assessment in the embryo screening context will require integrated
models that combine polygenic background from common variants, high-effect rare variants (par-
ticularly critical in families with strong disease history), and explicit family history information.
The preimplantation genetic testing (PGT) setting presents unique methodological challenges for
such integration, including constraints on DNA quantity from embryo biopsies and the need for
accurate imputation and variant calling across the allele frequency spectrum. Future work should
prioritize improving the calling of all classes of genetic variation in embryos, ultimately enabling
more accurate risk stratification that reflects the full genetic architecture underlying disease risk.

Our findings suggest several directions for advancing the field. The consistent within-family
performance across most diseases indicates that continued investment in larger, more diverse
GWAS should yield direct benefits. The improved portability achieved through methodolog-
ical enhancements demonstrates that technical innovation can help address existing dispari-
ties even with current data limitations. The validation approach presented here, encompass-
ing population-based performance, within-family analyses, ancestry portability assessment, and
systematic benchmarking, may serve as a useful framework as the field moves toward clinical
implementation.

Important challenges remain in characterizing pleiotropic effects, integrating rare variant in-
formation, and ensuring sufficient performance across ancestries. Similarly, the probabilistic
nature of polygenic risk requires careful communication strategies that contextualize individual
PGS-predicted disease risk that appropriately considers relevant family history to produce cal-
ibrated absolute risk estimates, which our analyses suggest are inadequately executed by other
commercial providers (see Supplementary Note).

Despite these challenges, our results suggest that polygenic embryo screening, when im-
plemented with appropriate validation, offers meaningful potential for reducing disease risk in
future generations. Continued methodological development, coupled with open reporting and
rigorous validation, will be essential for realizing this potential while ensuring broad access.

Methods

UK Biobank

The UK Biobank (UKBB) is a large population-based study consisting of nearly 500,000 indi-
viduals with genotypes and linked health records recruited from 22 sites throughout the UK14.
The array-based version of the dataset imputed by Wellcome Trust Centre for Human Genetics
(WTCHG; UKBB field 22828) was used during the first phase of the present study consisting
of the development of the PGS models. To ensure quality control of this version of the UKBB
genotypic and phenotypic data, we excluded individuals with outlier heterozygosity (UKBB field
22027), ten or more third-degree relatives also present in the data and a genotype missingness
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rate greater than 3%. To retain as much trait-associated variation as possible while minimiz-
ing artifacts, genetic variants were excluded only when either Hardy-Weinberg (HWE) p-value
or MAF was less than 1 × 10−50 and 1%, respectively. The final set of included variants for
use in UKBB GWAS consisted of 6,667,399 biallelic SNPs overlapping with those comprising
the SBayesRC variant panel30. We used the whole-genome sequence-based version of the UKBB
dataset for PGS model validation during the second phase of the present study. Samples retained
after quality control of the imputed version of the dataset were likewise retained for use in this
second phase. Minimal filtering of variants passing GraphTyper’s FILTER field with AAScore
> .8 and MAF > .1% resulted in a final set of 7,153,533 biallelic SNPs again overlapping with
those comprising the SBayesRC variant panel.

UKBB ancestry inference

Ancestry of UKBB samples passing above sample and genotype filters was inferred using the
country-of-origin method described in Prive et al.10. Specifically, we accessed pre-computed prin-
cipal component (PC) centroids for the subsets of UKBB participants hailing from the Caribbean,
China, India, Iran, Italy, Poland, Nigeria and the United Kingdom as well as that for self-reported
Ashkenazi Jews. We then matched ancestries to these centroids by computing the Euclidean
distance between the first 16 PCs of QC-passing samples and the seven ancestry centroids; sam-
ples were assigned to the country-of-origin group of the nearest centroid. Samples matched to
the “United Kingdom” ancestry group were further filtered to those individuals also reporting
“Caucasian” genetic grouping (UKBB field 22006) and “British” ethnic background (UKBB field
21000).

GWAS summary statistics and meta-analysis

To attain the largest possible discovery sample sizes for PGS training, we collated GWAS sum-
mary statistics from several classes of sources: recently published GWAS, trait-specific genomics
consortia, GBMI28, FinnGen26, healthcare registry GWAS, and internally-run UKBB GWAS. In
cases where summary statistics were not immediately available, corresponding authors were
contacted for provision of UKBB-left-out data and were acknowledged where re-analysis was
required.

All summary statistics files were first harmonized to GRCh37 and corrected for errors in
per-SNP sample size42 following the recommendations from Tucker-Drob (2025)38, using cohort-
level information where possible. Corrected summary statistics files were then meta-analyzed
with inverse variance weighting in METAL43 where LDSC-estimated44 genetic correlations be-
tween the available sources exceeded ∼ 0.8. Where possible, UKBB GWAS were run with either
REGENIE45 or fastGWA46 on a discovery sample consisting only of United Kingdom ancestry
samples not overlapping with pre-selected test sets.

Construction of PGS

Internal PGS were built by providing our meta-analytic summary statistics as input to SBayesRC30,
a recently published Bayesian method leveraging information from functional genomic annota-
tions. Training consisted of two stages: a first stage to perform basic quality control on input
association statistics and to impute associations from untested SNPs as well as a second stage

13

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22006
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=21000


to perform Markov Chain Monte Carlo parameter estimation. Resulting scoring files included
weights from the ∼ 7.3M SNPs comprising the SBayesRC variant set provided by the authors of
the method.

Literature-derived lifetime risk estimates

Lifetime risk estimates were estimated using available measures of lifetime risk, lifetime preva-
lence, and cumulative incidence. Data were collected from the National Cancer Institute’s Surveil-
lance, Epidemiology, and End Results (SEER) Program47, Global Burden of Disease Study48,
CDC49, and various other sources (see Supplementary Tables 3 and 4). In many cases multi-
ple measures of lifetime risk were averaged. Population prevalence estimates were taken as the
average of the male and female prevalence estimates for conditions that present in both sexes.

PGS validation and conversion of observed to liability R2

Polygenic scores (PGS) were evaluated in R with the lm() function from the R stats package.
For continuous traits we fit ordinary least-squares models in 1,000 unrelated UK Biobank partici-
pants of “United Kingdom” genetic ancestry, adjusting for age and the first ten PCs. For diseases
with sufficient numbers of cases to permit test-set exclusion and an internal UKBB GWAS, PGS
were validated in test sets consisting of 600 UKBB cases and 1,000 UKBB controls using a lin-
ear probability model (lm() on a 0/1 outcome) with PGS residualized on age and the first ten
PCs. The estimated observed R2 from these models was then converted to liability R2 using the
transformation of Lee et al.50 (“Observed-scale R2

o → liability-scale R2
l ” in Supplementary Table 5).

Standard errors were bootstrapped with 2,000 replicates.

