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Abstract

Preimplantation genetic testing for polygenic risk (PGT-P) holds great promise for reducing lifetime
disease burden, but has been held back by the difficulty of genotyping embryos. Preimplantation genetic
testing for aneuploidy (PGT-A) is a standard-of-care technology used in over half of in vitro fertilization
(IVF) cycles in the United States. PGT-A is used to detect chromosomal abnormalities using ultra-low-pass
(ULP) sequencing data (typically 0.002x to 0.006x) or, less commonly, genotyping array-based data. Here
we describe ImputePGTA, a Hidden Markov Model-based algorithm that enables accurate reconstruction
of embryo genomes from array or ULP sequencing data from embryos and parental genome data. A
key innovation of our algorithm is its ability to provide accurate embryo genotypes and polygenic scores
(PGSs) along with posterior distributions given limited embryo data and imperfectly phased parental
haplotypes, as encountered in real-world applications. The accuracy of the embryo genome reconstruction
increases with that of the phasing quality of parental haplotypes. We describe a method, phaseGrafter, that
improves parental phasing by combining statistical phasing from short-reads with read-backed phasing
from long-reads, which further enable phasing of rare pathogenic variants. We validate our results through
simulations, downsampled gold standard data, and comparison of six reconstructed embryo genomes
from real PGT-A data to high-coverage, post-birth whole genome sequencing data. Our imputed embryo
genotypes have a dosage correlation of 0.961 with high-quality post-birth genotypes (0.998 when using
embryo array data). The imputed embryo polygenic scores for 17 diseases have a mean absolute difference
of 0.16 standard deviations (0.023 when using embryo array data) with PGSs calculated from high-quality
post-birth genotypes, lower than from imputation of array data from reference panels. We show that the
attenuation in expected gains from embryo selection due to posterior uncertainty is only ~5-10% for typical
PGT-A data. Our approach removes an important technological barrier to using PGT-P and will facilitate
more widespread adoption.
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Introduction
In vitro fertilization (IVF) has expanded rapidly, reaching 432,641 cycles in the United States alone in
2023 and accounting for 2.6% of all births that year1. This rise is driven in part by trends in elective
oocyte cryopreservation2 and increasing infertility3, as well as the growing demand for pre-implantation
genetic testing (PGT). Initially, PGT addressed monogenic disorders (PGT-M), enabling at-risk parents to
select embryos free of severe genetic diseases such as cystic fibrosis or Huntington’s disease4. More recently,
clinical focus has broadened to PGT for structural rearrangements (PGT-SR) and aneuploidy (PGT-A). PGT-A
is a standard offering that increases IVF success rates by screening embryos for chromosomal abnormalities5.
In the United States, PGT-A was performed in 14% of IVF cycles in 2014, rising to 59% in 20226,7.

Most diseases and traits are influenced by many variants across the genome — i.e., they are polygenic
and can be predicted using polygenic scores (PGSs) that weight genotypes at different variants based on
estimates of the variants’ effects. Polygenic embryo screening (PGT-P) uses polygenic scores to predict the
traits and disease risks of the embryos if implanted, giving information that can be used to choose which
embryos to implant. PGT-P has the potential to reduce lifetime disease burden8 and is currently offered
by multiple companies in the United States9–14. Despite ongoing ethical and scientific debates15–18, public
support for PGT-P is high19–21, and the utility of PGT-P is likely to improve with the growth of biobank data
and the development of new methods for polygenic prediction22. PGT-P, however, requires comprehensive
genomic data — typically whole-genome sequencing or genotyping array data — derived from limited
embryo DNA, which necessitates costly and specialized wet-lab techniques and analytical methods that are
not yet widely available23. One approach is to genotype embryos at the set of markers on an array and then
to impute missing genotypes from a reference panel. While this approach can capture most common genetic
variation used in PGSs, they miss high-effect rare variants that can substantially contribute to disease risk24,25

and can introduce imputation errors, especially for ancestries not well-represented in reference panels26.
Enabling analyses of the embryo’s entire inherited genome with the data generated during standard

PGT-A could dramatically lower the barriers to PGT-P. Standard PGT-A protocols, however, generate ultra-
low-pass (ULP) sequencing data, resulting in coverages as low as 70,000 100bp single-end reads27 (∼0.002x).
While this is sufficient for detecting large-scale chromosomal abnormalities, obtaining reliable genotype calls
at individual variants using standard methods requires significantly higher coverage. Though several recent
studies28,29 have repurposed historical PGT-A data to perform genome-wide association studies (GWASs),
these studies aggregate sparse information across thousands of individuals, and neither rely on nor produce
accurate individual genotype calls30,31. Thus far, sequence-based PGT-A data alone have not been used for
PGT-P32.

In other contexts, low-pass sequencing combined with reference-panel-based genotype imputation is
routinely used to impute individual genomes from depths as low as ∼0.1x33–36. However, accuracy deteri-
orates rapidly with increasingly rare variants and for genetic ancestries poorly represented in the reference
panel. Thus, these methods are useful primarily for cohort-level analyses where accurate individual geno-
type calls are not required and are not suitable for clinical applications.

In contrast to population studies, embryo genotyping in the context of IVF benefits from the fact that
parental genomes are routinely available for sequencing. Each embryo’s genome is a mosaic of maternal
and paternal haplotypes, implying that comprehensive reconstruction could be feasible via identification of
the inheritance vectors describing the parental haplotypes inherited by individual embryo at each genomic
position. Leveraging parental haplotypes therefore offers a solution to the sparse data problem posed by
ULP embryo sequencing. Existing methods such as genotyping-array-based reconstruction10 and kary-
omapping37 (both based on a 300k SNP chip), hybrid schemes such as MARSALA38 (> 1x whole genome
plus targeted regions), and low-coverage pipelines like (S)Haploseek39,40 (0.2 − 5x) and haplarithmisis41

(10x) can reconstruct embryo haplotypes on at least portions of the genome (though the breadth of variation
that can be reconstructed differs significantly depending on the assay). However, these methods all assume
the parents are phased perfectly — a prohibitively strong assumption — and operate on embryo data with
orders of magnitude higher coverage than standard ULP PGT-A sequencing.
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Figure 1: Graphical Abstract: Graphical representation of the workflow used to reconstruct the embryo genotype given
sequence data on the parents and ultra-low-pass (ULP) PGT-A data on the embryo. (a) The experimental setup where
we have two parents and an embryo. Each parental haplotype is given its own color; the embryo inherits a mosaic of the
parental haplotypes. (b) The wet lab workflow for the embryo and the parents. A trophectoderm biopsy is taken from the
embryo and sequenced at ultra low depth (down to 0.002x). Blood or saliva samples are collected from the parents and
sequenced at high depth using both Illumina short reads and Oxford Nanopore long reads. (c) Parental haplotypes are
estimated using phaseGrafter, our novel dynamic programming algorithm for unifying phase estimates from a common
variant scaffold generated from statistical phasing (e.g., SHAPEIT4) and independent phase sets generated by whatshap
during read-backed phasing using Oxford Nanopore long reads. (d) ImputePGTA, our embryo genome reconstruction
method, takes as inputs the inferred parental haplotypes and the embryo reads overlapping trio-segregating sites (i.e.,
sites where at least one parent is heterozygous). Inheritance vectors are then inferred, producing posterior distributions
over inheritance vectors and offspring genotypes. Posteriors from one of the real PGT-A cases are shown in black; in
dark blue are the “true” inheritance vectors inferred from the high-coverage data from the born child.
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It is not typically possible to produce accurate haplotypes at the chromosome-level from the most
common types of genome-wide data: short-read sequencing and genotyping arrays. While sophisticated
statistical phasing methods have been developed42, the resulting haplotypes are imperfect and contain
switch errors (consecutive heterozygotes that are incorrectly phased relative to each other), resulting in
estimated haplotypes that themselves are mosaics of the true haplotypes. This makes inferring inheritance
patterns from estimated parental haplotypes more challenging than from true parental haplotypes because
changes in which estimated parental haplotype an offspring inherits from can be due to either recombination
or switch error, with switch errors often far more numerous. To accurately impute embryo genotypes from
coverage levels typical of PGT-A assays (∼0.002-0.006x), these limitations become intractable with existing
methods.

Here we describe our combined wet-lab and computational pipeline for embryo whole-genome recon-
struction (Figure 1). To achieve clinical-grade accuracy for embryo genotypes at both common and rare
variants, we sequence parents with both short and long reads. We then merge statistical phasing informa-
tion from short reads with read-backed phasing from long reads using a novel method called phaseGrafter,
which unifies the results into consistent parental haplotypes. When available, grandparental data are also
incorporated, providing additional phase resolution at heterozygous sites through Mendelian inheritance
rules. While one could use parental haplotypes estimated from short reads and statistical phasing — which
we show can give sufficient accuracy for embryo selection based on common variant PGSs — this approach
often fails to produce embryo genotypes with sufficient accuracy for clinical use, especially at rare variants.

Following parental phasing, we use ImputePGTA — a novel Hidden Markov Model (HMM) based
algorithm — to infer posterior distributions over the inheritance vectors (i.e. which estimated parental
haplotype the embryo inherited at each position), embryo genotypes, and PGSs. A key innovation is that
ImputePGTA treats the parental switch-error rates (λ) as an explicit parameter inferred from the data,
enabling accurate inference of embryo inheritance patterns from ULP PGT-A data with coverage as low as
0.002x. ImputePGTA also obtains highly accurate results when applied to embryo array data, though we
focus on the sequencing setup due to its ubiquity in PGT-A testing.

We benchmark the model in silico using the Platinum Pedigree43, a publicly available gold-standard
dataset, by both simulating offspring with PGT-A data and downsampling reads from the real offspring
data. We perform real-world validation of our approach using data from six embryos across four families
that underwent PGT-A testing (2 with ULP data and 2 with array data), subsequent implantation, and
live birth. We examine the performance of our method for estimation of embryo PGSs for 17 diseases by
comparing to PGSs computed from high quality, post-birth genotypes, obtaining a mean-absolute difference
of 0.157 SDs for embryos with ULP sequencing data and 0.0298 SDs for embryos with genotyping array
data. Our results show that accurate genome reconstruction and polygenic scoring, along with posterior
uncertainties, can be achieved from routine PGT-A data, removing an important barrier to wider adoption
of PGT-P.

