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Forecasting Financial Risk Metrics: From Holt-Winters to Gradient Boosting
This notebook demonstrates a comparison of Holt-Winters exponential smoothing and XGBoost
for forecasting charge-off and recovery amounts in consumer lending. The project covers com-
plete model development lifecycle including EDA, hyperparameter tuning, cross-validation, and
performance evaluation, with practical applications for credit risk management.

1. Exploratory data analysis including time series decomposition and stationarity testing

2. Individual time series visualization and comparative analysis

3. Generalized trend analysis using HP Filter model

4. Holt-Winters model selection and hyperparameter tuning to train, test and forecast 12 months
of predictions

5. Recovery Ratio Analysis and Business Implications

1.0 Exploratory Data Analysis and Time Series Characterization
DATASET INFO:
Shape: (78, 3)
Date range: 2019-01-31 00:00:00 to 2025-06-30 00:00:00
Frequency: <MonthEnd>

SUMMARY STATISTICS:
CO_BAL REC_BAL ratio

count 78.0000 78.0000 78.0000
mean 705805.4518 200030.0477 0.3382
std 325979.6360 78735.2323 0.1702
min 229725.8600 81280.6600 0.0780
25% 415467.9925 142716.8100 0.1996
50% 659982.9750 186885.6000 0.3121
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75% 929631.3325 239869.0550 0.4497
max 1430176.6500 533885.7400 0.8220

Overview This analysis utilizes a monthly time series dataset spanning 78 periods from Jan-
uary 2019 through June 2025, containing charge-off balances (CO_BAL), recovery balances
(REC_BAL), and recovery ratios for an unsecured personal loan portfolio. The dataset captures
6.5 years of financial performance data with complete monthly observations.

Key Dataset Characteristics

• Charge-off balances average $705,805 with high volatility (std: $325,979), ranging from
$229,726 to $1.43 million, indicating significant fluctuations in portfolio losses over the ob-
servation period

• Recovery balances average $200,030 with lower relative volatility (std: $78,735), ranging from
$81,281 to $533,886, demonstrating more stable collection performance

• Recovery ratios average 33.8% with substantial variation (std: 0.17), ranging from 7.8% to
82.2%, reflecting the cyclical nature of collection effectiveness and varying market conditions

• Data completeness is 100% with no missing values across all variables and consistent monthly
frequency

The substantial range and standard deviation across the data variables indicate the presence of
trend, seasonality, and volatility patterns typical of financial time series data. As a result, funda-
mental analysis of the time series data should be performed to ensure accurate forecasting.

1.1 Stationary Testing

STATIONARY TEST: Charge-offs
Acore_data Statistic: 0.675456
p-value: 0.989335
Critical Values:

1%: -3.532
5%: -2.906
10%: -2.590

� Series is non-stationary (fail to reject null hypothesis)

STATIONARY TEST: Recoveries
Acore_data Statistic: -7.295327
p-value: 0.000000
Critical Values:

1%: -3.518
5%: -2.900
10%: -2.587

� Series is stationary (reject null hypothesis)

The statistical tests reveal that charge-offs and recoveries behave very differently over time. Charge-
offs failed the stationarity test (p-value: 0.989), indicating they follow trends and can continue
growing or declining without reverting to a typical level. This means charge-offs don’t have a
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stable long-term average they return to - they can drift upward or downward and stay at those new
levels.

Recovery balances passed the stationarity test (p-value: 0.000), showing they consistently return to
their historical average of around $200,030. When recoveries spike above or drop below this typical
range, they tend to move back toward the center rather than establishing new permanent levels.

This difference means the two series require different forecasting approaches. Charge-offs need mod-
els that can handle ongoing trends and growth patterns, while recoveries can use simpler methods
since they naturally fluctuate around their long-term average. Understanding this distinction helps
explain why charge-offs may be harder to predict than recoveries.