Within-family PGS validation

Additional PGS validations were performed in the subset of UKBB participants for whom geno-
types of at least one other parent or sibling were also available to permit Mendelian imputation of
parental genotypes using the snipar package18. Such samples were identified using KING51 and
filtering to non-monozygotic relatives belonging to the United Kingdom ancestry group. In total
40,943 probands were included in the analysis. Variants were further filtered to those amenable
to snipar-based genotype imputation with INFO > 0.99, resulting in a reduced set of 4,065,217
biallelic SBayesRC SNPs for within-family PGS scoring.

Binary outcomes were analysed with logistic regression, fitted in R via the lme4 package
glmer() function using the binomial probit link and modeling phenotypic correlations between
siblings by fitting family-wise random intercepts. A first “population” model regressed the phe-
notype on age, sex, the third and fourth principal components as well as offspring PGS; a second
“within-family” specification added the maternal and paternal snipar-imputed parental PGSs to
separately estimate the non-transmitted component following the model introduced by Young et
al. (2022, Equation 1)18 (estimated population effects, direct effects, average NTCs and spousal
PGS correlations are reported in Supplementary Table 6). To estimate the attenuation of PGS
performance within-family, the ratio of the offspring PGS coefficients from the within-family and
the population models was calculated for each trait and its standard error approximated via
family-wise bootstrap with 2000 replicates.
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Relative performance estimation

Relative performances were computed as the slope of a Deming regression of estimated variance
explained in each non-“United Kingdom” group on that of the “United Kingdom” group for
each trait. Regressions consisted of around 40 to 80 pairs of PGS performance estimates for the
focal traits and diseases listed in Supplementary Table 1.

Comparison of PGS performances against those of academic PGS developers

To benchmark our PGS validation results against those previously reported in the academic liter-
ature, we extracted and converted performances recently published in Thompson et al. and Mars
et al., which develop and validate PGS in UKBB and FinnGen, respectively. Performances from
the former are provided in the publication’s supplementary Table S3: Performance (disease) and
in Table S4 of the latter. Both sources reported performances as odds ratios per standard devia-
tion of PGS, which were converted to liability R2 using known conversions (i.e., by sequentially
applying the “Odds-ratio per 1 SD of PGS (OR) → Cohen’s d”, “Cohen’s d → observed-scale R2

o” and
“Observed-scale R2

o → liability-scale R2
l ” conversions shown in Supplementary Table 5 using the

trait-specific lifetime risks and sample prevalences given in Supplementary Tables 3).

Comparison of PGS performances against those of commercial PGS for PGT-P providers

We likewise benchmarked our results against those previously claimed by commercial providers
of PGS. Given a growing emphasis on the use of PGS for PGT-P, we extracted performances pub-
lished online in whitepapers by Orchid Health52 and by Genomic Prediction (now Lifeview) as
Widen et al.21, acknowledging that Genomic Prediction has since displayed risk reductions for a
new PGS set whose validation performances have not been made public53. Both sources reported
performances as AUROC, but only the latter computed parameter uncertainties. Reported values
were converted to liability R2 using known conversions (i.e., by sequentially applying the “Area
under ROC curve (AUC) → Cohen’s d”, “Cohen’s d → observed-scale R2

o” and “Observed-scale R2
o →

liability-scale R2
l ” conversions shown in Supplementary Table 5 using the trait-specific lifetime

risks and sample prevalences given in Supplementary Tables 3 and 7, respectively). For breast
cancer, type 2 diabetes and inflammatory bowel disease, Orchid also reported performance as
odds ratios per standard deviation of PGS, which was used for conversion to liability R2 in
place of an incomparable AUC metric computed using both PGS and additional covariates. In
particular, the inclusion of age as an additional covariate in Orchid’s sole published benchmark
for Alzheimer’s disease likely inflated the resulting AUC, precluding meaningful comparison
between this and otherwise comparable estimates.

Simulations of expected gains from use of PGS models in PGT-P

Absolute and relative risk reductions achievable when applying the T2D PGS model in PGT-P
were determined via simulation following the family-based variance decomposition first devel-
oped and implemented by Lencz et al.24 Specifically, the portion of the genetic component cap-
tured by the PGS and shared between embryos was drawn as C ∼ N(µC, R2

PGS/2) with R2
PGS re-

duced according to the estimated relative performances corresponding to the parental ancestries
(e.g., R2

PGS reduced from R2
PGS:EUR/EUR = 20.7% to R2

PGS:EUR/AFR = (20.7% + .32 × 20.7%)/2 =
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13.7% and R2
PGS:EAS/EAS = .59 × 20.7% = 12.2% for a EUR/AFR couple and an EAS/EAS cou-

ple, respectively). µC depended on the average full genetic components of the parents (gm and
g f ) and the trait heritability such that µC = R2

PGS/h2 × (gm + g f )/2. In turn, gm and g f were
allowed to separately depend on each parent’s disease status, ancestry- and sex-specific life-
time risk of disease and the disease heritability. These were obtained via accept–reject sam-
pling (ratio-of-uniforms implementation). The portion of the genetic component captured by the
PGS and unshared between embryos was accordingly drawn as X ∼ N(0, R2

PGS/2) and the full
PGS for each embryo computed as pgs = x + c. The uncaptured, unshared genetic component
Gres ∼ N(0, (h2 − R2

PGS)/2) and the environmental residual Eres ∼ N(0, 1 − h2) were then added
to the full average parental genetic component, the unshared, captured genetic component and
the environmental residual to compute the corresponding disease liability for each embryo (i.e.,
l = (gm + g f )/2 + gres + x + e). Embryos were designated as disease cases where liability ex-
ceeded the disease threshold T = Φ−1(1 − K), which in turn depended on embryos’ ancestry-
and sex-specific lifetime risk of disease K.

Embryo PGS, liability and disease status were simulated in 150,000 batches of 3, 5, 10 and 20
embryos for each unique combination of parental ancestries, parental disease status (i.e., father
and/or mother affected) and batch size (400 unique combinations in total). Simulated prevalence
of disease with and without selection was computed as the fraction of diseased embryos with
the lowest PGS in each batch (Pselection) and the overall fraction of diseased embryos (Ppopulation),
respectively. Absolute risk reductions were then calculated as Ppopulation − Pselection and relative
risk reductions as (Ppopulation − Pselection)/Ppopulation.

