TT-P34: a first-in-class peptide drug for treatment of neurodegeneration

Anders Dalby
Co-founder and CSO at Teitur Trophics

Disclosures

	No, Nothing to disclose		
X	Yes, please specify		

Company / Name	Honoraria / Expense	Consulting / Advisory Board	Funded Research	Royalties / Patent	Stock Options	Ownership / Equity Position	Employee	Other (Please specify)
Teitur Trophics				X		X	X	

Disclaimer

TT-P34 is an investigational new drug developed by Teitur Trophics and has not been approved by the FDA or EMA for any use.

Teitur Trophics – company overview

- Series A funded biotech company located in Aarhus, Denmark
- Focused on development of first-in-class macrocyclic peptides based on groundbreaking biology discovered on the receptors SorCS1*, SorCS2 and SorCS3
- 10 employees and +50 consultants supporting innovation

Teitur is a preclinical stage company with a pipeline of novel biology

Indication	Discovery	IND development	Phase 1	Candidate
Huntington's Disease Parkinson's Disease Frontotemporal Dementia				TT-P34
Hearing loss				Not disclosed
Not disclosed				Not disclosed

TT-P34 has been developed on insight into BDNF/CREB pathway

- The neurotrophic factor BDNF, is critically important for neuronal health and viability
- BDNF drives synaptic plasticity and survival through activation of transcription factor CREB
- Activation of CREB leads to mitochondrial and lysosomal function driving synaptic integrity
- CREB is downregulated across numerous neurodegenerative diseases

CREB downregulation across different CNS diseases

Disease	Patients	References
Parkinson's	 ■ ↓ CREB activity in nigral dopaminergic neurons of post-mortem brains ■ ↓ Downstream CREB-transcripts in post-mortem brains 	Xiaoyi Xu et al. 2022, Adam Labadorf et al. 2018, Hyojung Kim et al. 2021
Huntington's	 Downstream CREB-transcripts in striatum of post-mortem brains 	Libin Cui et al. 2006, Adam Labadorf et al. 2018, Rajnish et al. 2012
Frontotemporal dementia	 CREB activity in cortical neurons from patients with C9ORF72, TARDBP, MAPT mutations 	Michelle Jean Gregoire et al. 2024, Josiah J. Herzog et al. 2020, M. Cecilia Ljungberg et al. 2012
Alzheimer's	 ↓ CREB levels in postmortem brains ↓ CREB activity in prefrontal cortex in postmortem brains 	Subbiah et al. 2011, N Bartolotti et al. 2016

SorCS2 is essential for BDNF-signaling

- SorCS2 is a co-receptor for TrkB
- Knock-out of SorCS2 results in impaired BDNF-signaling

BDNF stimulation of neurons lacking SorCS2 display almost complete loss in activation of downstream signaling proteins

Dalby et al. 2024 preprint

SorCS2-tail contains a signaling switch in the BDNF-signaling cascade

- Discovery: The SorCS2-tail contains a unique serine motif
 - Modulating the SorCS2-tail motif can turn off/on neurotrophic responses
- From this, we have developed SorCS2-tail phospho-mimetic peptides

Dalby et al. 2024 preprint,

TT-P34 is derived from the SorCS2-tail

- TT-P34 is designed for a once-weekly subcutaneous delivery in patients
- TT-P34 drive CREB activity in a **neuron-specific manner** and improve mitochondria and lysosomal function through upregulating PGC1α and TFEB
- PGC1α and TFEB-pathways are well-established to be impaired across neurodegenerative diseases

Dalby et al. 2024 preprint, Unpublished

TT-P34 – Proof of mechanism in driving lysosomal function through TFEB

- TFEB controls the expression, import, and activity of lysosomal enzymes including GCase (Glucocerebrosidase).
- TT-P34 increases GCase levels in human dopaminergic organoids with L444P mutation

Halting disease progression in a PFF rat model of PD

- TFEB controls the expression, import, and activity of lysosomal enzymes including GCase (Glucocerebrosidase).
- TT-P34 increases GCase levels in human dopaminergic organoids with L444P mutation

Question 1: Does the engagement in TFEB-pathway lead to clearance of α-synuclein in a PFF seeding model?