1.2 Seasonality & Decomposition Analysis

SEASONALITY STRENGTH:
Charge-offs Seasonality Strength: 0.306
Recoveries Seasonality Strength: 0.367
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The seasonal decomposition reveals distinct patterns in both charge-offs and recoveries. For charge-
offs, the trend component shows a clear U-shaped pattern with a decline from 2019 through mid-
2021 (COVID), followed by steady growth from 2022 onward (Fed Funds Rate Increase), reaching
approximately $1.1 million by 2025. The seasonal component demonstrates consistent annual
cyclicality with regular peaks and troughs throughout each year, while the residual component
shows significant volatility, particularly during 2020-2021 and 2023, indicating periods of unusual
activity beyond normal seasonal patterns.

Recovery data exhibits different characteristics with a more complex trend pattern that shows initial
decline through 2021, followed by recovery and growth from 2022-2024, then stabilization around
$240,000 by 2025. The seasonal component displays regular annual patterns similar to charge-offs
but with smaller amplitude variations. The residuals show notable spikes, particularly in 2020 and
2023, suggesting external factors significantly impacted recovery performance during these periods.

The decomposition confirms that both series contain meaningful seasonal and trend components
that can be modeled, with charge-offs showing stronger trending behavior (supporting the non-
stationarity finding) while recoveries demonstrate more bounded variation around evolving trend
levels (consistent with eventual mean reversion). The substantial residual components in both
series indicate the presence of irregular shocks that pure trend and seasonal models may struggle
to capture.
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1.4 Correlation Analysis & Outlier Detection

OUTLIER DETECTION:
Charge-off outliers: 0
Recovery outliers: 1

The scatter plot reveals a weak positive correlation (0.187) between charge-offs and recoveries,
indicating that higher charge-off periods are associated with slightly higher recovery amounts,
though the relationship is not strong. The temporal clustering provides more insight than the
correlation itself, showing distinct behavioral patterns across different economic periods.

The lower-left cluster dominated by 2020-2021 observations (red and orange points) reflects the pan-
demic period when regulatory forbearance and collection moratoriums significantly suppressed both
charge-offs and recoveries. During this time, charge-offs remained artificially low due to extended
delinquency periods (120-day extensions to 180+ days) while recovery efforts were constrained by
regulatory restrictions and reduced collection activity.
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In contrast, the upper-right portion shows increased density of 2024-2025 observations (dark blue
points), indicating a return to normal collection practices combined with deteriorating credit con-
ditions. This rightward shift suggests charge-offs have resumed normal patterns while moving to
higher absolute levels, likely driven by macroeconomic pressures including elevated interest rates
and inflationary impacts on borrower payment capacity.

The single recovery outlier at approximately $534K represents an exceptional collection event that
falls well outside normal operational parameters. The overall pattern demonstrates how exter-
nal economic and regulatory factors can create distinct regime shifts in the charge-off/recovery
relationship, with implications for model stability across different market conditions.

CORRELATION BY YEAR:
2019: -0.162
2020: 0.135
2021: 0.425
2022: 0.09
2023: -0.238
2024: -0.613
2025: -0.059

The annual correlations show highly unstable relationships between charge-offs and recoveries, rang-
ing from strongly negative (-0.613 in 2024) to moderately positive (0.425 in 2021). The 2021 peak
correlation likely reflects synchronized pandemic recovery effects, while 2024’s strong negative cor-
relation suggests charge-offs increased substantially without corresponding recovery improvements.

2.0 Individual Series Analysis and Visualization
This section presents individual time series visualizations and comparative analysis to examine
the temporal patterns, volatility, and relationships between charge-offs and recoveries across the
78-month observation period. The visualizations reveal distinct behavioral differences between the
two series and highlight regime shifts corresponding to major economic events from 2019-2025.

2.1 Historical Charge-Off Performance
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Gross charge-offs declined significantly from 2019 through mid-2021, reaching a low of approxi-
mately $230K during the pandemic forbearance period. From 2022 onward, charge-offs have in-
creased dramatically, rising from these historic lows to over $1.4M by 2025, representing more than
a 500% increase from the trough levels.