Inference of implied liability variance explained from risk predictions

To quantify the implied performance of a PGS from disease risk predictions, we applied the lia-
bility threshold model to infer the liability variance explained (liability R2 or R2

l ) from combina-
tions of PGS z-scores, population prevalence, and predicted individual risk. Under the liability
threshold model, disease liability L is modeled as L = G + E, where G represents the genetic
component distributed as G ∼ N(0, R2

l ), E represents the environmental component distributed
as E ∼ N(0, 1 − R2

l ), and G and E are assumed to be uncorrelated.
For a binary disease trait with population prevalence K, the liability threshold T is defined

as T = Φ−1(1 − K), where Φ−1 denotes the inverse standard normal cumulative distribution
function. The probability of disease for an individual with standardized PGS value g is given by:

P
(
Disease | PGS = g

)
= Φ

 g Rl − T√
1 − R2

l

 (1)

To infer the implied R2
l from reported risk predictions, we solved numerically for the value

of R2
l that satisfies:

Φ

 g Rl − T√
1 − R2

l

 − Preported = 0 (2)

where Preported represents the individual disease risk reported for an individual. This equation
was solved using bisection root-finding with tolerance 10−12, implemented in R. This approach
enabled us to quantify the predictive performance implicitly claimed by risk predictions made
for a given individual.
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Supplementary Note: Assessment of Nucleus Genomics’ polygenic score
calibration and performance

In the course of conducting a comprehensive benchmark of polygenic embryo screening ca-
pabilities across commercial providers (see Figure 3B), we initially sought to include Nucleus
Genomics (hereafter referred to as Nucleus), a direct-to-consumer genetic testing company pro-
viding disease risk predictions through physician reports, that recently expressed its intent to
offer PGT-P. Given the absence of published performance validations by Nucleus, we performed
an independent assessment using publicly available documentation and a set of five reports
(three from European ancestry and two from non-European ancestry customers), made available
to us with customer consent, from up to June 2025, in order to compare their performance to the
other commercial providers.

Our evaluation showed considerable variability in the composition of the polygenic scores
(PGS) provided by Nucleus. Nine of their disease PGSs appeared to be open-source models
from the PGS catalog, almost all being five or more years old. Other disease predictions relied
on variant sets notably smaller than typically required to adequately capture polygenic signals
(Supplementary Note Table 1). For example, the polygenic score for attention-deficit hyper-
activity disorder (ADHD) reportedly consisted of 12 variants, and a Parkinson’s disease score
contained 50 variants. These variant counts fall substantially below conventional benchmarks
for using PGSs to predict traits with highly polygenic architectures. Further analysis suggests
these smaller sets likely correspond to top-ranking genome-wide significant variants reported in
previous genome-wide association studies (GWAS), an approach which typically yields limited
predictive accuracy for highly polygenic diseases. Most of the scores seem furthermore to be
identical to scores used by Nucleus’ open source precursor Impute.me, implying that updates to
their score set since the inception of the project as a for-profit business have been limited (see
Supplementary Table 8). The only publicly documented update seems to have occurred on May
21st, 2025, when the company swapped a T2D PGS consisting of 171,249 variants (PGS Catalog
ID: PGS000036) for another containing 1,259,754 variants (PGS Catalog ID: PGS002308).

1

http://impute.me
https://www.pgscatalog.org/score/PGS000036/
https://www.pgscatalog.org/score/PGS002308/


Disease PGS Number of Median implied UKBB validation EUR
variants EUR liability R2 liability R2 (SE)

Gastric cancer 6 0.1% 0.04% (.06)
ADHD 12 4.3% 0.007% (.30)
OCD 12 9.5% 0.004% (.05)
PCOS 14 8.1% 2.0% (.62)
Endometriosis 15 8.9% 0.011% (.10)
Anxiety disorders 20 8.3% 0.21% (.25)
Severe acne 20 8.1% 1.3% (.49)
Migraine 21 17.6% 0.65% (.40)
Hypertension 42 11.7% 0.65% (.46)
Parkinson’s Disease 50 13.9% 0.73% (.30)
Asthma 152 10.7% 3.8% (.90)
Multiple sclerosis 283 10.2% 3.3% (.36)
Coronary artery disease 502 15.2% 6.2%* (1.3)

Supplementary Note Table 1: Nucleus disease PGSs with low numbers of variants with
implied and validated liability R2 values.
*Substantial overlap between the UKBB-containing PGS training sample and UKBB test set will have inflated the estimated
liability R2.

To further assess the calibration and validity of their risk predictions, we converted reported
absolute and relative risks into implied liability-scale variance explained (liability R2) via stan-
dard liability-threshold transformations (Methods). Across the five customer reports, we noted
substantial variability and inconsistencies in the implied predictive performance, with, for exam-
ple, schizophrenia having implied liability R2 ranging from 0% to 5% (Supplementary Table 9).
We also noted several examples where the liability R2 exceeded realistic expectations given the
number of variants included in the PGS. For instance, the hypertension PGS, which included only
42 variants, had an implied median liability R2 values exceeding 10% (Supplementary Table 9).
We were unable to identify public documentation provided by Nucleus that would explain these
results. Available reports included statements qualifying the predictive performance of PGS
models ("Science’s current ability to use common DNA variants to predict a person’s risk of developing
[disease] is limited [or ’extremely limited’ for some diseases].") for gastric cancer, depression, ovarian
cancer, osteoarthritis, bipolar disorder and colorectal cancer.
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Supplementary Note Figure 1: Comparison of Nucleus-implied median liability R2 (blue) with
UKBB validation for the best-matched score (red). (A) Bar chart of median values. (B)
Scatterplot of median Nucleus values versus UKBB values; the dashed red line marks the
identity y = x.

We compared Nucleus’ reported risk predictions against our independent UKBB validation for
PGS models we could reliably match to their likely scores (see Supplementary Table 8 for the
best-matched PGS model source). For nearly all diseases, the median implied performance de-
rived from Nucleus Genomics reports collected from customers of European ancestry was consis-
tently (and often substantially) higher than our independently validated performance estimates
(Supplementary Note Figure 1). Notably, for two PGSs where we found literature-based per-
formance estimates, the estimates from our own validation in UKBB were highly concordant
(Supplementary Note Table 2). This concordance suggests that our independent validation was
consistent with externally conducted validations. Overall, we found that the PGSs likely used by
Nucleus display substantially lower predictive performance than that implied by their customer
reports.
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Disease PGS UKBB validation Reported in literature

Breast cancer 0.095 (.069, .12) 0.093 (0.087, 0.10)
Schizophrenia 0.037 (.027, .050) 0.035 (0.015, 0.062)

Supplementary Note Table 2: Comparison of PGS liability R2 and 95% confidence intervals
estimated in our UKBB validation versus those reported in the literature (see Supplementary
Table 8 for more details).

We also performed a preliminary analysis of Nucleus’ advertised risk reductions when apply-
ing their PGS models in PGT-P. To this end, we extracted data from Nucleus’ online risk reduction
calculator1, which, for nine diseases, displays the disease’s population prevalence alongside the
risk reduced when selecting the embryo with the lowest predicted risk among two to five em-
bryos. The interpretation of these reductions is complicated by the use of prevalences pertaining
to various narrow subsets of the population. For example, the reported coronary artery disease
(CAD) risks were “calculated for males with one major risk factor,” where major risk factors
included smoking, having diabetes, blood pressure (160/100 or above), and high cholesterol (240
and above). The source (Table 3 of Lloyd-Jones et al.2) matches that cited in Nucleus’ physician
reports. For other traits, the population prevalences were uncited but identically matched those
in the respective physician reports.