Results

ImputePGTA for embryo genotyping and polygenic scoring
ImputePGTA (Figure 1D) is a new hidden Markov model (HMM) for imputation of offspring genotypes
from ULP sequence data or array data given estimated parental haplotypes. Here we briefly describe
ImputePGTA at a high level, with more details in Methods. We focus on the ULP sequence data case as it
is the more prevalent and challenging scenario.

Given estimated parental haplotypes, the offspring genotype is determined by the haplotypes it copies
from (inherits) from each of the parents at each position, which can be represented by a binary inheritance
vector of length 2, with possible values in (0, 0), (0, 1), (1, 0), (1, 1). The first element is the paternal haplotype
the embryo copies from at that position (0 or 1), and the second element is the maternal haplotype it copies.
The inheritance vector changes when there is a cross-over or a switch error in the parental haplotypes.
ImputePGTA infers a posterior distribution over each embryo’s inheritance vectors given the embryo’s
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sequencing reads and the estimated parental haplotypes. The key feature that makes ImputePGTA more
effective than previous approaches10,41 is that switch errors in the parental haplotypes are explicitly modeled,
with the switch error rate for each parent inferred by maximum likelihood, enabling the inheritance vectors
to switch at the appropriate rate for the phasing quality of each parent.

ImputePGTA also enables computationally efficient sampling from the full joint posterior distribution
of the inheritance vectors, which can be used to compute posterior distributions of PGSs for embryos. This
enables the propagation of uncertainty to predictions of disease risks (Methods) — including those incor-
porating family history — important for giving properly calibrated absolute and relative risk predictions in
PGT-P. To illustrate PGS inference using ImputePGTA in a realistic setting, we used PGSs for 17 diseases
from a recently published manuscript by Herasight, covering several cancers, metabolic and cardiovascular
diseases, Alzheimer’s disease, multiple sclerosis, inflammatory and autoimmune diseases, glaucoma, and
osteoporosis9 (Methods).

We tested the performance of ImputePGTA in simulations and on downsampled real data from the
Platinum Pedigree43. Two key aspects we aimed to characterize were (1) the effect of switch errors in
the parental haplotypes as described by parameter λ, which describes the rate of single switch errors per
cM (Methods), and (2) the effect of embryo sequencing data coverage. We describe genotype imputation
accuracy in terms of genome-wide dosage correlation and genotype concordance, and the accuracy of PGS
estimated from the imputed genotypes in terms of mean absolute error from the true PGS.

Simulated offspring
We took gold-standard parental phased haplotypes for two parents in the Platinum Pedigree (NA12878
and NA12877) and simulated genetic recombination using sex-specific recombination rates drawn from the
literature44 to produce five simulated offspring (Methods).

To characterize the effect of λ and embryo coverage, we induced switch errors in both sets of parental
haplotypes with λ values ranging from 0cM−1to 1cM−1(recombinations happen with rate 0.01cM−1, so a
switch-error rate of 1cM−1implies switch-errors are 100x as frequent as recombinations), and simulated
sequencing reads on the offspring at a range of coverages spanning those typical for a PGT-A assay, ranging
from 0.002x to 1x. For intuition, ImputePGTA’s performance is constrained by whether, and how quickly, a
switch in the inheritance vector due to a switch error or recombination can be detected given the read data,
both of which are influenced by λ and coverage.

ImputePGTA first infers λ. We observed that our estimates of λ were generally well-calibrated, with a
slight upward bias at higher coverages (Supplementary Figure S1). It then imputes embryo genotypes from
the marginal posterior distributions. We compared the imputed genotypes to the known genotypes of the
simulated offspring at trio-segregating (TS) sites, defined as sites where at least one parent is heterozygous.

Genotype concordance and dosage correlation

Overall, we observed very high accuracies across the range of coverages when λ is low, with performance
degrading as λ increases (Figure 2A, Supplementary Table S1.1). At 0.002x, concordance between the most
likely imputed genotype and the true genotype at TS sites ranged from 97.83±0.11% (mean± standard error)
at λ = 0 to 68.607±0.196% at λ = 1. Similarly, at 0.002x, the genome-wide correlation between the posterior
mean genotype (dosage) and true genotypes at the same coverage ranged from 0.9814 ± 1.152 × 10−3 at
λ = 0 to 0.7412± 1.086× 10−3 at λ = 1 (Supplementary Table S1.1).

Since the parent of origin of an allele in the offspring is ambiguous when both parents are heterozygous,
we observed slightly worse accuracy at TS sites where both parents were heterozygous vs. where only
one parent was heterozygous (Supplementary Table S1.2). An additional benefit of ImputePGTA is that
posterior probabilities for each imputed variant are calculated, enabling one to optionally filter on the
posterior at the variant level to obtain high-confidence subsets of calls (Supplementary Table S1.3).

5



Representative PGT−A coverage
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
00

2
0.

00
4

0.
01

0
0.

02
5

0.
10

0
0.

50
0

1.
00

0

D
os

ag
e 

co
rr

el
at

io
n

A. Imputation accuracy (simulation)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
00

2
0.

00
4

0.
01

0
0.

02
5

0.
10

0
0.

50
0

1.
00

0

B. Imputation accuracy (downsampled)

0.0

0.2

0.4

0.6

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0.
02

5
0.

05 0.
1

0.
5 1

Coverage

P
G

S
 m

ea
n 

ab
so

lu
te

 e
rr

or
 (

S
D

s)

C. Mean absolute error (simulation)

0.0

0.2

0.4

0.6

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0.
02

5
0.

05 0.
1

0.
5 1

Coverage

D. Mean absolute error (downsampled)

Lambda (λ): 0 0.01 0.05 0.1 0.15 0.2 0.4 0.6 0.8 1

Figure 2: In silico experiments. (a) Imputation accuracy as measured by mean genome-wide correlation between
imputed genotype dosages (dosage correlation) and true genotypes across a range of sequence depth (coverage) and a
subset of switch-error rates (λ) in the parental haplotypes for five simulated offspring of the Platinum Pedigree parents.
The red dotted line marks 0.004x, a representative PGT-A coverage. The variously colored points for a given coverage
are jittered for visual clarity. (b) The same for the five real offspring downsampled to various coverages. Standard errors
are small enough to not be visible in these plots. (c) Mean absolute error between the posterior mean PGS and true
PGS in units of standard deviations of the PGS. 95% confidence intervals are shown as whiskers. Averages are across 5
simulated offspring from the platinum pedigree and 17 disease PGSs at each (λ, coverage) combination. (d) the same
as for (c) but for the five real offspring downsampled to various coverages.

Polygenic score accuracy

For each sample, we calculated the posterior mean for 17 disease PGSs and obtained 500 posterior samples
of the PGSs. Figure 2C shows the mean absolute error (MAE) (in units of PGS standard deviations) of the
posterior mean PGS estimate relative to the true PGS. At a typical coverage for ULP PGT-A data (0.004x),
the MAE±SE was 0.09659± 0.01174 when λ = 0.01, rising to 0.4257± 0.03274 when λ = 1.

We computed 95% equal-tailed credible intervals (CIs) of the PGS distributions, which we found to
be reasonably well calibrated, with an average empirical coverage of 89.60% for the 95% CIs across the
parameter space (Supplementary Figure S2). Notably, the CIs were better calibrated at the lower end of
coverage, when uncertainty is greater (the average empirical coverage at read depth 0.01x or less was 92.6%
vs 87.5% for read depth greater than 0.01x). When coverage is high and λ is very low, the CI coverage
decreases somewhat, but with negligible practical consequence as the MAE is extremely low (Figure 2C).

These results indicate that parental phasing quality and embryo sequencing coverage are the two key
parameters that control the expected imputation performance and quality of PGS estimates — if phasing
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performance is expected to be low, then increasing embryo coverage can compensate for this limitation; if it
is expected to be high, then achieving high embryo coverage is less important.

Validation on downsampled gold-standard data

The Platinum Pedigree dataset contains a variant “truth” set including eight offspring of the two parents,
five of which have publicly available high-coverage short read data. We downsampled the short reads
for these offspring to the same coverages as in our simulations, imputed them using ImputePGTA, drew
posterior samples, and computed the same metrics as before (Methods, Supplementary Note).

Since we used the same parental haplotypes for these experiments as we did for the simulated offspring,
we should obtain similar results in terms of imputation accuracy. However, some differences may arise due
to differences from real sequencing data: the masking of reads in technically difficult regions (Methods),
the fact that the simulated offspring were created using the exact genetic map used for inference, and any
remaining genotyping or phase errors in the “truth” set.

We observed results that were qualitatively consistent with results from simulated offspring, with
similarly high imputation accuracy and low PGS MAE, especially when λ was low (Figure 2B, 2D; Supple-
mentary Tables S2.1, S2.2, S2.3). At 0.004x, genotype concordance at TS sites ranged from 96.45%±0.3052%

at λ = 0 to 61.30% ± 0.2771% at λ = 1; the dosage correlation ranged from 0.9705 ± 2.672 × 10−3 at λ = 0

to 0.6736 ± 1.51 × 10−3 at λ = 1. (Supplementary Table S2.1). The MAE in the posterior mean PGS was
0.1776± 0.0246 when λ = 0.01, rising to 0.5100± 0.0409 when λ = 1. The 95% equal-tailed CIs were equally
well-calibrated with an average empirical coverage of 89.9 ± 0.454%, with the same qualitative variation
with changing λ and embryo coverage.

Effect of imputation uncertainty on selection efficacy
The expected gain from embryo selection when the goal is to maximize a quantitative phenotype is the
expected difference between the maximum PGS among a number of embryos compared to the average
when selecting randomly, scaled by the correlation between PGS and phenotype45,46. When the goal is
minimization of disease risk, the expected gain is more complicated to calculate because disease risk is
a non-linear function of PGS and can include complex modeling of family history46 (see Methods for
details on producing posterior distributions of disease risk from posterior PGS distributions). However, the
expected reduction in PGS value when selecting the embryo with the minimum polygenic risk compared to
the average provides a tractable metric that can be interpreted as the reduction in disease liability (as in the
standard liability threshold model) when multiplied by the square root of the liability-scale R2.