2.2 Historical Recoveries Performance

Recovery amounts show high volatility throughout the period, fluctuating between approximately
$80K and $534K without a clear directional trend. The data shows “mean-reverting” behavior that
hovers near $200K, with spikes in early 2019, mid-2020, and a significant peak exceeding $530K in
2023, followed by stabilization in the $200K-$330K range through 2025.

2.3 Historical Charge-Off and Recoveries Combined Performance
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The combined visualization shows the dramatic impact of COVID-era regulatory interventions on
both charge-offs and recoveries from mid-2020 through mid-2022. The shaded period highlights
when forbearance measures and softened colelction efforts artificially suppressed normal credit loss
patterns, creating a distinct trough that contrasts sharply with pre-pandemic and recovery-phase
behaviors.

COVID Period (Shaded Area):

• Charge-offs dropped to historic lows around $230K-$400K
• Recoveries remained relatively stable but constrained in the $100K-$250K range
• Both series show reduced volatility during regulatory intervention

Post-COVID Divergence:

• Charge-offs surge dramatically from 2022 onward, reaching $1.4M+ by 2025
• Recoveries return to pre-pandemic patterns, fluctuating around $200K-$300K with occasional

spikes

2.4 Ratio Visualization and Trend
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The recovery ratio analysis reveals three distinct operational regimes with dramatically different
collection effectiveness patterns. During the pre-pandemic period, ratios remained relatively sta-
ble around 30%, reflecting normal collection operations. The COVID moratorium period shows
initial volatility followed by improving ratios that peaked near 80% as charge-offs were artificially
suppressed while some recovery activities continued. The post-2022 period demonstrates a sharp
deterioration in collection effectiveness, with ratios declining to 15-20% as charge-offs surged while
recovery amounts failed to scale proportionally.

Key Insights:

• Pre-COVID Baseline (2019-2020): Recovery ratios maintained steady 30% average with mod-
erate volatility, indicating normal collection operations

• COVID Peak Distortion (2020-2022): Ratios artificially inflated to 50-80% due to regulatory
forbearance suppressing charge-offs while maintaining some collection activity

• Post-Pandemic Deterioration (2022-2025): Sharp decline in collection effectiveness to 15-20%
as charge-offs resumed aggressive growth without proportional recovery scaling

• Regime Instability: The dramatic shifts across periods indicate that any modeling assumption
of stable recovery relationships will likely fail across different market conditions

• Collection Capacity Constraints: The declining trend post-2022 suggests collection operations
may be overwhelmed by the surge in charge-off volumes

3.0 HP Filter Trend Analysis and Visualization
The HP Filter provides is one approach to decompose time series data into long-term trend and
short-term cyclical components – this can help identify enable the identification of underlying
structural patterns. This analysis applies HP filtering to both charge-off and recovery data to
isolate the general direction of the data movements outside from temporary fluctuations outside.
The decomposition helps distinguish between temporary regime shifts caused by external events
(such as COVID-19) and genuine structural changes in the underlying data.
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3.1 Charge-Off Trend Decomposition

The charge-off trend was generated using a higher smoothing parameter lambda = 1000, rather than
a lambda = 129600 (standard for monthly data). This allows the trend to be more responsive to the
actual directional changes in your data, particularly capturing the U-shaped recovery pattern from
the 2021 trough. The trend and 95% confidence interval bands appear to appropriately capture
the range of charge-offs with only 2 data points falling outside the 95% confidence bands out of 78
total observations. This results in a 2.56% breach rate, which is well within the expected 5% for
95% confidence intervals.

3.2 Recovery Trend Decomposition
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The recovery trend was generated using a lower smoothing parameter lambda = 129600 which is
typical for monthly data. The trend and 95% confidence interval bands appear to appropriately
capture the range of charge-offs with only 2 data points falling outside the 95% confidence bands
out of 78 total observations. This results in a 2.56% breach rate, which is well within the expected
5% for 95% confidence intervals.

3.3 Combined Charge-offs and Recoveries

The overlapping confidence bands during the COVID period reveal how regulatory interventions
fundamentally disrupted normal credit patterns. When charge-offs were artificially suppressed
through forbearance or forgiveness measures, recoveries appear to have continued at typical lev-
els - the usual gap between these metrics disappeared temporarily overriding the natural market
relationship.