This raises the question of whether the reported embryo-level risk reductions apply exclu-
sively to embryos whose future cardiovascular profiles match the described high-risk subset
(e.g., males with at least one major risk factor). If so, the interpretation is unclear, as embryo
phenotypes cannot be known in advance—and many risk factors themselves partially reflect
underlying genetic liability for CAD. If Nucleus derived risk reductions using such narrowly
defined subgroups, the reported reductions would not reflect expected risk in a general embryo
population. Moreover, if these subsets were chosen based on convenience (e.g., the first figure
from the CAD PGS source publication), it raises further questions about methodological rigor.

We collated these prevalences, risk reductions, and Nucleus’ cited disease heritabilities in or-
der to simulate the risk reductions permitted by a given PGS model liability R2 using the same
approach described above ("Simulations of expected gains from use of PGS models in PGT-P"). We
conducted a limited grid search up to ±10% on either side of the median liability R2 previously
inferred from physician reports, with step sizes of 0.5%, selecting the three estimates best mini-
mizing the sum of reported minus simulated risk reductions across the displayed embryo batch
sizes (Supplementary Table 10). Although broadly informative, this procedure did not permit
confident mapping of embryo-level risk reductions to specific PGS models reconstructed from
physician reports.

Nonetheless, in several instances the implied liability R2 estimates from embryo selection
fell within the range inferred from adult reports. For instance, embryo versus adult median
European liability R2 values were 10–11% versus 9.2% for age-related macular degeneration,
and 8–9% versus 8.1% for PCOS (Supplementary Table 10). However, substantial discrepancies
emerged for traits such as schizophrenia, rheumatoid arthritis, and endometriosis, where inferred
embryo-selection liability R2 values differed considerably from those derived from adult reports.
Though such comparisons rely on untestable assumptions concerning Nucleus’ methodology,
either possibility—namely that the same questionable PGS models are used in both adult and
embryo products or that an unknown set is employed solely for the latter—erodes confidence in
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the accuracy and reliability of Nucleus’ reported risk reductions. This uncertainty underscores
the critical need for calibrated risk estimates, transparent reporting of model validation, and full
disclosure of methodology and its assumptions.

Finally, given the above evidence in favor of substantially inflated predictive performances
of Nucleus’ PGS models, we sought to informally evaluate hypotheses that might explain the
magnitude and breadth of the likely errors. One possible explanation is suggested by the simi-
larity of the implied liability R2 values to estimates of loosely related parameters in the source
GWASs used for PGS training. For example, the median liability R2 of 17.6% implied by Nucleus’
migraine risk predictions for European customers is closest to a measure of the SNP heritability
of 14.6% cited in Supplementary Figure 6 of Gormley et al.3, the PGS’s corresponding 2016 mi-
graine GWAS. Crucially, this parameter indexes the proportion of liability variance explained by
the additive effects of all common causal variants4 rather than just those whose GWAS effects are
imprecisely estimated and included in a 21-SNP score. This same explanation might also hold for
diseases of greater consequence such as breast cancer, for which an implied liability R2 of 16.1%
better matches a measure of the disease’s SNP heritability (18% from Michailidou et al.5) than
our concordant literature and UKBB validation estimates of liability R2 ∼ 9.5% (Supplementary
Note Table 2). The same is true of the implied liability R2 versus SNP heritability for asthma
(10.7% vs. 10.6% for adult-onset asthma6), insomnia (10.3% vs. 9–11%, see the“SNP heritability”
section of Hammerschlag et al.7) and hypertension (11.7% vs. 10.7%8), perhaps among others.

Given these cumulative concerns and lack of published external validation, we concluded
that inclusion of Nucleus’ scores in our primary benchmarking comparison would not yield a
reliable or meaningful addition to our analysis.
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Supplementary Tables

Trait UK Biobank phenotype code

Alanine aminotransferase 30620

Albumin 30600

Alkaline phosphatase 30610

Ankle spacing width 3143

Apolipoprotein A 30630

Aspartate aminotransferase 30650

Blood urea nitrogen 30670

Calcium 30680

Coronary artery disease 131298, 131300, 131302, 131304,
131306, 41272 (OPCS4 codes K40,
K41, K45, K49, K502, K75), 20002
(self report code 1075), 6150

Corpuscular volume 30040

Creatinine 30700

Cystatin C 30720

ECG PQ interval 22330

ECG QRS duration 12340

ECG QTC interval 22332

Eosinophil percentage 30210

Erythrocyte count 30010

Erythrocyte width 30070

Estimated glomerular filtration rate (creatinine-based) 30700

Gamma glutamyl transferase 30730

Glucose 30740

Grip strength 46, 47

Heel ultrasound attenuation 3144

Hematocrit percentage 30030

IGF-1 30770

Insomnia 130920, 20002
(self-report code 1616)

Monocyte percentage 30190
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https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30620
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30600
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30610
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=3143
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30630
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30650
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30670
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30680
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=131298
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=131300
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=131302
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=131304
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=131306
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41272
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6150
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30040
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=30700
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30720
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22330
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=12340
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22332
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30210
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30010
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30070
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=30700
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30730
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30740
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=46
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=47
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=3144
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30030
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30770
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=130920
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30190


Trait UK Biobank phenotype code

Phosphate 30810

Platelet distribution width 30110

Refractive error (avMSE) 20261

Reticulocyte fraction 30280

Sex hormone-binding globulin 30830

Sodium 30530

Speed of sound through heel 3146

Suicide attempt 20002 (self-report code 1290), 20483,
29116

Testosterone (female-only) 30850

Testosterone (male-only) 30850

Thrombocyte volume 30100

Triglycerides 30870

Urate 30880

Ventricular rate 12336

Vitamin D 30890

Water mass of whole body 23102

Vitiligo 131802, 20002
(self-report code 1661)

Systemic lupus erythematosus 131894, 20002
(self-report code 1381)

Thoracic aortic aneurysm 131382

Testicular cancer 40006 (ICD10 cancer code C62),
20001 (self-report code 1045)

Gout 131858, 20002
(self-report code 1466)

Attention-Deficit/Hyperactivity Disorder 130976, 20544, 29000

Crohn’s disease 131626, 20002
(self-report code 1462)

Multiple sclerosis 131042, 20002
(self-report code 1261)

Psoriasis 131742, 20002
(self-report code 1453)
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https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30850
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30100
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30870
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30880
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=12336
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30890
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=23102
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=131802
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=131894
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=131382
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=40006
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20001
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=131858
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=130976
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20544
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=29000
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=131626
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=131042
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=131742
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002