The more uncertainty there is in the posterior inheritance vectors, the closer the posterior probability is
to 0.5, the unconditional transmission probability based on Mendelian Laws. Thus, posterior uncertainty
results in shrinkage of the posterior mean towards the expectation given the parents, which does not vary
between embryos and is thus non-informative for embryo selection. We therefore sought to characterize the
impact of posterior uncertainty in embryo PGS values on the expected change in true PGS when selecting
the embryo with the minimum posterior mean PGS compared to selecting a random embryo.

We show that the attenuation in the expected gain for selection on a given trait using imputed PGSs is
equal to the within-family correlation between the imputed and true PGS, which can be estimated from the
posterior and within-family PGS variances (Methods): i.e., the attenuation factor due to imputation is

Aimputed =
E[gainimputed]

E[gain]
=

√
1− E[ν]

σ2
w

= Corr(PGS, P̂GS)

Where P̂GS is the posterior mean PGS, σ2
w is the within-family PGS variance, and E[ν] is the mean PGS

posterior variance in the family. The equality follows because for a fixed number of embryos, the expected
gain scales linearly with the within-family PGS standard deviation46: E[gain] ∝ σw for the true PGS and
E[gainimputed] ∝

√
σ2
w − E[ν] for the imputed PGS, as σ2

w −E[ν] is the within-family variance of the imputed
mean PGS values (Methods) — under unbiased imputation, the ratio of these is Corr(PGS, P̂GS).
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Figure 3: Attenuation of predicted gains due to selection on imputed PGS. The x-axis shows the average gain
(95% CIs), defined as the absolute difference between the selected embryo’s PGS and average PGS in units of PGS SDs
from 100 instances of 5-embryo families with the same parents. The panels show results for three values of λ, the
switch-error rate in parental haplotypes: the value based on empirical results for parents phased with short reads
and long reads, (λ = 0.05cM−1), short reads only (λ = 0.125cM−1), and the highest value analyzed in the in silico
experiments (λ = 1cM−1). For each panel, three results are shown: the first two are the mean gain from two selection
strategies: (a) selection based on true PGS values (blue), and (b) selection based on the imputed PGS values (red). The
third is the theoretical gain predicted by the posterior variances (orange). The difference between the red and blue data
points reflects the actual decrease in expected gains (based on true PGS values) resulting from imputation uncertainty.

While the average within-family PGS variance, E[σ2
w], is half the PGS variance in the population under

random mating47, the within-family variance for a particular family can significantly deviate from this, and
is affected by non-random mating.

The within-family variance for a particular family can be estimated by simulation of meiosis. For
example, for the Platinum Pedigree, within-family variance calculated from 500 simulated offspring (be-
low) ranged from 92.4% of the reference population variance for Alzheimer’s disease to 13.6% for Vitiligo
(Supplementary Table S5.1). The PGS for Alzheimer’s disease has an outsized contribution from the APOE
locus, implying that there can be substantially more within-family variation than the average for families
with one or more parents that are heterozygous for a APOE risk allele (as is the case for the father here). The
PGS for vitiligo, in contrast, shows a substantial correlation between parents9 (0.085, S.E. 0.008) — indicative
of assortative mating and/or population structure — which is expected to reduce within-family variance
as a fraction of total variance. These results show that while theoretical results such as those in Karavani et
al.46 give useful estimates of the expected utility of embryo selection at the population level, they rely on
assumptions such as random-mating and normality of PGSs that often do not hold in practice, with actual
gains for specific diseases in individual families often substantially more or less than expected based on
such results.
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To validate our theoretical result, we simulated 100 batches of 5 offspring genomes from the Platinum
Pedigree parents, each of which represents a possible realization of an IVF cycle (Methods). For each
batch, we induced switch errors in the parents at a rate of λ = 0.05cM−1, 0.125cM−1, or 1cM−1, simulated
reads from the five offspring at 0.004x coverage, imputed them using ImputePGTA, and drew 100 posterior
samples for each of the 17 PGSs. These parameters were chosen as they are representative of the empirical
results from the real PGT-A cases with ULP data later described. The lower value of λ corresponds to results
when both long and short reads are used for parental phasing, the second to when only short reads are
used, and the third to the highest value of λ used in our in silico experiments.

For each trait, we then computed the average gain in true PGS across 100 batches when selecting
based on the true PGS and on the imputed mean PGS. We also computed the theoretical expected gain as
calculated from the posterior variances (Figure 3). The translation of these PGSs to absolute and relative
risk reductions under a standard liability threshold model are shown in Supplementary Figures S3 – S4
(see Methods, Supplementary Tables S5.2-3). We found strong agreement between the empirical gain and
theoretical gain when selecting on imputed PGS values, indicating that the theoretical result is valid and
our posterior variances are well-calibrated. Overall, the attenuation is minor at λ values of 0.05cM−1and
0.125cM−1, with Aimputed = 0.9494 and 0.891 respectively, while at λ = 1cM−1, Aimputed decreased to 0.661,
highlighting the importance of accurate parental phasing. The empirical gain when selecting on the true PGS
ranged from 0.428 for vitiligo to 1.047 SDs for Alzheimer’s disease, reflecting differences in within-family
variance for these PGSs (Supplementary Table S5.1).

Application to real PGT-A data in four families

Family
ID

Children Data type Data source Grandparental
data

Genetic
ancestry

FAM1 1 ULP sequencing (∼0.004x) IGENOMIX Both
grandmothers

European

FAM2 1 ULP sequencing (∼0.004x) IGENOMIX None European

FAM3 2 Genotyping array with ∼800k markers (Affymetrix Axiom
UKB)

Genomic
Prediction

None European

FAM4 2 Genotyping array with ∼300k markers (Illumina
HumanCytoSNP-12)

Natera None European

Table 1: Details of the families for which we obtained both PGT-A data from implanted embryos and high-coverage
WGS data on the born child. The data modality of the PGT-A assay used during the IVF process (either sequencing
or genotyping array) is noted in the “Data type” column — if ULP sequencing, the approximate coverage is noted in
parentheses. The “data source” column indicates the provider that originally performed and delivered the results for
the PGT-A assay. The “Grandparental data” columns indicate which grandparent(s) were sequenced in this study and
used for parental phasing. The genetic ancestries of the parents are noted in the last column.

To validate the performance of our methods (Figure 1) in real world settings, we conducted a study of
four families who underwent IVF where real PGT-A data was generated (Methods), followed by successful
implantation, pregnancy, and live birth (Table 1). This enables us to compare embryo genotypes and PGSs
from applying our pipeline to real PGT-A data to genotypes and PGSs computed from high-quality whole-
genome sequence data from the born children. We analyzed two born children originally assayed using an
ULP sequence-based PGT-A test and four originally assayed using genotyping arrays.

For the two embryos with sequence data, the reads were single-end IonTorrent short reads with an
average read length of 112bp and an average coverage of 0.0046x (Methods). The embryos with array data
were genotyped using two different chips (Table 1).

Each pair of parents was sequenced with both Illumina short reads and Oxford Nanopore long reads at
a target coverage of 30x in order to genotype and phase all detectable SNPs and small indels in the parents,
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including rare variants, using our pipeline (Figure 1) (Methods). The born children were sequenced at high
depth (average 36.6x after deduplication) using Illumina short reads to determine their “true” genotype.

For FAM1, we also sequenced both grandmothers of the born child using short reads (Table 1). Grand-
parental data enables phase resolution at a subset of the heterozygotes in each parent by applying Mendelian
inheritance rules, providing a scaffold atop which statistical phasing and long-read-backed phasing can be
applied. For each embryo, we used ImputePGTA to impute genotypes, PGSs, and to draw 1000 posterior
samples for each PGS.

Whole-genome parental phasing using phaseGrafter

Heterozygotes Inferred λ
phased (switch errors/cM)

Family Parental data type Father Mother Father Mother

FAM1 Short reads, long reads, and both grandmothers 99.95% 99.95% 5.663 × 10−4 1.494 × 10−4

FAM1 Short reads & long reads 99.93% 99.92% 0.03999 0.02835
FAM2 Short reads & long reads 99.96% 99.95% 0.04090 0.03597
FAM3 Short reads & long reads 99.98% 99.97% 0.04560 0.03797
FAM4 Short reads & long reads 99.94% 99.94% 0.05724 0.02545
FAM1 Short reads 89.00% 89.13% 0.1039 0.05459
FAM2 Short reads 92.74% 91.54% 0.1332 0.08604
FAM3 Short reads 95.65% 95.59% 0.1795 0.1870
FAM4 Short reads 95.54% 94.97% 0.1809 0.07500

Table 2: Phasing results. Results of phasing using the described procedure (Figure 1C) on each parent in the set of
families analyzed. We phased each pair of parents once using both long and short reads (the “base case”) and once using
only short reads (denoted in the Family column as “SR only”). Results for FAM1 are shown for when grandparental
data was used to assist in phase estimation (GP) and when omitting it (no GPs). The proportion of successfully phased
heterozygous genotype calls for each individual are shown for each case, as well as the inferred values of λ from
ImputePGTA.

The accuracy of ImputePGTA depends significantly on the phasing quality of the parental haplotypes.
While statistical phasing can be very accurate over short genetic distances, only variants also present in
the reference panel can be phased. Sequencing the parents with long reads enables the phasing of these
omitted rare variants48, in addition to dramatically improving statistical phasing by using long-read-derived
phase sets as prior information49 (Table 2). To unify phase information from these orthogonal sources, we
developed a phasing pipeline that is able to integrate information from statistical phasing and read-backed
phasing from long reads into consistent haplotypes using a novel HMM-inspired dynamic programming
algorithm called phaseGrafter (Methods). This pipeline is also able to integrate grandparental data. The
results of this pipeline are accurate chromosome-level haplotypes for the parents that span both common
and rare variants (Methods). To highlight the added value of long reads, we phased all four sets of parents
once using both short and long read data (the “base case”), and once using only short read (SR) data (i.e.,
using only statistical phasing).

Table 2 shows the percentage of parental heterozygotes phased and the inferred λ for each parent using
each approach. In the base case, we phased an average of 99.95% of heterozygotes across all parents,
while only 93.02% were phaseable using only SRs. The inclusion of long reads also resulted in an average
3.143-fold decrease in λ compared to using SRs only.