The dramatic separation of confidence bands after 2022 demonstrates the return to normal op-
erational patterns, but with charge-offs resuming at permanently elevated levels. While recovery
bands remained relatively stable throughout the entire period, charge-off bands expanded signifi-
cantly as the series moved from suppressed pandemic levels to new highs. This pattern confirms
that the COVID period represented a temporary disruption rather than a structural change in the
underlying relationship between charge-offs and recoveries.

4.0 Forecast Balances with Holt-Winters Exponential Smoothing
This section applies Holt-Winters exponential smoothing to generate 12-month forecasts for charge-
off and recovery balances. The approach includes model fitting, validation using train/test splits,
and forecast generation with confidence intervals. Due to the different statistical properties identi-
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fied in previous sections, charge-offs and recoveries require distinct modeling strategies to optimize
forecast accuracy.

4.1a Charge-Off Model Selection and Hyperparameter Tuning

Train period: 2019-01-31 00:00:00 to 2024-06-30 00:00:00
Test period: 2024-07-31 00:00:00 to 2025-06-30 00:00:00
Train size: 66 months
Test size: 12 months

PERFORMANCE:
MAE: $119,345
MSE: $22,481,527,685
RMSE: $149,938
MAPE: 21.61%
R-squared: 0.676

The baseline Holt-Winters model demonstrates reasonable performance with an R-squared of 0.676,
indicating the model explains approximately 68% of the variance in charge-off data. The 21.61%
MAPE on training data provides a benchmark for in-sample accuracy, while the RMSE of $149,938
quantifies the typical forecast error magnitude. This initial model uses default parameters that may
not be optimal for the specific characteristics of charge-off data. To improve forecast accuracy, a
systematic hyperparameter tuning process will test different combinations of trend types (additive
vs multiplicative), seasonal patterns, and damping parameters to identify the configuration that
minimizes forecast error while maintaining model stability.

HYPERPARAMETERS: Trend: None | Seasonal: add | Damped: False || RESULTS: Ratio:
1.00 | R-squared: 0.60 | MAPE: 24.16%
HYPERPARAMETERS: Trend: add | Seasonal: add | Damped: False || RESULTS: Ratio:
1.00 | R-squared: 0.60 | MAPE: 22.93%
HYPERPARAMETERS: Trend: add | Seasonal: add | Damped: True || RESULTS: Ratio:
1.00 | R-squared: 0.64 | MAPE: 22.99%
HYPERPARAMETERS: Trend: add | Seasonal: None | Damped: False || RESULTS: Ratio:
1.00 | R-squared: 0.52 | MAPE: 24.72%
HYPERPARAMETERS: Trend: None | Seasonal: None | Damped: False || RESULTS: Ratio:
1.00 | R-squared: 0.51 | MAPE: 25.24%
HYPERPARAMETERS: Trend: mul | Seasonal: mul | Damped: False || RESULTS: Ratio:
1.00 | R-squared: 0.67 | MAPE: 21.35%
HYPERPARAMETERS: Trend: mul | Seasonal: mul | Damped: True || RESULTS: Ratio:
1.00 | R-squared: 0.68 | MAPE: 21.61%

The hyperparameter tuning initially suggested that multiplicative components outperform additive
approaches based on training metrics, with multiplicative trend and seasonal components achieving
the best in-sample performance (R²: 0.67, MAPE: 21.35%). However, out-of-sample validation
revealed critical generalization issues with the multiplicative model, producing a negative R² (-
1.032) and systematic over-forecasting despite reasonable MAPE performance. When tested on
holdout data, the additive trend and seasonal configuration demonstrated superior forecasting
accuracy with an 11.65% MAPE and positive R² (0.408), representing a 45% improvement in
forecast error. This validates the importance of out-of-sample evaluation in model selection, as
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training performance alone can be misleading for volatile financial time series. The additive model
(trend=‘add’, seasonal=‘add’, damped=False) will be used for final charge-off forecasting due to
its superior generalization performance and minimal forecast bias.