Trait UK Biobank phenotype code

Ulcerative colitis 131628, 20002
(self-report code 1463)

Parkinson’s disease 131022, 20002
(self-report code 1262)

Atopic dermatitis 131720

Inflammatory bowel disease 131626, 131628, 20002 (self-report
codes 1462, 1463)

Kidney cancer 40006 (ICD10 cancer code C64),
20001 (self-report code 1042)

Osteoporosis 131962, 131964, 131966, 20002
(self-report code 1309)

Melanoma 40006 (ICD10 cancer code C43),
20001 (self-report code 1059)

Acne 131790, 20002
(self-report code 1548)

Alzheimer’s disease 131036, 130836, 20002
(self-report code 1263)

Age-related macular degeneration 131182, 20002
(self-report code 1528)

Glaucoma 131186, 6148, 6119, 20002
(self-report code 1277),

Rheumatoid arthritis 131848, 131850, 120001, 20002
(self-report code 1464)

Bipolar disorder 130892, 20126, 20544, 20002
(self-report code 1291)

Chronic obstructive pulmonary disease 131486, 131488, 131490, 131492,
22130, 22170, 22128, 22168, 20002
(self-report codes 1112, 1113)

Basal cell carcinoma 40006 (ICD10 cancer code C44),
20002 (self-report code 1061)

Schizophrenia 130874, 20544, 29000, 20002
(self-report code 1289)

Birth weight 20022

Colorectal cancer 40006 (ICD10 cancer codes C18-20),
20001 (self-report codes 1020, 1022,
1023)
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https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=131036
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=130836
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=131182
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=131186
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6148
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https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=131850
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=120001
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=130892
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https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22128
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22168
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=40006
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=130874
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https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20022
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=40006
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20001


Trait UK Biobank phenotype code

Migraine 131052, 120016, 20002
(self-report code 1265)

Prostate cancer 40006 (ICD10 cancer code C61),
20001 (self-report code 1044)

Chronic kidney disease 132032 (only ICD10 codes N183-5),
30700 (eGFR < mL/min), 20002
(self-report code 1192)

Diverticular disease 131636, 20002
(self-report code 1458)

Stroke 131362, 131366, 6150, 20002
(self-report codes 1081, 1583)

Venous thromboembolism 131308, 131396, 131400, 41272
(OPCS4 codes O871, O882), 20002
(self-report codes 1093, 1094, 1068)

Hearing loss 131258, 2247, 2257

Sleep duration 1160

Breast cancer 40006 (ICD10 cancer code C50),
20001 (self-report code 1002)

Chronotype 1180

Atrial fibrillation 131350, 41272 (OPCS4 codes K57,
K62), 20002 (self-report codes 1471,
1483)

Hypertension 131286, 20002 (self-report codes
1065, 1072)

Asthma 131494, 131496, 6152, 22167, 20002
(self-report code 1111)

Type 2 diabetes 130708, 20002
(self-report code 1223)

Restless legs syndrome 131032

Body mass index 21001

Supplementary Table 1: Phenotype definitions used for disease and the traits used in UK
Biobank for validation and relative PGS performance attenuation in diverse ancestries.
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Category Disease Liability R2 (95% CI)

Cancer

Prostate cancer 19.0% (15.6, 22.9)
Breast cancer 14.3% (10.9, 17.5)
Basal cell carcinoma 11.9% (8.9, 15.2)
Testicular cancer 7.6% (6.4, 9.3)
Melanoma 7.4% (5.4, 9.5)

Metabolic and
cardiovascular

Type 2 diabetes 20.7% (16.8, 24.8)
Hypertension 15.7% (12.0, 19.3)
Gout 10.4% (7.9, 13.2)
Venous thromboembolism 5.7% (3.7, 8.0)

Neurological
Alzheimer’s disease 16.1% (12.3, 20.5)
Multiple sclerosis 7.0% (6.0, 8.0)

Inflammatory
and autoimmune

Psoriasis 11.6% (9.1, 14.7)
Atopic dermatitis 10.9% (6.6, 16.0)
Vitiligo 9.9% (7.9, 12.1)
Inflammatory bowel disease 7.5% (5.7, 9.4)

Other
Glaucoma 8.2% (6.0, 10.8)
Osteoporosis 7.1% (4.5, 10.1)

Supplementary Table 2: Liability R2 estimated between families in the UK Biobank for 17
newly developed disease PGS.
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Lifetime risk (EUR)

Disease M F Source

Vitiligo 0.45% 0.46% Howitz et al., 1977 9

Testicular cancer 0.49% SEER, 2024 10

Gout 11.00% 3.10% Dehlin et al., 2020 11

Multiple sclerosis 0.19% 0.54% Hittle et al. 2023 12

Psoriasis 2.90% 2.90% Pezzolo et al., 2019 13

Atopic dermatitis 12.00% 12.00% Hadi et al., 2021 14

Inflammatory bowel disease 1.69% 1.85% Forss et al. 2022 15

Osteoporosis 22.00% 46.00% Kanis et al., 2000 16

Melanoma 3.47% 2.48% SEER, 2024 10

Alzheimer’s disease 8.80% 13.40% Lobo et al., 2011 17

Glaucoma 5.53% 8.51% NEI, 2024 18

Venous thromboembolism 7.70% 8.40% Bell et al., 2016 19

Prostate cancer 12.57% SEER, 2024 10

Basal cell carcinoma 21.00% 18.00% Flohil et al., 2013 20

Breast cancer 13.87% SEER, 2024 10

Hypertension 45.40% 48.30% FinnGen, 2024 21

Type 2 diabetes 21.40% 18.40% Narayan et al., 2007 22

Supplementary Table 3: Lifetime risk estimates and their corresponding sources for European
ancestry individuals for males (M) and females (F).

Type 2 diabetes
lifetime risk

Ancestry M F

SAS 26.40% 24.19%
EAS 27.59% 23.72%
AFR 26.35% 28.61%

Supplementary Table 4: Lifetime risk estimates for type 2 diabetes by individual ancestries as
reported in Narayan et al. (2007)22 for males (M) and females (F).
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Conversion Expression or term Definition

Odds-ratio per 1 SD of PGS (OR)
→ Cohen’s d

p sample prevalence

d : OR = exp
(

d
√

1 + d2 p(1 − p)
)

(solved numerically for d)

Area under ROC curve (AUC)
→ Cohen’s d

z = Φ−1(AUC) liability z-score

d =
√

2 z standardized mean
difference between PGS
of cases and controls

Cohen’s d → observed-scale R2
o R2

o =
d2 p (1 − p)

1 + d2 p (1 − p)
observed-scale R2

o

Observed-scale R2
o

→ liability-scale R2
l

t = Φ−1(1 − k) case threshold for lifetime
risk k

z = φ(t) standard-normal PDF at t

i =
z
k

mean liability of cases

C =
k(1 − k)

z2 p (1 − p)
variance scaling factor

θ = i p−k
1−k

(
i 1−k

k − i
)