Halting disease progression in a PFF rat model of PD

- ➤ Treatment with TT-P34 prevents further loss of DAT signal
- > This was accompanied with significant rescue of TH+ terminals and DAT stains (IHC)
- ➤ This was accompanied with significant reduction (50-75%) in phospho-aSyn (S129)

Preclinical proof of concept: improved pathology through TFEB

TT-P34 treatment in 3 other PFF rat seeding models of Parkinson's

> Across all models, TT-P34 clears alpha-synuclein aggregates and increases dopaminergic survival

4 different PFF rat seeding model studies

Model	Age of rats, injection site	Treatment period	Reduction in α-synuclein aggregation	Other assessments
Brain first	14 months, Amygdala	1 month immediately after injection	-75% SNpc-75% amygdala	 Increased TH in striatum
Brain first	14 months, Amygdala	3 months after 50% loss in DAT signal	 Reduced in striatum Reduced in amygdala Reduced in SNpc -50% stomach 	 Increased TH & DAT in striatum Increased 18F-PE2I in striatum
Brain first	17 months, Amygdala	6 months immediately after injection	-50% amygdala-50% striatum-50% SNpc	 Increased 18F-PE2I in striatum Increased TH in striatum Increased NPY CSF
Gut first	16 months, Duodenum	2 months immediately after injection	■ -60% cadiac nerves	

TT-P34 – Proof of mechanism in driving mitochondrial function through PGC1α

- PGC1α drives mitochondrial biogenesis and controls the expression of mitochondrial proteins important for energy metabolism and synapse formation
- TT-P34 acutely increases mitochondrial biogenesis and glucose metabolism in vivo in brain of healthy rats

PGC1α downstream target

Brain glucose metabolism

Preclinical PoC: improving motor function in a MPTP mouse model of PD

- PGC1α drives mitochondrial biogenesis and controls the expression of mitochondrial proteins important for energy metabolism and synapse formation
- TT-P34 acutely increases mitochondrial biogenesis and glucose metabolism in vivo in brain of healthy rats

Question 2: Does the engagement in PGC1α-pathway lead to neuroprotection in mitochondrial model (MPTP mouse model of PD)?

Preclinical PoC: improving motor function in a MPTP mouse model of PD

- > TT-P34 chronic treatment of MPTP-injected mice rescued dopaminergic cell loss (measured by TH staining)
- > TT-P34 treatment of MPTP-injected mice rescued motoric phenotype measured in open-field and grip-strength
- > TT-P34 increased NPY CSF as explorative indirect target engagement biomarker

TT-P34 efficacy across several neurodegenerative models

- Activation of CREB is beneficial across several neurodegenerative diseases
- TT-P34 displays ameliorative effects across models of HD and FTD.

TT-P34 treatment in models of Huntington's and Frontotemporal dementia

Disease	Model	Treatment period	Behavior	Post-mortem analysis
Huntington's	R6/2	3 months	Reduced claspingImproved median survival	
Huntington's	zQ175DN KI	9 months	 Rescue of motor function in beam test Rescue of phenotype in home-cage analysis 	 Restoration of mitochondrial and synaptic proteins Restoration of dopamine and serotonin Rescue in striatal markers
Frontotemporal dementia	Grn+/-	1 week		Increased GRN expressionNormalized LAMP1 levels

Clinical development – phase 1

Phase 1 design

- Start in mid-2025
- Double blind, randomized, parallel group, placebo-controlled study of single and multiple ascending subcutaneous doses of TT-P34 in healthy subjects
- Potential MAD patient cohort add-on

Clinical Endpoints of SAD/MAD

Administration

Dosing subcutaneously (MAD = once weekly)

Primary:

Safety and tolerability of a single subcutaneous (SC) dose and multiple SC doses of TT-P34

Secondary:

- Plasma pharmacokinetic (PK) profile of TT-P34 following a single SC dose and multiple SC doses
- Evaluate the exposure of TT-P34 in CSF following a single SC dose and multiple SC doses.

Exploratory

 Pharmacodynamic effect of TT-P34 in CSF following a single SC dose and multiple SC doses on exploratory biomarkers including NPY

Summary

- TT-P34 is a first-in-class macrocyclic peptide designed for a once-weekly subcutanous administration in patients
- TT-P34 can cross the blood-brain barrier in non-human primates follow sc. dosing (kpuu across species = 1)
- TT-P34 induces activation of neuronal CREB leading to PGC1α and TFEB expression ultimately driving lysosomal and mitochondrial function
- TT-P34 demonstrated preclinical proof of concept across PD, HD and FTD models
- TT-P34 did not show adverse events within the anticipated therapeutic window over 28day GLP tox studies
- TT-P34 will enter the clinic mid-2025 to assess safety, PK and CSF exposure in humans

Acknowledgements

Team

Simon Molgaard CEO & co-founder

Ed Browne CDO

Anders Dalby CSO & co-founder

Andreas Borta CMO

Emil Gregersen Senior Scientist

Lab technician

Sanne Nordestgaard Anne Kathrine Pedersen Senior Scientist

Mathias Ollendorff Preclinical R&D & co-founder

Mia Aaboe Jorgensen Clinical project manager

Muwan Chen

Maya Tyssøy Office Manager & **Executive Assistant**

50+ Consultants

Aarhus University

Nathalie van den Berge Vasileios Theologidis Mark Denham

Palle Juul-Jensens Blvd., 8200 Aarhus N, Denmark