While grandparental data is not essential to achieve acceptably low levels of phasing error, it can signif-
icantly improve the results (Methods). For FAM1, where we had sequencing data on both grandmothers,
using grandparental data decreased the inferred switch error rate to ∼0 (Table 2, Figure 4). For this par-
ticular European-ancestry family, we obtained nearly perfect phasing with only one grandparent from each
side of the family — however, for families with ancestries not well represented in the reference panel, having
both pairs of grandparents could be necessary to achieve near perfect phasing.

10



Estimation of embryo genotypes

Embryo Parental data Embryo data type
Genotype

concordance
Dosage

correlation

PGS mean
absolute

error

PGS
posterior
variance

FAM1-1 Short & long reads & both
grandmothers

ULP 0.9882 0.9903 0.06407 0.01129

FAM1-1 Short & long reads ULP 0.9478 0.9603 0.1800 0.04962
FAM1-1 Short reads ULP 0.896 0.9234 0.3133 0.08374
FAM2-1 Short & long reads ULP 0.9515 0.9614 0.1332 0.04016
FAM2-1 Short reads ULP 0.9025 0.9183 0.2210 0.07399
FAM3-1 Short & long reads array 0.998 0.9981 0.03695 1.896 × 10−4

FAM3-1 Short reads array 0.9955 0.9959 0.07323 0.01429
FAM3-2 Short & long reads array 0.9987 0.9987 0.01821 2.859 × 10−4

FAM3-2 Short reads array 0.9974 0.9977 0.07074 0.01503
FAM4-1 Short & long reads array 0.9975 0.9978 0.04028 6.785 × 10−4

FAM4-1 Short reads array 0.9957 0.9964 0.06601 0.002162
FAM4-2 Short & long reads array 0.9976 0.9979 0.02366 0.001824
FAM4-2 Short reads array 0.996 0.9966 0.06670 0.004637

Table 3: Genotype and PGS imputation performance Sample level metrics for imputation and PGS estimation accuracy
for all samples across the families with real PGT-A data. Embryo data type was either ULP sequence data (∼0.004x) or
genotyping array data (Table 1). Imputation accuracy is measured by the genotype concordance and dosage correlation
between the imputed results and the true genotypes at trio-segregating (TS) sites. PGS accuracy is described by the mean
absolute error — defined as the absolute difference from the PGS calculated from high-quality, post-birth genotypes in
units of SDs of the PGS — across 17 disease PGSs. The mean posterior variance on the z-score scale across traits for
each sample is also provided.

Using the same metrics as the in silico experiments, we give results comparing posterior embryo genotype
estimates to high-coverage whole genome sequencing genotypes from the born child (Table 3). For embryos
with ULP sequence data and the base case for parental phasing (short and long reads), the dosage correlation
at all sites where at least one parent was variant from the reference genome was on average 0.9751± 8.711×
10−5, and 0.9608±5.231×10−4 when restricting to TS sites. When using only short reads on the parents, this
was reduced to 0.9508± 2.123× 10−3 and 0.9208± 2.520× 10−3 for all variant sites and TS sites respectively.
These numbers are consistent with results from the downsampled gold standard experiment (Figure 2B).
For embryos with array data, we observed very high imputation accuracy across all embryos in the base case
and when using only short reads — at TS sites, the average dosage correlation was 0.9982 ± 2.021 × 10−4

and 0.9966 ± 3.854 × 10−4, respectively. For FAM1, adding maternal grandparents increased the dosage
correlation at TS sites from 0.9603 to 0.9903 (Table 3).

Figure 4 compares ImputePGTA marginal posterior inheritance vector probabilities from ULP PGT-A
data to those inferred from the high-coverage post-birth data. (Supplementary Figures S5 – S7 shows all
autosomes.) The effect of phasing quality is readily apparent: higher values of λ correspond to a more
frequent switching of inheritance vectors. The more frequently the inheritance vector switches, the harder
it becomes to infer the switches from sparse embryo sequence data, resulting in larger regions where the
posterior probabilities are intermediate, visible in some transitions in the top panel of Figure 4. The closer
the probability is to 0.5, the larger the posterior variance and lower the efficacy of selection (Methods and
Figure 3).

Inheritance of a rare pathogenic variant

As an illustration of the utility of long-read sequencing of parents, which enables imputation of whole-
genome data on embryos — including rare variants — we identified that the father and child in FAM1 carry
a rare pathogenic frameshift variant in VPS13C (NG_027782.1:g.145304dup, rs1315150327), resulting from a
single thymine insertion at chr15:61920162 (GRCh38) (Methods). This variant leads to a frameshift at codon
2461, introducing a premature termination codon and is associated with autosomal recessive early-onset
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Figure 4: Marginal posterior inheritance vectors for FAM1 given different parental phasing strategies. For the off-
spring from FAM1 with ULP PGT-A data, marginal posterior probabilities referencing the estimated parental haplotypes
on chromosome 1 are displayed in black. Probabilities at 0 and 1 indicate inheritance of one or the other of the parents’
estimated haplotypes. A transition from 0 to 1 (or vice versa) indicates an inferred crossover event or switch error. The
thick colored bars show the rounded posterior probabilities obtained from running ImputePGTA on the born child’s
genotypes obtained from high-coverage WGS and reflect a “best-case” estimate for the true inheritance vectors. Top
to bottom: phasing parents using short reads only; short and long reads, but without grandparental data; short reads,
long reads, and grandparental data. The inferred values of λ are shown in each pane. The effect of lower values of λ
(more accurate phasing) can be seen as fewer switches in inheritance vectors need to be inferred accurately from sparse
PGT-A data. Gaps on the x-axis reflect regions of at least 1Mb where no variants were genotyped in the parents.

Parkinson disease50. The variant has an allele frequency of 4.4 × 10−6 in gnomAD v4.151. In the UKB 200k
WGS phased release, only two copies of this allele are observed — at this allele count, statistical phasing
performs extremely poorly52. Our inclusion of long reads on the parents, however, enables us to correctly
impute this variant in the child with posterior probability > 0.999.

Polygenic scores

For 17 disease PGSs, we sampled 1,000 posterior inheritance vectors for each embryo to obtain posterior
distributions (Methods, Figures 5 – 6). We computed the MAE as the mean absolute difference between
the posterior mean PGS and born child’s PGS (Table 3). Generally, the born child’s PGS overlapped with
regions of high posterior density, with some exceptions when posterior uncertainty was very high or very
low — in low uncertainty cases, absolute error was also very low (e.g. psoriasis in the array cases). This
likely reflects aspects of the model that differ from reality as well as limitations due to low read density
when parental phasing quality is lower (e.g. when using short reads only). Genotyping errors in the parents
and/or post-birth offspring could also contribute.

Posterior densities are generally non-Normal, sometimes due to posterior uncertainty at variants with
large weights in the PGS. For example, the mother in FAM4 is a carrier for the APOE-ε4 allele — the long
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Figure 5: Polygenic score estimates for embryos with ultra-low-pass PGT-A data. Across 17 disease PGSs, we give
the difference between the posterior PGS estimates and the PGS calculated from high-coverage data on the born child
in units of PGS standard deviations. The black points give the posterior mean PGS, the whiskers denote the 95%
equal-tailed credible interval, and the posterior densities are given by the intensity of shading. (SR only) indicates
parental haplotypes were produced from short-reads only using statistical phasing. For FAM1, we give results for
parental haplotypes produced using short and long reads, indicated with (no GPs), and for short and long reads with
maternal grandparents (GPs), and for short reads only (SR only). For FAM2, we give results with short and long reads,
and with short reads only (SR only).

right tail in the posterior distribution for Alzheimer’s Disease for FAM4-2 (Figure 6) reflects the uncertainty
in the inherited allele at that locus. This highlights the importance of sampling PGS posteriors for producing
phenotype predictions that account properly for uncertainty in PGS values without making assumptions
that posteriors are normally distributed. We discuss the implications of this in further detail in Methods.

For embryos with ULP sequence data, the MAE was 0.06407 SDs with parental short and long reads and
both grandmothers (FAM1 only), 0.1566 SDs with short and long reads, and 0.2672 SDs with short reads
only. In the base case, 88.2% of the estimated 95% CIs covered the true value of the PGS across the two
embryos and traits.

As expected, the PGS estimates for embryos with genotyping array data are more accurate, achieving
an MAE of 0.02977 SDs (0.06917 SDs when using only parental short reads). To contextualize this, we
also calculated the PGSs from the embryo array data after applying reference-based imputation using a
reference panel of 200k haplotypes (Methods, Supplementary Table S4.6). Array data plus reference
based imputation is the most common approach used in academic research, and often involves using a
much smaller reference panel. Error in PGS estimates as a result of reference-based imputation has been
previously described26,53, but remains underappreciated54. We found that the reference-imputed PGS MAE
was 0.2637 and 0.1741 for the embryos genotyped using the Illumina HumanCytoSNP-12 (∼300k SNPs)
and Axiom UKB Array (∼800k SNPs), respectively — substantially higher than the MAE from our method
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Figure 6: Polygenic score estimates for embryos with genotyping array data. Across 17 disease PGSs, we give
posterior PGS estimates in units of standard deviations from the PGS calculated from high-coverage data on the born
child. The black points denote the posterior mean PGS, the whiskers denote the 95% equal-tailed credible interval, and
the posterior densities are given by the intensity of shading. (SR only) indicates parental haplotypes were produced
from short-reads only using statistical phasing. The last four rows show the error of PGS estimates from the results of
reference-based imputation.

applied to the embryo array data using parental short reads only (0.0692), and intermediate between the
MAE from our method applied to ULP embryo data with parental short reads only (0.2672) and parental
short and long reads (0.1566). This suggests that our PGS estimates achieve comparable accuracy to those
derived from standard approaches applied to samples in academic human genetics research, with the added
benefit of providing posterior uncertainties.