− t ascertainment adjustment

R2
l =

C R2
o

1 + C R2
o

liability-scale R2
l

Supplementary Table 5: Equations used to convert comparison validations reported in odds
ratios or AUC to liability R2.
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Disease Estimand β̂, r̂ or SE p
(Number of proband cases in parentheses) β̂direct/β̂pop

Alzheimer’s disease (465) Population effect 0.221 0.022 1.5 × 10−24

Direct effect 0.218 0.036 1.8 × 10−9

Average non-transmitted coefficient 0.003 0.029 0.907
Direct/population effect ratio 0.970 0.128 0.813
Spousal PGS correlation 0.011 0.008 0.203

Atopic dermatitis (22) Population effect 0.267 0.064 3.5 × 10−5

Direct effect 0.241 0.112 0.031
Average non-transmitted coefficient 0.026 0.091 0.772
Direct/population effect ratio 0.912 0.433 0.838
Spousal PGS correlation 0.008 0.009 0.323

Basal cell carcinoma (2395) Population effect 0.260 0.011 1.1 × 10−121

Direct effect 0.281 0.019 5.8 × 10−49

Average non-transmitted coefficient −0.020 0.016 0.191
Direct/population effect ratio 1.070 0.060 0.212
Spousal PGS correlation 0.008 0.009 0.359

Breast cancer (1863) Population effect 0.280 0.013 6.7 × 10−105

Direct effect 0.258 0.022 2.6 × 10−32

Average non-transmitted coefficient 0.022 0.018 0.212
Direct/population effect ratio 0.923 0.064 0.227
Spousal PGS correlation −0.023 0.009 0.008

Glaucoma (1257) Population effect 0.252 0.014 5.6 × 10−73

Direct effect 0.265 0.024 1.7 × 10−28

Average non-transmitted coefficient −0.014 0.020 0.483
Direct/population effect ratio 1.050 0.078 0.509
Spousal PGS correlation −0.009 0.009 0.285

Gout (1154) Population effect 0.270 0.014 5.2 × 10−80

Direct effect 0.268 0.025 3.7 × 10−26

Average non-transmitted coefficient 0.003 0.021 0.895
Direct/population effect ratio 0.989 0.076 0.880
Spousal PGS correlation 0.012 0.008 0.140

Hypertension (15096) Population effect 0.351 0.007 < 10−300

Direct effect 0.334 0.012 7.4 × 10−164

Average non-transmitted coefficient 0.017 0.010 0.087
Direct/population effect ratio 0.951 0.028 0.078
Spousal PGS correlation 0.003 0.009 0.733

Inflammatory bowel disease
(705)

Population effect 0.266 0.017 7.1 × 10−58

Direct effect 0.252 0.028 8.6 × 10−19

Continued on next page
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Supplementary Table 6 (continued)

Disease Estimand β̂, r̂ or SE p
(Number of proband cases in parentheses) β̂direct/β̂pop

Average non-transmitted coefficient 0.014 0.023 0.543
Direct/population effect ratio 0.945 0.090 0.541
Spousal PGS correlation 0.014 0.008 0.096

Melanoma (385) Population effect 0.162 0.019 1.0 × 10−16

Direct effect 0.181 0.034 1.5 × 10−7

Average non-transmitted coefficient −0.019 0.028 0.501
Direct/population effect ratio 1.120 0.184 0.520
Spousal PGS correlation 0.012 0.008 0.167

Multiple sclerosis (237) Population effect 0.299 0.024 1.8 × 10−35

Direct effect 0.287 0.042 9.8 × 10−12

Average non-transmitted coefficient 0.012 0.035 0.732
Direct/population effect ratio 0.955 0.117 0.702
Spousal PGS correlation 0.004 0.009 0.681

Osteoporosis (2120) Population effect 0.180 0.012 4.6 × 10−53

Direct effect 0.139 0.020 8.3 × 10−12

Average non-transmitted coefficient 0.041 0.017 0.015
Direct/population effect ratio 0.786 0.091 0.019
Spousal PGS correlation 0.004 0.009 0.646

Prostate cancer (1157) Population effect 0.342 0.017 2.0 × 10−87

Direct effect 0.359 0.029 1.1 × 10−34

Average non-transmitted coefficient −0.018 0.024 0.462
Direct/population effect ratio 1.050 0.069 0.470
Spousal PGS correlation −0.006 0.009 0.464

Psoriasis (886) Population effect 0.277 0.015 4.5 × 10−76

Direct effect 0.303 0.026 5.5 × 10−31

Average non-transmitted coefficient −0.027 0.021 0.215
Direct/population effect ratio 1.090 0.080 0.267
Spousal PGS correlation 0.006 0.009 0.495

Testicular cancer (69) Population effect 0.273 0.044 8.4 × 10−10

Direct effect 0.265 0.075 4.5 × 10−4

Average non-transmitted coefficient 0.008 0.060 0.893
Direct/population effect ratio 1.020 0.229 0.948
Spousal PGS correlation 0.006 0.009 0.480

Type 2 diabetes (3027) Population effect 0.380 0.011 3.4 × 10−262

Direct effect 0.384 0.018 9.0 × 10−96

Average non-transmitted coefficient −0.003 0.015 0.829
Direct/population effect ratio 1.010 0.039 0.797

Continued on next page
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Supplementary Table 6 (continued)

Disease Estimand β̂, r̂ or SE p
(Number of proband cases in parentheses) β̂direct/β̂pop

Spousal PGS correlation 0.009 0.009 0.290

Venous thromboembolism
(2051)

Population effect 0.201 0.011 1.1 × 10−70

Direct effect 0.199 0.019 6.5 × 10−25

Average non-transmitted coefficient 0.002 0.016 0.909
Direct/population effect ratio 0.993 0.076 0.924
Spousal PGS correlation 0.002 0.009 0.851

Vitiligo (41) Population effect 0.260 0.051 3.1 × 10−7

Direct effect 0.366 0.091 5.5 × 10−5

Average non-transmitted coefficient −0.100 0.070 0.154
Direct/population effect ratio 1.370 0.312 0.239
Spousal PGS correlation 0.085 0.008 3.1 × 10−27

Supplementary Table 6: Within-family model estimates. “Direct effect” and “Average
non-transmitted coefficient” refer to the estimated coefficients on a proband PGS term and
combined maternal + paternal PGS term in the within-family specification, respectively.
“Direct/population effect ratio” refers to the ratio of direct to population effects derived from a
within-family model fitting maternal and paternal PGS terms separately.
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Disease Orchid sample
prevalence