4.1b In-Sample Model Performance

Train period: 2019-01-31 00:00:00 to 2024-06-30 00:00:00
Test period: 2024-07-31 00:00:00 to 2025-06-30 00:00:00
Train size: 66 months
Test size: 12 months

PERFORMANCE:
MAE: $135,946
MSE: $27,624,046,032
RMSE: $166,205
MAPE: 22.93%
R-squared: 0.602

Mean Training Data: $619,944.14
Std Dev of Training Data: $265,320.10
Mean Fitted Values: $619,944.14
Std Dev Fitted Values: $249,840.33

The model demonstrates strong in-sample performance with perfect mean alignment of $619,944 for
both actual and fitted values. This confirms the predictions are unbiased. The slightly lower stan-
dard deviation in fitted values ($249,862 vs $265,320) indicates the model appropriately smooths
extreme volatility while preserving the overall variance structure.

The plot shows the fitted values tracking actual data closely throughout most periods -even effec-
tively capturing the U-shaped pattern from the COVID trough through recent recovery. While
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some deviations occur during high-volatility periods where the model (The model appears to lag
behind rapid directional changes), the overall alignment between actual and fitted values suggests
the multiplicative configuration has learned underlying patterns rather than memorizing noise.

4.1c Out-Of-Sample Model Performance

Actual mean: $1,178,043
Stable forecast mean: $1,214,745
Ratio: 1.03x
MAPE: 11.65%
R²: 0.408

The model’s forecasts remain within confidence bounds, indicating it effectively captures uncer-
tainty. The additive model smooths volatility while preserving trend, and test predictions stay
within statistical limits, which is important for avoiding outlier-driven planning errors. These re-
sults support the model choice: with 11.65% MAPE and positive R² of 0.408, the additive trend +
seasonal configuration delivers a reasonably accurate and reliable forecast.

4.1d Future Period Forecasting

PERFORMANCE:
MAE: $126,935
MSE: $24,559,376,852
RMSE: $156,714
MAPE: 21.60%
R-squared: 0.766

Test set residual standard deviation: $143,363
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The future forecast shows charge-offs continuing their upward trajectory from current levels around
$1.4M toward $1.7M by mid-2026, with seasonal patterns creating temporary peaks and valleys.
The confidence intervals appropriately widen over the forecast horizon, ranging from roughly $1.4M
to $1.9M by the end of the period, acknowledging inherent uncertainty while maintaining realistic
bounds based on the model’s validated error structure. The entire yellow shaded area represents
plausible scenarios, with the central forecast serving as the most likely outcome rather than a defini-
tive prediction, requiring risk management strategies that account for the full range of potential
charge-off levels.

The orange linear trend line clearly demonstrates a persistent upward trajectory in charge-offs.
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Regardless of estimated short-term or seasonal fluctuations, risk management should plan for con-
tinued growth in loss levels over the forecast horizon.

4.2a Recoveries Model Selection and Hyperparameter Tuning

Train period: 2019-01-31 00:00:00 to 2024-06-30 00:00:00
Test period: 2024-07-31 00:00:00 to 2025-06-30 00:00:00
Train size: 66 months
Test size: 12 months

PERFORMANCE:
MAE: $46,744
MSE: $4,220,214,093
RMSE: $64,963
MAPE: 25.26%
R-squared: 0.308

This baseline recovery model shows weak performance with an R-squared of only 0.308, indicating
the model explains less than one-third of the variance in recovery data. The 25.26% MAPE is sub-
stantially higher than the charge-off model’s performance. This poor fit likely identifies challenges
for modeling stationary recovery data using exponential smoothing methods designed for trending
series.