The largest estimated mean posterior variance across traits was for FAM1 with short reads only: assuming
a within-family PGS variance of 0.5, this corresponds to an attenuation factor of 0.9124. For the embryo with
the lowest mean posterior variance (FAM3-1), this factor is 0.9998, indicating effectively no loss in selection
power. However, these estimates are probably somewhat over-optimistic due to imperfect calibration of
posterior uncertainty in real data.
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Discussion
Preimplantation genetic testing for aneuploidy (PGT-A) has become routine in contemporary IVF, with
ultra-low-pass whole-genome (ULP) sequencing of trophectoderm biopsies deployed to identify embryos
carrying chromosomal abnormalities. Although conceived as a single-purpose ploidy screen, PGT-A data
has recently been repurposed for broader genomic discovery: for example, two recent studies28,29 used ULP
data from tens of thousands of embryos that underwent PGT-A to perform genome wide association studies
on reproductive phenotypes. Yet, beyond these retrospective, population-level studies, PGT-A data have
not been used for individual level embryo genotyping and any resulting implantation decisions during IVF.
Here we show that the very same ULP data can be used to reconstruct the autosomal diploid genome of each
embryo (excluding de novo variants), transforming a routine ploidy test into a comprehensive genotyping
platform.

PGT-A data has been overlooked for applications other than its primary purpose because the assay’s
ultra-sparse nature (∼0.002x-0.006x) is orders of magnitude lower than required for accurate genotyping
from conventional methods. While low-pass sequencing followed by imputation has become increasingly
common as a replacement for genotyping arrays in population studies36,55, the target coverage of such
assays (typically 0.1-1x) is two orders of magnitude higher than that generated in ULP PGT-A sequencing
and typically does not produce accurate individual-level genotypes53.

Our results show that when parental data is available, ULP PGT-A data can be used to obtain highly
accurate embryo genotypes, with accuracy depending on the coverage of the embryo and the phasing quality
of parental haplotypes. For trio-segregating sites, our approach achieves genotype dosage correlations of
0.9903 (when compared with high-quality, post-birth genotypes) when parents are phased using short and
long reads in addition to grandparents, 0.9608 when grandparents are not available, and 0.9209 with only
short reads (Table 3). Less commonly, PGT-A is performed using genotyping array data — which presents a
less challenging problem for imputation — where our method achieved very high dosage correlation (>0.996)
for all parental data types, higher than comparable existing methods10. We show that the attenuation in the
efficacy of embryo selection due to posterior uncertainty is small when parental haplotypes are accurately
estimated, with only a ∼5-10% reduction in expected gains, depending on whether both short and long
reads are used for parental phasing.

Large ancestry-specific reference panels are becoming increasingly prevalent56–58, yet are still not as
readily available as predominantly European ancestry reference panels. For parents with ancestries well-
represented in the reference panel, our method applied to ULP PGT-A data performs well enough for embryo
polygenic scoring and selection when using statistically phased parental haplotypes derived from short
reads only. For ancestries not well represented in the reference panel, the utility of parental long reads and
grandparents increases. When even these data are not available, increased coverage from PGT-A sequencing
data can compensate for lower quality parental phasing (Figure 2). Especially when the phasing quality of
parental haplotypes is suboptimal, substantial posterior uncertainty can persist in embryo polygenic scores,
highlighting the importance of propagating this uncertainty (Figures 5 – 6) into disease risk predictions
(Methods).

Long reads additionally allow us to accurately impute rare variants that may not be present in a reference
panel, which cannot be imputed using standard methods. We illustrate the power of this approach by
detecting the presence of a rare pathogenic frameshift mutation in the father of one of the real PGT-A cases
analyzed and accurately imputing it in the embryo even when no reads covered the site.

Our method bridges the gap between existing, widely-used laboratory workflows for PGT-A and the
comprehensive genome-wide data required for PGT-P and detection of pathogenic rare variants, lowering
the technological barrier to adoption of polygenic embryo screening and rare variant analyses in assisted
reproduction.

15



Methods

The ImputePGTA model
ImputePGTA is a HMM used to impute offspring genotypes and PGSs from phased parental data and ULP
sequence (or genotyping array) data on the offspring For each informative locus (where an informative
locus is defined as those where at least one parent is heterozygous and at least one sequencing read
maps for the offspring) l = 0, 1, . . . , L, the hidden state of offspring j = 1, . . . , N is the inheritance vector
Ij [l] = (Ipj [l], Imj [l]) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, where Ipj [l] (resp. Imj [l]) indexes the paternal (resp.
maternal) haplotype whose allele is transmitted. At each position l, genotype data (either sequence reads
or genotype calls) on embryo j = 1, . . . , N is emitted: {Glj}Nj=1. Based on Mendelian laws, the four possible
values have equal prior probability, 1/4. We make the Markovian assumption that Ij [l + 1] is conditionally
independent of Ij [l′] given Ij [l] for l′ < l.

The true parental haplotypes are denoted by P and M, and the estimated haplotypes are denoted as
P̂, M̂ ∈ [0, 1](L+1)×2. We assume the genotype calls are correct (or that the probabilities are accurate)
but that the phasing may be incorrect. We account for switch errors by using a Baum–Welch algorithm to
obtain maximum likelihood estimates of the paternal and maternal switch-error rates, λpcM

−1 and λmcM−1.
Given these parameters, we can obtain marginal posterior distributions over the inheritance vectors at each
informative locus using the Forward-Backward algorithm59.

Putting λ in context

In the literature, switch errors are typically quantified using the switch error rate (SER), which is the
proportion of pairs of consecutive heterozygotes that are incorrectly phased. Switch errors can be further
decomposed into type: a single switch error (SSE), in the words of Browning, is a switch error that is
not “immediately preceded or followed by another switch error”, whereas a flip error (FE) is when two
consecutive switch errors occur60. A phase error is either a SSE or an FE. For ImputePGTA, it is primarily
single switch errors that matter, as these result in long stretches of flipped alleles following a single switch;
flip errors manifest merely as a few discordant sites where the flips occurred. Given the sparsity of the
embryo data, these double switches are typically undetectable from the embryo data, so λ can be interpreted
as measuring primarily the number of single switches that occur per cM.

Expected single switch-error rates in real data

Modern statistical phasing methods applied to the microarray genotypes in the White British cohort in the
UK Biobank result in phase error rates equivalent to λ ≈ 0.03 (60). However, this represents a best-case
scenario, as this estimate derives from common variants on the UK Biobank (UKB) Axiom Array using a
reference panel where the ancestry is well-represented. Phasing quality degrades with decreasing minor
allele count in the reference panel and for poorly-represented genetic ancestries; as such, statistical phasing
performance is highly dependent on the the reference panel used52,61.

For individuals whose ancestries are not well-represented in readily available reference panels, long read
and/or grandparental data can be collected in order to make up the difference42.

Estimation of polygenic scores

In the context of PGT-P, the statistics of interest for an embryo are their polygenic scores, which are functions
of the inheritance vectors. While the posterior mean PGS can be calculated from the marginal posterior
decoding produced by the Forward-Backward algorithm, this does not give any information on posterior
uncertainty in the PGS. We therefore sample inheritance vectors from the full joint posterior of Ij in O(L)

time, enabling efficient Monte Carlo estimates of any functional f(I), such as a PGS.
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Prediction of phenotypes and disease risks

Let Yj be the phenotype of embryo j for a quantitative phenotype Y . Assuming a simple linear phenotype
model based on a PGS, i.e., Yj = rPGSj + ϵj , where ϵj is an independent error term, the predicted offspring
phenotype is a simple linear function of the imputed mean offspring PGS:

E
[
Yj |P̂, M̂,R

]
= rE

[
PGSj |P̂, M̂,R

]
,

where E[PGSj |P̂, M̂,R] is the posterior mean PGS, which can be computed through posterior decoding
without needing to sample from the joint posterior distribution over inheritance vectors.

A posterior distribution over the offspring phenotype can be computed by sampling inheritance vectors
(above). The target is the conditional density of Yj given the estimated parental haplotypes and offspring
reads:

f
(
Yj |P̂, M̂,R

)
=
∑
Ij

f (Yj |PGSj)P
(
Ij |P̂, M̂,R

)
,

where we have marginalized over the possible offspring inheritance vectors, PGSj is a function of P̂, M̂,
Ij , and f(Yj |PGSj) is the density of the phenotype distribution conditional on the PGS, e.g., Yj |PGSj ∼
N (rPGSj , 1 − r2). As there are 22(L+1) possible inheritance vectors, it is not practical to evaluate this
sum directly. We can instead use samples from the posterior distribution over the inheritance vectors,
P(Ij |P̂, M̂,R), to produce a Monte-Carlo estimate of the posterior predictive distribution. Sample Imj from
P(Ij |P̂, M̂,R) for m = 1, . . . ,M , then

f
(
Yj |P̂, M̂,R

)
≈ 1

M

M∑
m=1

f
(
Yj |PGSj

(
P̂, M̂, Imj

))
where the PGS for the mth sample is computed using the mth sampled inheritance vector.

For disease prediction, the probability an offspring develops a disease is usually modelled as a non-linear
function of the offspring PGS — for example, using a liability threshold model, potentially including family
history and parental PGS — implying that the disease probability is not a linear function of the posterior
mean PGS. Let Dj be the event that embryo j develops the disease. We assume that P(Dj |P̂, M̂,R, Ij) =

P(Dj |P̂, M̂,PGSj), i.e., the disease probability model only depends on the inheritance vector and reads
through the PGS. Then the posterior probability of disease is

P
(
Dj |P̂, M̂,R

)
=
∑
Ij

P(Dj |P̂, M̂,PGSj)P
(
Ij |P̂, M̂,R

)
,

which can be approximated using samples from the posterior distribution of the inheritance vector:

P
(
Dj |P̂, M̂,R

)
≈ 1

M

M∑
m=1

P
(
Dj |P̂, M̂,PGSmj

)
,

where PGSmj is the PGS computed from the mth inheritance vector sampled from the posterior.

Expected attenuation of selection efficacy when using imputed PGS
Here we derive an expression for the expected attenuation of selection efficacy as measured by the relative
expected gain when selecting the lowest-risk embryo using posterior mean PGSs compared to when the
true value of the PGS is known.