Genomic Prediction
sample prevalence

Alzheimer’s omitted ∼1.2%
Basal cell carcinoma not validated ∼1.4%
Breast cancer 8.0% ∼4.7%
Type 2 diabetes 7.5% ∼6.4%
Gout not validated ∼2%
Hypertension not validated ∼32%
Inflammatory bowel disease 1.5% ∼1.5%
Melanoma not validated ∼0.9%
Prostate cancer 7.4% ∼2.1%
Testicular cancer not validated ∼0.4%

Supplementary Table 7: Sample prevalences used to convert PGS AUC reported by commercial
PGT-P providers to liability R2 shown in Figure 3. Values for Genomic Prediction were
approximated using the available information in the supplement to Widen et al. 23 and on
Genomic Prediction’s risk reduction calculator webpage24. Values for Orchid were found in
their online whitepapers25.
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Trait Ver. #SNPs

Sources used to
identify PGS
(+Impute.me)

Public PGS
weights link

PGS
weights

type
Nucleus

prevalence
Literature

R2 (95% CI)
Literature

R2 derivation

Gastric cancer v1 6 physician reports + rsIDs +
GWAS Catalog

https://www.ebi.ac.uk/gwas/studi
es/GCST006707

GWAS lead
SNP effects

ADHD v1 12 physician reports + rsIDs +
GWAS sumstats

https://figshare.com/articles/datas
et/adhd2019/14671965?file=281692
53

GWAS lead
SNP effects

OCD v1 12 physician reports + rsIDs +
GWAS Catalog

https://www.ebi.ac.uk/gwas/studi
es/GCST003434

GWAS lead
SNP effects

PCOS v1 14 physician reports + rsIDs +
GWAS Catalog

https://www.ebi.ac.uk/gwas/studi
es/GCST007089

GWAS lead
SNP effects

Endometriosis v1 15 physician reports + rsIDs +
GWAS Catalog

https://www.ebi.ac.uk/gwas/studi
es/GCST004549

GWAS lead
SNP effects

Age-related macu-
lar degeneration

v1 16 physician reports + rsIDs +
GWAS Catalog

https://www.ebi.ac.uk/gwas/studi
es/GCST001884

GWAS lead
SNP effects

Restless legs syn-
drome

v1 18 physician reports + rsIDs +
GWAS Catalog

https://www.ebi.ac.uk/gwas/studi
es/GCST005042

GWAS lead
SNP effects

Anxiety disorders v1 20 physician reports + GWAS Cata-
log

https://www.ebi.ac.uk/gwas/studi
es/GCST007710

GWAS lead
SNP effects

Severe acne v1 20 physician reports + rsIDs +
GWAS Catalog

https://www.ebi.ac.uk/gwas/studi
es/GCST007234

GWAS lead
SNP effects

Migraine v1 21 physician reports + rsIDs +
GWAS Catalog

https://www.ebi.ac.uk/gwas/studi
es/GCST003720

GWAS lead
SNP effects

Celiac disease v1 23 physician reports + rsIDs +
GWAS Catalog

https://www.ebi.ac.uk/gwas/studi
es/GCST000612

GWAS lead
SNP effects

Osteoarthritis v1 30 physician reports + rsIDs +
GWAS Catalog

https://www.ebi.ac.uk/gwas/studi
es/GCST007093

GWAS lead
SNP effects

Alzheimer’s disease v1 33 physician report + PGS Catalog https://www.pgscatalog.org/score
/PGS000026

PGS Catalog
weights

Chronic pain v1 37 physician reports + rsIDs +
GWAS Catalog

https://www.ebi.ac.uk/gwas/studi
es/GCST008512

GWAS lead
SNP effects

Hypertension v1 42 physician reports + rsIDs +
GWAS Catalog

https://www.ebi.ac.uk/gwas/studi
es/GCST007707

GWAS lead
SNP effects

Parkinson’s disease v1 50 physician reports + rsIDs +
GWAS Catalog

https://www.ebi.ac.uk/gwas/studi
es/GCST004902

GWAS lead
SNP effects

Male pattern bald-
ness

v1 51 physician reports + rsIDs +
GWAS sumstats

https://doi.org/10.1038/s41467-017
-01490-8

GWAS lead
SNP effects

Seasonal allergies v1 80 physician reports + rsIDs +
GWAS Catalog

https://www.ebi.ac.uk/gwas/studi
es/GCST009716

GWAS lead
SNP effects

Asthma v1 152 physician reports + rsIDs +
GWAS Catalog

https://www.ebi.ac.uk/gwas/studi
es/GCST007798

GWAS lead
SNP effects

Multiple sclerosis v1 283 physician reports + rsIDs +
GWAS Catalog

https://www.ebi.ac.uk/gwas/studi
es/GCST009597

GWAS lead
SNP effects

Longevity v1 332 physician reports + rsIDs +
GWAS Catalog

https://www.pgscatalog.org/score
/PGS000906

GWAS lead
SNP effects

Coronary artery
disease

v1 502 physician reports + rsIDs +
GWAS sumstats

https://data.mendeley.com/datase
ts/gbbsrpx6bs/1

GWAS lead
SNP effects

Continued on next page
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Continued from previous page

Trait Ver. #SNPs

Sources used to
identify PGS
(+Impute.me)

Public PGS
weights link

PGS
weights

type
Nucleus

prevalence
Literature

R2 (95% CI)
Literature

R2 derivation

Type 2 diabetes v1 171 249 physician reports + Impute.me
study_list (LF 2020-12-28)

https://www.pgscatalog.org/score
/PGS000036

PGS Catalog
weights

33 % 10.4 % (9.6,
11.1)

Converted
from OR
(PPM021436)

Height v1 416 877 physician reports + Impute.me
study_list (LF 2020-12-28)

http://lianglab.rc.fas.harvard.edu/
CTPR/CTPR_beta_coefficients.tar.gz
(ldpred)

Public PGS
weights

Body mass index v1 503 330 physician reports + Impute.me
study_list (LF 2019-03-18)

(internally trained by Impute.me) Internal
weights

Bipolar disorder v1 554 976 physician reports + Impute.me
study_list (LF 2019-03-18)

(internally trained by Impute.me) Internal
weights

Intelligence v1 558 032 physician reports + Impute.me
study_list (LF 2019-03-18)

(internally trained by Impute.me) Internal
weights

Depression v1 558 415 physician reports + Impute.me
study_list (LF 2019-03-18)

(internally trained by Impute.me) Internal
weights

Alcohol depen-
dence

v1 558 693 physician reports + Impute.me
study_list (LF 2019-03-18)

(internally trained by Impute.me) Internal
weights

Insomnia v1 558 823 physician reports + Impute.me
study_list (LF 2019-10-30)

(internally trained by Impute.me) Internal
weights

Schizophrenia v1 833 502 physician reports + Impute.me
study_list (LF 2020-12-28)

https://www.pgscatalog.org/score
/PGS000136

PGS Catalog
weights

0.6 % 3.5 % (1.5,
6.2)