HYPERPARAMETERS: Trend: None | Seasonal: add | Damped: False || RESULTS: Ratio:
1.00 | R-squared: 0.28 | MAPE: 25.76%
HYPERPARAMETERS: Trend: add | Seasonal: add | Damped: False || RESULTS: Ratio:
1.00 | R-squared: 0.21 | MAPE: 27.61%
HYPERPARAMETERS: Trend: add | Seasonal: add | Damped: True || RESULTS: Ratio:
1.00 | R-squared: 0.25 | MAPE: 26.87%
HYPERPARAMETERS: Trend: add | Seasonal: None | Damped: False || RESULTS: Ratio:
1.00 | R-squared: -0.02 | MAPE: 33.31%
HYPERPARAMETERS: Trend: None | Seasonal: None | Damped: False || RESULTS: Ratio:
1.00 | R-squared: -0.00 | MAPE: 33.20%
HYPERPARAMETERS: Trend: mul | Seasonal: mul | Damped: False || RESULTS: Ratio:
1.00 | R-squared: 0.28 | MAPE: 26.75%
HYPERPARAMETERS: Trend: mul | Seasonal: mul | Damped: True || RESULTS: Ratio:
1.00 | R-squared: 0.31 | MAPE: 25.26%

The hyperparameter tuning has identified the baseline model of multiplicative components to
achieve the best performance. As aresult, this model will be used going forward.

4.2b In-Sample Model Performance
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Mean Training Data: $193,618.71
Std Dev of Training Data: $78,696.98
Mean Fitted Values: $193,618.71
Std Dev Fitted Values: $44,549.60

The recovery model shows perfect mean alignment ($193,619 for both actual and fitted values)
but significant over-smoothing, with fitted standard deviation ($44,550) representing only 57% of
the actual standard deviation ($78,697). The plot appears to confirm this issue - while the green
dotted fitted values track the general level, they fail to capture the substantial month-to-month
fluctuations that characterize recovery data. As a result, this over-smoothing explains the poor
R-squared (0.308) despite unbiased mean prediction.

4.2c Out-Of-Sample Model Performance

Actual mean: $235,292
Stable forecast mean: $207,325
Ratio: 0.88x
MAPE: 64.09%
R²: -4.665
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The test results show significant variation and forecasting failure. The 64.09% MAPE is nearly
three times worse than training performance (25.26%), while the R² of -4.665 indicates forecasts
perform nearly five times worse than simply using the mean. The visual confirms the issue - the
purple test predictions show extreme volatility, including forecasts dropping to near zero, which is
operationally impossible for recovery operations. Finally, the 0.88x ratio shows systematic under-
forecasting, but this is misleading given the wild swings in predictions.

As a result, the Holt-Winters model is fundamentally inappropriate for recovery data, as evidenced
by the dramatic deterioration from training to test performance. The model is essentially attempt-
ing to impose trend and seasonal structure on inherently volatile, stationary data. So, alternative
approaches should be approached.

To perform this test, we will start with an ARIMA model, then a SARIMA and finally, extrapolate
off the HP Filter trend data an estimate forecast and confidence interval band.

ARIMA(0, 0, 1): AIC=1678.8, MAPE=22.73%
ARIMA(1, 0, 0): AIC=1678.4, MAPE=22.74%
ARIMA(1, 0, 1): AIC=1680.6, MAPE=22.87%
ARIMA(2, 0, 1): AIC=1681.3, MAPE=22.61%
ARIMA(1, 0, 2): AIC=1682.5, MAPE=22.86%
ARIMA(2, 0, 2): AIC=1681.9, MAPE=23.37%

Best ARIMA model: (1, 0, 0)
AIC: 1678.4, MAPE: 22.74%

ARIMA forecast range: $193,619 to $202,672
Actual test range: $135,646 to $335,375

The ARIMA model testing shows minimal performance differences across configurations, with
MAPE values clustered tightly between 22.61% and 23.37%. The optimal ARIMA(1,0,0) model
achieved the lowest AIC (1678.4) with a 22.74% MAPE. This is only a marginal improvement
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over the Holt-Winters baseline (25.26% MAPE) and still fails to capture a reasonable degree of
volatility. This is evident in the minimal variance in the forecasted range.