Assuming normality, Karavani et al.46 show the expected gain from selecting the embryo with the
max PGS value, maxj PGSj for j = 1, . . . , N , is proportional to the within-family PGS standard deviation
(although they do not make this explicit):

E[gain] ∝ σw
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where σ2
w = Varj(PGSj) is the within-family variance of the PGS. This is because the expected max of an

IID sample from a Normal scales in proportion to the SD.
In the context of ImputePGTA, the PGS of each embryo j = 1, . . . , N is estimated by the posterior mean:

P̂GSj = E[PGSj |P̂, M̂,R], where P̂, M̂ are the estimated parental haplotypes, and R represents embryo
reads. When using P̂GSj to select an embryo, the gain is equal to the expected true PGS value of the embryo
with the maximum imputed PGS value. Since the posterior mean PGS gives the expected value of true PGS
for that embryo, the expected gain from selecting the embryo with the maximum imputed PGS value is
simplymaxj ˆPGSj . Thus the expected gain is the expected max of the imputed PGS values, which, assuming
normality, scales in proportion to the within-family SD of imputed PGS values: σ̃w = SDj( ˆPGSj).

From the law of total variance, we have that

σ2
w = E

[
Var(PGS | P̂, M̂,R)

]
+Var

(
E[PGS | P̂, M̂,R]

)
.

We can write the first term on the RHS as E[ν], which denotes the average variance of the PGS posterior
distribution for the embryos, which in practice we can obtain through sampling as described above, and the
second term on the RHS is the within-family variance of ˆPGSj = E[PGSj |P̂, M̂,R]. Then we can write σ̃2

w

as:
σ2
w = E[ν] + σ̃2

w =⇒ σ̃2
w = σ2

w − E[ν].

Thus, when selecting on P̂GSj , the expected gain is

E[gainimputed] ∝ σ̃w =
√
σ2
w − E[v],

The relative gain that is obtained by selecting on the posterior mean PGS compared to selecting on the
true PGS, i.e. the attenuation factor, can then be written as the ratio of the gains and plugging in the results
from above:

Aimputed =
E[gainimputed]

E[gain]
=

σ̃w

σw
=

√
σ2
w − E[ν]
σw

=

√
1− E[ν]

σ2
w

.

This ratio simplifies to
√

1− 2E[ν] for σ2
w = 1/2, the expected value of within-family PGS variance in a

random-mating population with total PGS variance 1.
We now relate this to the within-family correlation between true PGS and imputed PGS:

Covj(PGSj , P̂GSj) = E[P̂GSjPGSj ]− E[P̂GSj ]E[PGSj ]

= E[E[PGSjP̂GSj | P̂, M̂,R]]− E[P̂GSj ]E[E[PGSj | P̂, M̂,R]]

= E[P̂GSjE[PGSj | P̂, M̂,R]]− E[P̂GSj ]
2

= E[P̂GS
2

j ]− E[P̂GSj ]
2

= Var(P̂GSj) = σ̃2
w

=⇒ Corr(PGSj , P̂GSj) =
σ̃2
w

σ̃wσw
=

σ̃w

σw
.

Thus, the attenuation is equal to the within-family correlation between the true and estimated PGS.

In silico experiments
A description of the Platinum Pedigree data used for the simulations and in-silico downsampled offspring
data is available in Supplementary Note. Briefly, we used a family comprising parents (NA12878 and
NA12877, both of European ancestry) and five children (NA12879, NA12881, NA12882, NA12885, and
NA12886) for which raw high-coverage short read sequence data and a highly validated phased truth-set
comprising SNPs and small indels is publicly available.
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Simulating offspring and sequencing reads

Simulated offspring genotypes were generated from the phased VCFs for the parents, NA12878 and
NA12877, using a genetic recombination model. For each offspring, crossover events were simulated
following a Poisson process with rates determined by sex-specific genetic maps44, and offspring genotypes
were determined given the transmission of haplotypes implied by the crossover events after first selecting
an initial haplotype to transmit. This process was repeated to simulate 5 independent offspring.

Sequencing reads were then simulated from the offspring genotypes using a Poisson sampling process.
For each variant site in each simulated offspring, the number of reads was drawn from a Poisson distribution
with a rate equal to the target coverage level (ranging from 0.002x to 1x). When reads were present at a site,
each read randomly sampled one of the two parental haplotypes with equal probability. Read errors were
introduced by randomly changing the true base to one of the other three nucleotides with probability 0.001
(corresponding to Q30 base quality). All reads were assigned fixed Phred-scaled base quality scores of 30,
representing high-quality reads.

Simulating switch errors in parental haplotypes

Phasing switch errors were introduced into the parental haplotypes using a Poisson process model. For
each parent, haplotype data was processed chromosome-wise using sex-specific genetic map positions from
the literature44. Switch error events were sampled at each variant position by drawing from a Poisson
distribution with a rate equal to the genetic distance (in cM) between consecutive variants multiplied by λ,
the specified error rate parameter. Here, λ can be interpreted as the expected number of switch errors per
cM. Switch events occurred when the Poisson draw was odd. Once a switch error was introduced at a given
position, all subsequent variants on that chromosome had their haplotype phases inverted until the next
switch event occurred, thus modeling the propagation of phasing errors that persist along chromosomal
segments. We introduced switch errors at the following rates (λ): 0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.4, 0.6, 0.8, 1.0.

Generating downsampled short read data for real offspring

To characterize the empirical performance of our imputation method from ultra low pass sequencing data,
we downsampled the publicly available high coverage BAMs of the offspring to the following coverages:
0.002x, 0.004x, 0.006x, 0.008x, 0.01x, 0.025x, 0.05x, 0.1x, 0.5x, 1x using sambamba view -s62.

Imputation and evaluation of simulated reads and downsampled offspring data

For both the simulated and downsampled experiments, we ran ImputePGTA with either simulated or real
reads as the data input for the offspring. As previously described, first, parent-specific switch error rates
(λp, λm) were estimated from the parental haplotypes, the offspring reads, and a genetic map from the
literature44 using a Baum-Welch algorithm; these estimated values were then used in the inference step,
where inheritance vectors were estimated and offspring genotypes are imputed.

Imputation accuracy was evaluated using the dosage correlation coefficient as well as genotype concor-
dance. The dosage correlation coefficient is computed as the correlation between the dosage in the imputed
VCF and the numeric genotype (i.e., 0, 1, 2) in the truth VCF. We also evaluated accuracy at “trio-segregating”
(TS), defined as sites where at least one parent is heterozygous, the only sites that vary between siblings
other than by de novo mutation.

Selection efficacy experiment

To characterize the attenuation of expected predicted gains when selecting on the basis of imputed PGS
values versus selecting based on true PGSs, we simulated 500 offspring from the Platinum Pedigree parents
used in the experiments described above and calculated PGSs for them. We simulated reads at a coverage
of 0.004x for each offspring. We then grouped these simulated offspring into 100 batches of 5 embryos each.
For each batch, we then simulated estimated parental haplotypes by inducing switch errors at λ = 0.05,
0.125, and 1.
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The results of this procedure for each value of λ represents 100 realizations of embryo batches and
estimated parental haplotypes under parameter combinations reflecting the real PGTA cases with ULP
sequence data. We used ImputePGTA to impute the offspring genotypes from the simulated read data, and
calculated the posterior mean PGS for the 17 traits for each offspring directly from the dosages resulting
from posterior decoding. We also drew 100 posterior samples for each imputed offspring and calculated
the PGS posterior variance.

We then simulated the process of embryo selection using two strategies: (a) selecting based on the lowest
true PGS, and (b) selecting based on the lowest imputed PGS. For each batch of five embryos, we calculated
the predicted gain as the difference between the true PGS of the selected embryo and the mean of the true
PGSs within the five embryos in the batch. We also calculated the mean posterior variance per trait across
all 500 embryos for each λ value as well as the true within-family PGS variance to obtain the predicted
attenuation factor.

To translate these PGSs onto the risk scale, we used the disease prevalences and liability-scale R2
l values

from Moore et al. 20259 (Supplementary Tables S5.2-3). We used the standard liability threshold model
for disease where disease liability L is modeled as L = G + E where G represents the genetic component
distributed as G ∼ N(0, R2

l ), E represents the environmental component distributed as E ∼ N(0, 1 − R2
l ),

and G and E are assumed to be uncorrelated. For a binary disease trait with population prevalence K, the
liability threshold T is defined as T = Φ−1(1 − K) where Φ−1 is the inverse standard normal cumulative
distribution function. The probability of disease (i.e., the absolute risk, or AR) for an individual with
standardized PGS value g is then given by

P (disease | PGS = g) = Φ

(
gRl − T√
1−R2

l

)
.

The absolute risk reduction for a given embryo in a batch is then the difference between its absolute risk
AR and the mean absolute risk across embryos within the batch AR. The relative risk reduction (RRR) for a
given embryo in a batch of embryos is thenRRR = (AR−AR)/AR. The absolute and relative risk reductions
corresponding to the PGS-scale expected gains in Figure 3 are shown in Supplementary Figures S3– S4.

Parental phasing in real data
Statistical phasing of variant calls is generally quite accurate; however, only variants that are present in a
reference panel can be phased. An orthogonal approach is read-backed phasing, which uses direct read
evidence (such as from long reads) to establish phase, allowing phase estimation at all heterozygotes with
sufficient spanning reads48. However, even using modern long read technologies, this results in only
multiple disjoint phase sets (i.e., blocks of phased heterozygotes) that do not span full chromosomes; for
example, for one of the real-world cases (FAM1), long read prephasing using high-coverage ONT long reads
with whatshap48 on chromosome 1 for the father resulted in phase resolution at >99.9% of all heterozygotes,
but contained within 417 disjoint phase sets, meaning that while phase was locally resolvable for these
variants, there was insufficient information to link these individual phased blocks together to achieve
chromosome-level haplotypes.

Thus, in order to generate chromosome-level haplotypes for the parents that span both statistically phased
common variants and long-read-phased rare variants, we used a combination of methods (Figure 1C). At a
high level, the process is as follows:

1. Mendelian scaffolding (i.e., inferring phase using Mendelian laws) using grandparental data (when
available) at heterozygotes resolvable by Mendelian inheritance laws.

2. Statistical phasing using SHAPEIT463 with the scaffold (when grandparental data was available) option
and the phase set option to phase common variants.

3. Read-backed phasing using ONT long reads with whatshap to obtain independent phase sets contain-
ing both common and rare variants with locally resolved phase.
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4. A novel HMM-inspired dynamic programming algorithm we call phaseGrafter to combine the results
from (2) and (3) into single unified haplotype estimates spanning both common and rare variants by
“grafting” phase sets generated using long reads atop a scaffold of common variants.