Converted
from OR
(PPM000416)

Breast cancer v1 1 079 067 physician reports + Impute.me
study_list (LF 2020-12-28)

https://www.pgscatalog.org/score
/PGS000335

PGS Catalog
weights

13 % 9.3 % (8.7,
10.0)

Converted
from OR
(PPM000903)

Male breast cancer v1 1 079 067 physician reports + Impute.me
study_list (LF 2020-12-28)

https://www.pgscatalog.org/score
/PGS000335

PGS Catalog
weights

Prostate cancer v1 1 111 494 physician reports + Impute.me
study_list (LF 2020-12-28)

https://www.pgscatalog.org/score
/PGS000566

PGS Catalog
weights

8 % 2.6 % (1.7,
3.8)

Converted
from OR
(PPM001251)

Ovarian cancer v1 1 115 189 physician reports + Impute.me
study_list (LF 2020-12-28)

https://www.pgscatalog.org/score
/PGS000546

PGS Catalog
weights

1 % 0.2 % (0.03,
0.6)

Converted
from OR
(PPM001231)

Colorectal cancer v1 1 119 238 physician reports + Impute.me
study_list (LF 2020-12-28)

https://www.pgscatalog.org/score
/PGS000373

PGS Catalog
weights

4 % 0.6 % (0.1,
1.3)

Converted
from OR
(PPM001058)

Type 2 diabetes v2 1 259 754 physician report + PGS Catalog
(updated 2025-05-21)

https://www.pgscatalog.org/score
/PGS002308

PGS Catalog
weights

33 % 14.7 %
(13.7, 15.8)

Converted
from OR
(PPM013064)

Supplementary Table 8: Nucleus PGS models reconstructed by matching variant counts shown
on physician reports with external sources of SNP rsIDs and weights. “Impute.me study_list
sheet” refers to 2021-02-11_study_list.xlsx on the Impute.me GitHub repository.26
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Disease N Minimum q25 Median

Median
(EUR

reports
only) Mean q75 Maximum SD

Breast cancer 1 0.1613 0.1613 0.1613 0.1613 0.1613 0.1613 0.1613 NA
Migraine 21 0.0004 0.0741 0.1525 0.1764 0.1252 0.1949 0.2181 0.0768
Coronary artery disease 13 0.0226 0.0835 0.1187 0.1522 0.1184 0.1570 0.1734 0.0462
Type 2 diabetes 21 0.0374 0.0850 0.1220 0.1306 0.1143 0.1367 0.2718 0.0498
Chronic pain 16 0.0489 0.0854 0.1160 0.1319 0.1132 0.1420 0.1592 0.0359
Parkinson’s disease 5 0.0170 0.0787 0.1311 0.1392 0.1068 0.1392 0.1681 0.0597
Restless legs syndrome 5 0.0616 0.0806 0.0942 0.0942 0.0942 0.1172 0.1174 0.0241
Asthma 12 0.0468 0.0802 0.0993 0.1073 0.0937 0.1144 0.1341 0.0294
Insomnia 16 0.0461 0.0776 0.0989 0.1034 0.0923 0.1131 0.1280 0.0272
Endometriosis 1 0.0890 0.0890 0.0890 0.0890 0.0890 0.0890 0.0890 NA
Hypertension 17 0.0038 0.0617 0.1065 0.1173 0.0886 0.1268 0.1407 0.0469
Alcohol dependence 8 0.0004 0.0533 0.0899 0.1063 0.0839 0.1153 0.1514 0.0478
PCOS 3 0.0803 0.0808 0.0812 0.0812 0.0830 0.0843 0.0874 0.0038
Male breast cancer 2 0.0693 0.0748 0.0803 0.0803 0.0803 0.0858 0.0913 0.0155
Multiple sclerosis 5 0.0128 0.0437 0.1003 0.1023 0.0777 0.1023 0.1294 0.0479
OCD 4 0.0486 0.0517 0.0739 0.0950 0.0776 0.0998 0.1142 0.0322
Age-related macular
degeneration

20 0.0019 0.0404 0.0840 0.0925 0.0767 0.1118 0.1479 0.0463

Prostate cancer 13 0.0220 0.0442 0.0697 0.0744 0.0746 0.0898 0.2158 0.0494
Anxiety disorders 16 0.0332 0.0412 0.0753 0.0827 0.0698 0.0852 0.1036 0.0246
Rheumatoid arthritis 20 0.0000 0.0495 0.0773 0.0782 0.0676 0.0895 0.1291 0.0358
Severe acne 3 0.0145 0.0237 0.0328 0.0812 0.0595 0.0820 0.1311 0.0627
ADHD 13 0.0181 0.0286 0.0405 0.0429 0.0408 0.0509 0.0716 0.0149
Schizophrenia 24 0.0000 0.0241 0.0312 0.0372 0.0317 0.0410 0.0499 0.0137
Colorectal cancer 5 0.0124 0.0253 0.0254 0.0270 0.0236 0.0270 0.0280 0.0064
Osteoarthritis 12 0.0090 0.0158 0.0236 0.0312 0.0236 0.0321 0.0344 0.0095
Bipolar disorder 5 0.0072 0.0110 0.0111 0.0123 0.0108 0.0123 0.0124 0.0021
Depression 4 0.0024 0.0040 0.0051 0.0057 0.0107 0.0118 0.0301 0.0130
Ovarian cancer 1 0.0010 0.0010 0.0010 0.0011 0.0010 0.0010 0.0010 NA
Gastric cancer 5 0.0000 0.0000 0.0008 0.0009 0.0010 0.0014 0.0026 0.0011

Supplementary Table 9: Summary statistics of liability R2 per trait, including the median from
European-ancestry reports.
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Disease
Prevalence used in

embryo risk
reduction calculator

Nucleus heritability
if not provided, cited

from the literature

Median EUR
liability R2 inferred

from adult
physician’s

reports
(Supplementary

Table 8)

Top selected
liability R2 from

embryo risk
reduction

simulations

Type 2 diabetes 19.8% 72% 13.1% 9–10%

Coronary artery disease 37.6% 50% 15.2% 10–11%

Restless legs syndrome 9.0% 54% 9.4% 11–12%

Endometriosis 11% 27 47%27 8.9% 6–7%

Age-related macular degeneration 17.7% 59% 9.2% 10–11%

PCOS 9.6% 72% 28 8.1% 8–9%

Rheumatoid arthritis 1.7% 58% 7.8% 15–16%

Prostate cancer 8.2% 58% 7.4% 9.5–10.5%

Schizophrenia 1.1% 83% 3.7% 7–8%

Supplementary Table 10: Liability R2 inferred from Nucleus’ adult physician’s reports and
embryo risk-reduction calculator1. Prevalences and heritabilities were scraped from Nucleus
materials for input to risk-reduction simulations unless otherwise noted.
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