SARIMA(1,0,0)(1,0,1,12): AIC=1710.4, MAPE=33.66%
Forecast range: $99,850 to $245,614

SARIMA(1,0,1)(1,0,1,12): AIC=1689.5, MAPE=30.57%
Forecast range: $172,400 to $239,252

SARIMA(0,0,1)(1,0,1,12): AIC=1766.5, MAPE=37.60%
Forecast range: $75,957 to $237,813

SARIMA(2,0,1)(1,0,1,12): AIC=1690.2, MAPE=28.51%
Forecast range: $171,055 to $226,488

SARIMA(1,0,0)(0,0,1,12): AIC=1709.4, MAPE=49.99%
Forecast range: $71,735 to $245,862

Best SARIMA model: (1, 0, 1)(1, 0, 1, 12)
AIC: 1689.5, MAPE: 30.57%

SARIMA forecast range: $172,400 to $239,252
Actual test range: $135,646 to $335,375

SARIMA Performance:
MAPE: 30.57%
R²: -0.586

The SARIMA model testing shows significant performance differences across the various config-
urations, as evident in the variance of MAPE values between 28.51% and 49.99%. The optimal
SARIMA model was determined to be (1, 0, 1)(1, 0, 1, 12). The SARIMA model does show
improvement over the regular ARIMA but still demonstrates significant limitations. While the
forecast range ($172K-$239K) is wider than ARIMA’s narrow predictions, it captures only about
half the actual test volatility ($135K-$335K). This confirms that even sophisticated time series mod-
els with seasonal components cannot effectively capture the inherent randomness and volatility that
characterizes recovery operations, validating the need for simpler baseline approaches.

4.7a Forecasting on full dataset
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The recovery forecast demonstrates the challenges of predicting inherently volatile recoveries. The
HP filter-based forecast (orange dashed line) provides a stable trend around $240K with reasonably
wide confidence interval bands due to the inherent uncertainty in recovery amounts. Unlike the
failed Holt-Winters, ARIMA and SARIMA approaches that produced either extreme volatility or
overly narrow predictions, this method offers realistic uncertainty bounds spanning between $80K to
$400K. this forecast approach essentially acknowledges that while recoveries exhibit some trending
behavior over time, the month-to-month variations are largely unpredictable due to the operational
nature of collection activities.

5.0 Business Impact Analysis and Conclusions
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The forecasting of recovery ratio reveals a critical deterioration in collection effectiveness that
requires immediate strategic attention. Recovery ratios have declined from historical norms of
30% to current levels around 15%, with forecasts indicating continued degradation to 12-15% by
mid-2026 across all modeled scenarios.

Key Findings: The analysis demonstrates that charge-offs are projected to grow substantially
(reaching $1.7M by mid-2026) while recovery amounts remain relatively stable around $240K. This
divergence creates an unsustainable trajectory where collection operations cannot scale proportion-
ally with increasing loss volumes. Even under optimistic forecasting assumptions, recovery ratios
remain well below historical performance benchmarks, indicating structural capacity constraints
rather than temporary market conditions.

Strategic Implications: Current collection infrastructure appears inadequate for the projected credit
environment. Without operational intervention, the organization faces continued erosion in col-
lection effectiveness, directly impacting profitability and cash flow. The forecasting confidence
intervals suggest that even best-case scenarios will not restore collection ratios to acceptable his-
torical levels, making proactive capacity expansion essential rather than optional.

Immediate Actions Required:

1) Staffing levels and capacity constraint review - Assess current collection team size against
projected workload increases

2) Operational efficiency and effectiveness evaluation of processes - Identify bottlenecks and
streamline collection workflows

3) Proactive strategies - Implement early intervention contact at 30, 60, 90 days delinquent to
prevent charge-offs

4) Technology and automation investments - Deploy predictive analytics, early wrning detection
systems, automated dialing systems, and digital payment solutions to scale operations

5) Portfolio segmentation and prioritization - Develop risk-based collection strategies that focus
resources on highest-recovery-probability accounts

Secondary Strategic Planning:

6) Performance metrics and incentive restructuring - Align collection team compensation with
recovery effectiveness rather than just contact volume

7) Legal and third-party collection partnerships - Evaluate external collection agencies and legal
counsel capacity for higher volume placements

8) Cash flow and capital planning - Adjust working capital requirements and lending criteria to
account for sustained lower recovery rates
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