For all parents, we used long read data for phasing purposes only, and relied on the short read variant calls
for the genotypes. For each sample, we pre-phased and generated phase sets by using Oxford Nanopore long
reads whatshap v2.648 to phase the short read VCFs, resulting in locally resolved phase sets of heterozygotes.

Statistical phasing

We used SHAPEIT4 v4.2.2 to statistically phase the common variants present in each parent, incorporating
Mendelian scaffold and long read phase sets as priors when available.

We used a reference panel of synthetic haplotypes generated using RESHAPE64 that is based on the phased
reference panel previously generated52 for the UK Biobank 200k WGS release. We subset to variants with
MAF ≥ 0.1% prior to creating the synthetic haplotypes in order to control computational cost. The result
of this is a common variant scaffold containing chromosome-level estimated haplotypes, but limited only to
common variants overlapping the reference panel used.

Rare variant phasing and phaseGrafter

The output of SHAPEIT4 is a set of statistically phased chromosome level haplotypes for each parent.
However, statistical phasing can only resolve variants which are also present in the reference panel used
— across the parents of the four families, ∼ 7% of heterozygotes remain unresolved in the parents after
statistical phasing due to their absence in the reference panel. On the other hand, prephasing has no such
limitation, and heterozygotes can be phased where reads span at least two heterozygous variants. The
limitation here is instead the disjoint nature of the phase sets, where two independently resolved sets of
heterozygotes have internally resolved phase, but the phase relation between them is unclear.

We integrate these two sources of phase information using a novel HMM-inspired dynamic program-
ming approach called phaseGrafter which “stitches” phase sets generated using whatshap onto the phased
common variant scaffold output from statistical phasing (e.g. SHAPEIT4), resulting in unified haplotypes
that retain the chromosome-scale consistency of the statistical scaffold at common variants while extending
the phasing to rare heterozygotes carried by the individual.

The basic idea behind phaseGrafter is that most variants phased in one dataset will also be phased in in
the other dataset. For each local haplotype in the read-derived phase sets, one can then compare the relative
orientation of the phase estimates in the overlap and deduce the most consistent internal orientation of the
heterozygotes within the phase set with respect to the scaffold, after which each heterozygote in the phase
set which is not in the intersection can be grafted onto the scaffold accordingly.

Using this method, we are able to resolve the phase at > 99.9% of heterozygous sites in the parents in
the base case (phasing using short and long read data) after applying phaseGrafter, thus enabling whole-
genome reconstruction of both common and rare inherited variation within offspring. Supplementary
Table S4.3 contains the variant counts in the parents in addition to the number and percentage that were
phased in each scenario.

Polygenic scores
We calculated PGSs for 17 disease traits described in a recent manuscript from Herasight9: Alzheimer’s
disease, atopic dermatitis, basal cell carcinoma, breast cancer, glaucoma, gout, hypertension, inflammatory
bowel disease, melanoma, multiple sclerosis, osteoporosis, prostate cancer, psoriasis, testicular cancer, Type
2 diabetes, venous thromboembolism, and vitiligo. These PGS have nonzero weights at ∼ 7.3M variants
across the autosomes.

To calculate ancestry-adjusted PGS for a given individual, we first computed the PGS for each sample in
the HGDP + 1KG dataset65 using the plink2 --score function66.
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Using these individuals embedded in a common genetic PC space, we then fit per-trait linear models for
the PGS conditional mean and residual variance on the first four PCs, then mapped each posterior sample
from the target individual into this space and z-standardized the raw scores using the predicted mean and
variance.

The results of this procedure are ancestry-adjusted standardized PGS for each posterior sample.

Real PGT-A Cases

Recruitment of participants and sample collection

We recruited four families to validate ImputePGTA. The parent participants recruited were informed about
the study through their IVF clinic and enrolled under two approved IRB protocols (Solutions IRB protocol
ID 0448 and Pearl IRB protocol ID 2025-0250). Informed consent in each case was obtained from both
participating parents, and parental consent was obtained on behalf of the born child. For the family where
grandparental data was obtained, consent was also obtained from the relevant born child’s grandparents.
Supplementary Table S4.7 shows the details of the families. FAM3 and FAM4 both had two children
for which we obtained both the PGT-A and born child high coverage read data. The parents underwent
genomic sequencing using both Oxford Nanopore Technologies (ONT) long-read sequencing and Illumina
short-read sequencing. The grandparents (if applicable) as well as the born child were sequenced using
Illumina short-read sequencing.

To generate long-read data for the parents, whole blood was self-collected at home using the Tasso+
device with an EDTA microtainer tube. Genomic DNA from blood was extracted with the Qiagen Puregene
Blood Kit following the manufacturer’s instructions. Libraries were prepared with the Oxford Nanopore
Technologies (ONT) Ligation Sequencing Kit and run on a PromethION P2.

To generate short-read data for the born children, grandparents, and parents, self-collection was per-
formed to obtain either buccal epithelial cells, using the iSWAB-DNA-250 kit, or saliva, collected with
GeneFiX or Oragene DX kits. For short-read sequencing, libraries were prepared with Illumina DNA Prep
and sequenced on an Illumina NovaSeq X+ at Eurofins Clinical Enterprise (Louisville, KY).

The realized short read WGS coverages for aligned and deduplicated reads for the father, mother, and
grandparents if applicable are tabulated in Supplementary Table S4.7; the average coverage for short reads
achieved for the parents and grandparents was 49.9x and the average coverage of the born children was
36.6x. For the parental long-read sequencing, the average coverage was 34.0x for the long reads with an
average N50 of ∼ 26kb. Per-sample coverages can be found in Supplementary Table S4.7.

With assistance from the parents, we obtained the original PGT-A data used for screening during the
IVF from the original data providers as described below.

Data methods for WGS samples

Alignment and variant calling

For the short reads, we aligned them to GRCh38 (obtained from ftp://ftp.ncbi.nlm.nih.gov/genomes/all/G
CA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405
.15_GRCh38_no_alt_analysis_set.fna.gz) using bwa-mem2 v2.3. Long-read sequencing data for the parents
were aligned to GRCh38 using the epi2me wf_human_variationworkflow v2.6.

The short read alignments were processed using a multi-step variant calling pipeline. For FAM1 and
FAM2, we processed the mother, father, and born child using DeepTrio v1.9.0 for pedigree-informed variant
calling. Joint genotyping of the trio gVCFs was then performed using GLnexus to produce a consolidated
trio VCF. All variants were normalized using bcftools norm to split multi-allelic sites, filtered to retain only
autosomal sites with non-missing genotype calls across all trio members. A further filtering step was done
to retain only sites where both parents had confident genotype calls (GQ≥30). Individual sample VCFs
were extracted from the joint-called trio VCF. For the grandparents in FAM1, we generated single-sample
VCFs using DeepVariant v1.9.0.
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For FAM3 and FAM4, we generated single-sample VCFs for the parents and the two born children
using DeepVariant v1.9.0. The same filters as for FAM1 and FAM2 were applied. The number of called
heterozygous variants passing filters for each parent are tabulated in Supplementary Table S4.3.

Embryo PGT-A data

PGT-A data was obtained from the original data provider with assistance from the parents for the embryos
corresponding with the born child(ren). The data processing steps for embryo ULP sequence and array data
are described below.

Embryo ULP sequence data

For FAM1 and FAM2, the embryo data obtained was ULP sequence data in the form of a BAM file containing
single-end reads aligned to hg19. For these samples, the PGT-A assay was performed using the Ion ReproSeq
PGS Kit (Next Generation Sequencing) for 24 chromosome aneuploidy screening (Thermo Fisher Scientific,
USA). The kit/assay was performed on the Ion Chef and Ion S5 System instruments (Thermo Fisher Scientific,
Inc, MA, USA). Data analysis was performed with Ion Reporter software (IRv5.16) (Thermo Fisher Scientific,
USA).

We reverted the BAMs to FASTQs using samtools and re-mapped the reads using bwa v0.7.18 before
feeding the reads into ImputePGTA.

After alignment, we mark duplicates using samtools markdup and calculate the pileup using samtools
mpileup, restricted to the set of sites at which at least one parent was variant and reads where the mapping
quality (MQ) is ≥ 10. We only take into account single bases and thus only SNV variant sites are modeled
as having observed data (reads at indels in the parents are ignored). For multi-allelic sites in the parents as
well as sites which are covered by more than one read in the embryo, we model these as additional states in
the HMM separated by a nonzero but negligible genetic distance (in principle, multiallelic variants should
be explicitly modeled, but we find that this heuristic works well in practice). These reads after quality score
recalibration (described below) are used as the input data for the embryos in ImputePGTA as described in
the main text.

Embryo genotyping array data processing

For FAM3’s children, the assay used for PGT-A was the Axiom UK Biobank Array67 with ∼ 800k SNPs. The
data was obtained from the original provider, Genomic Prediction, in the form of VCFs with variant calls on
hg19. We lifted these over to GRCh38 using Picard68 and these VCFs were used for input to ImputePGTA.
The VCFs obtained from Genomic Prediction did not contain variant-level quality scores.

For FAM4’s children, the assay used for PGT-A was the Illumina HumanCytoSNP-12 BeadChip69 with
∼ 300k SNPs. The data was obtained from the original provider, Natera, in the form of IDAT files. We first
converted these to GTC format using the Illumina Array Analysis Platform Genotyping Command Line
Interface70 followed by conversion to VCF on GRCh38 using the gtc2vcf plugin for bcftools71.

For each family, the genotype calls in the embryos at variants overlapping with the parental genotype
calls are then used as the input to ImputePGTA after quality score recalibration as described below is
applied.

We also imputed these arrays to the UKB reference panel used for parental phasing. Briefly, we pre-
phased the original VCFs using SHAPEIT552, followed by imputation using IMPUTE572. We filtered to sites
called in the truth VCFs and calculated PGSs using the approach previously described.

Base/genotype quality score recalibration

We recalibrated call quality using an embryo-stratified, quantile-based empirical approach. For the se-
quencing data, Phred-scaled base qualities Q were converted to error probabilities as p = 10−Q/10. For array
data, we used the genotype qualities (the FORMAT/IGC field for IDAT VCF outputs); scores were treated as
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accuracies and converted as p = 1 − qual. For FAM3’s embryo array data, the VCFs we received did not
contain genotype qualities; as such, we assumed a conservative qual = 0.95 for all sites.

Within each embryo, sites were partitioned into five quantiles of the raw quality score; a single stratum
was used if the score had zero variance (e.g., if quality scores are not available, one could choose to assume
a fixed quality score at all sites). At Mendelian-informative sites where both parents were homozygous for
the alternate allele, we defined an error as follows. For sequencing, an error was defined as a read base
that was not equal to the alt allele at that site. For arrays, an error was defined as a genotype call on the
embryo that was not homozygous for the alternate allele. For each embryo-quantile stratum we estimated
the observed error rate using Laplace smoothing and compared it with the mean predicted error (based on
the uncalibrated scores) in the same stratum.

We adjusted each call’s error probability on the logit scale by adding a shrinkage-weighted offset equal
to the difference between observed and predicted logit error rates:

logit(p′) = logit(p) + w (logit(ê)− logit(p̄))

where w = n/(n + τ). Here, p is the call’s predicted error probability, ê is the stratum’s observed error
rate, p̄ is the stratum’s mean predicted error, τ = 30 is a hyperparameter that controls shrinkage toward no
adjustment. and n is the number of variants in the stratum. When per-embryo strata were sparse or missing,
we used quantile-level estimates aggregated across embryos in the same family. Adjusted probabilities were
transformed back to the original scales: Q′ = −10 ∗ log(p′) for Phred base qualities and qual′ = 1 − p′ for
genotype quality.

Evaluation of genotype imputation accuracy

There are regions of the genome known to be technically difficult due to segmental duplications and low-
mappability regions, high/low GC regions, tandem repeats, and difficult XY regions. All comparisons were
therefore evaluated after applying a custom mask on the genome. Namely, we first mask technically difficult
regions of the genome73, defined in the BED file found here: https://ftp-trace.ncbi.nlm.nih.gov/Refere
nceSamples/giab/release/genome-stratifications/v3.5/GRCh38@all/Union/GRCh38_notinalldifficultr
egions.bed.gz, before adding back any variants in the masked regions that were statistically imputed. In
sum, this equates to masking out any rare variants within technically difficult regions. For the scenarios in
which we only used short reads for phasing, no sites were masked (i.e., all sites that could be statistically
phased were used). Across the base case phasing results, an average of 2.56% sites across the four families
were masked as a result of this procedure. We ignored sites with Mendelian errors in the born child when
evaluating.

Genotype imputation accuracy was characterized by (1) the dosage correlation between the imputed
dosage at each site and the numeric genotypes in the born child VCFs and (2) genotype concordance, the
proportion of imputed hard genotype calls concordant with the genotypes in the born child VCFs. Results
are presented primarily for sites that are segregating within the trio (i.e., sites where at least one parent is
heterozygous), as these are the sites where the inherited genotype is not known a priori based on Mendelian
inheritance laws.

Pathogenic variant in FAM1

A pathogenic variant was detected in the father and child of FAM1. The rare pathogenic frameshift
variant in VPS13C (NG_027782.1:g.145304dup, rs1315150327), resulting from a single thymine insertion at
chr15:61920162 (GRCh38) was detected and called with high confidence in the trio. The child was called
heterozygous with a sequencing depth of 51x at the variant and a GQ of 54; the father was called heterozygous
with a depth of 47x and a GQ of 44; the mother was called homozygous reference (no mutation) with a
depth of 51x and a GQ of 50. In the long read data generated for the father and mother, this site was covered
at depths of 38x and 32x respectively. In the PGT-A data, this site received no sequencing reads.
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Supplementary Note: Platinum Pedigree and 1000 Genomes Data De-
scription

Platinum Pedigree dataset
The Platinum Pedigree resource is a publicly available gold standard pedigree dataset comprising whole
genome sequence data from five technologies across a four-generation pedigree43. As of the time of
writing this comprises the most fully-validated publicly available dataset for variant calls across multiple
generations. We focused on generations 2 and 3 (G2, G3) as part of this study (the “parents” and “offspring”).
G2 comprises NA12878 and NA12877, the mother and father respectively of the individuals in G3 which we
analyzed: NA12879, NA12881, NA12882, NA12885, and NA12886.

The two main datasets we used in this study were (1) the “Pedigree consistent merged small variant calls
(truthset)” VCF which comprise a unified callset with pedigree-consistent phased SNPs and small indels
for G2 and G3, and (2) the high-depth short read whole genome sequences in BAM format available for G3.
(1) was used as the source for the parental haplotypes input to ImputePGTA and as the starting point for
the simulations described below. (1) was also used to derive the truth calls for G3. (2) was used as a starting
point for the downsampling experiments described below.

The VCF truthset was obtained from the following s3 path:
s3://platinum-pedigree-data/variants/small_variant_truthset/GRCh38/CEPH1463.GRCh38.family-tru
thset.ov.vcf.gz

The high-coverage short read alignments for the offspring were acquired from the following s3 path:
s3://platinum-pedigree-data/data/illumina/mapped/GRCh38/

We preprocessed the VCF truthset by splitting multiallelics using bcftools norm -m -any and filtering
to autosomes, resulting in 5949154 variants after deduplication.

HGDP + 1KG Reference Panel
We used the HGDP + 1KG dataset2, a cosmopolitan dataset representing a diverse set of human genomes,
as a reference panel for PGS ancestry adjustment. Briefly, we obtained the raw genotype calls on GRCh38
from the gnomAD website51, annotated them using dbSNP build 157, and filtered them to the variants in
our PGS. Ancestry adjustment was then performed as described in the Methods.
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Figure S1: Calibration of lambda estimates. Estimated vs true switch error rates as described by λ (switch errors/cM)
for the simulated offspring and downsampled offspring data. The true λ reflects the rate at which we introduced switch
errors into the parental haplotypes. Estimates for the paternal and maternal switch error rates are shown on the y-axis
and the true λ values are shown on the x-axis. The estimates are generally well-calibrated but display an upward bias
at higher coverages and higher levels of λ.
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Figure S2: Empirical coverage of PGS posterior 95% credible intervals. The empirical coverage of the 95% equal tailed
credible intervals for the in silico experiments. For each coverage x lambda combination, the empirical coverage of the
credible intervals across all 5 samples and 17 traits is shown with the standard errors. We observe overall good coverage
especially in the more difficult cases — i.e., at lower coverages and higher switch error rates. The empirical coverage is
somewhat lower at higher coverages when λ is low, though the MAE of the posterior mean at these parameter regimes
is extremely low.
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Figure S3: Absolute risk reduction due to selection on imputed PGS. The x-axis shows the mean absolute risk
reduction (95% CIs) from 100 instances of 5-embryo families with the same parents assuming a liability threshold
disease model. The panels show results for three values of λ, the switch-error rate in parental haplotypes: the value
based on empirical results for parents phased with short reads and long reads, (λ = 0.05), short reads only (λ = 0.125),
and the highest value analyzed in the in silico experiments (λ = 1). For each panel, three results are shown: the first
two are the absolute risk reductions from two selection strategies: (a) selection based on true PGS values (blue), and
(b) selection based on the imputed PGS values (red). The third is the theoretical absolute risk reduction predicted by
the posterior variances (orange). The difference between the red and blue data points reflects the actual decrease in
absolute risk reduction (based on true PGS values) resulting from imputation uncertainty.
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Figure S4: Relative risk reduction due to selection on imputed PGS. The x-axis shows the mean relative risk reduction
(95% CIs) with respect to the risk corresponding to the within-family embryo mean PGS. These are calculated from 100
instances of 5-embryo families with the same parents assuming a liability threshold disease model. The panels show
results for three values of λ, the switch-error rate in parental haplotypes: the value based on empirical results for parents
phased with short reads and long reads, (λ = 0.05), short reads only (λ = 0.125), and the highest value analyzed in
the in silico experiments (λ = 1). For each panel, three results are shown: the first two are the relative risk reductions
from two selection strategies: (a) selection based on true PGS values (blue), and (b) selection based on the imputed
PGS values (red). The third is the theoretical relative risk reduction predicted by the posterior variances (orange). The
difference between the red and blue data points reflects the actual decrease in relative risk reduction (based on true PGS
values) resulting from imputation uncertainty.
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Figure S5: Genome-wide posterior plots for FAM1 parents using short reads only. Each pane depicts in thick colored
lines the smoothed posterior probabilities obtained from running ImputePGTA on the born child’s genotypes obtained
from high-coverage WGS. Probabilities at 0 and 1 indicate inheritance of one or the other of the parental haplotypes. In
black are shown the raw posterior probabilities resulting from running ImputePGTA on the ULP PGT-A data. Gaps on
the x-axis reflect regions of at least 1Mb where no variants were genotyped in the parents.
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Figure S6: Genome-wide posterior plots for FAM1 parents using short and long reads. Each pane depicts in thick
colored lines the smoothed posterior probabilities obtained from running ImputePGTA on the born child’s genotypes
obtained from high-coverage WGS. Probabilities at 0 and 1 indicate inheritance of one or the other of the parental
haplotypes. In black are shown the raw posterior probabilities resulting from running ImputePGTA on the ULP PGT-A
data. Gaps on the x-axis reflect regions of at least 1Mb where no variants were genotyped in the parents.
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Figure S7: Genome-wide posterior plots for FAM1 parents using short and reads and grandparental data. Each pane
depicts in thick colored lines the smoothed posterior probabilities obtained from running ImputePGTA on the born
child’s genotypes obtained from high-coverage WGS. Probabilities at 0 and 1 indicate inheritance of one or the other of
the parental haplotypes. In black are shown the raw posterior probabilities resulting from running ImputePGTA on the
ULP PGT-A data. Gaps on the x-axis reflect regions of at least 1Mb where no variants were genotyped in the parents.
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Supplementary Tables
The Supplementary Tables can be downloaded from this link.
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https://docs.google.com/spreadsheets/d/1XfDNZEPLFuCk8E11h8ErC24PB7nIK13x2K9r2iPRFRU/export?format=xlsx
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