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Abstract

The brainstem noradrenergic locus coeruleus (LC) is reciprocally connected with the prefrontal cortex (PFC). Coupling between
LC spiking and the depolarizing phase of slow (1–2Hz) waves in PFC field potentials during sleep and anesthesia suggests that
LC drives cortical state transition. Reciprocal LC-PFC connectivity should also allow interactions in the opposing (top-down) direc-
tion, but prior work has only studied prefrontal control over LC activity using electrical or optogenetic stimulation. Here, we
describe the physiological characteristics of spontaneously occurring top-down LC-PFC interactions. We recorded LC multiunit
activity (MUA) simultaneously with PFC single-unit and local field potential (LFP) activity in urethane-anesthetized rats. We
observed cross-regional coupling between the phase of 5-Hz oscillations in LC-MUA and the power of PFC LFP 60–200Hz high
c (hc). Transient increases in PFC hc power preceded peaks in the 5-Hz LC-MUA oscillation. Analysis of cross-regional transfer
entropy demonstrated that the PFC hc transients were predictive of a transient increase in LC-MUA. An �29 ms delay between
these signals was consistent with the conduction velocity from the PFC to the LC. Finally, we showed that PFC hc transients are
associated with synchronized spiking of a subset (27%) of PFC single units. Our data suggest that PFC hc transients may indicate
the timing of the top-down excitatory input to LC, at least under conditions when LC neuronal population activity fluctuates rhyth-
mically at 5Hz. Synchronized PFC neuronal spiking that occurs during hc transients may provide a previously unknown mode of
top-down control over the LC.

NEW & NOTEWORTHY The prefrontal cortex (PFC) is thought to control activity in the noradrenergic locus coeruleus (LC). Prior
anatomical and prefrontal stimulation studies demonstrated the potential for PFC-LC interactions; however, it is unknown what
types of PFC activity affect the LC. Here, we show that transient increases in PFC high c power and associated changes in PFC
unit-pair synchrony are a potential sign of top-down control over the LC.

c; locus coeruleus; synchrony; h; top-down control

INTRODUCTION

A common assumption about coerulear-prefrontal [locus
coeruleus-prefrontal cortex (LC-PFC)] functional connectiv-
ity is that the LC is a driver. This assumption is based on the
well-documented actions of the LC as an ascending neuro-
modulatory system (1–8). However, bidirectional LC-PFC
interaction is also likely as LC and PFC are reciprocally and
monosynaptically connected. Indeed, the PFC has been
demonstrated to exert both inhibitory and excitatory effects

on LC activity (9–15). Notably, the PFC is the only cortical
region sending direct projections to the LC (13, 15). Previous
studies on LC-PFC interactions during sleep or anesthesia
have focused on a prominent 1–2Hz oscillation in LC spike
rate that is thought to promote the transition to cortical
heightened excitability (16–18). However, during urethane
anesthesia, rhythmic LC activity occurs not only at �1–2Hz
but also at �5Hz (17). Here, we studied the nature and the
directionality of the LC-PFC interaction during these faster
5-Hz fluctuations of LCmultiunit activity (MUA).
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In the present study, we monitored LC-MUA and wide-
band extracellular activity from the prelimbic division of
the prefrontal cortex (PFC) in urethane-anesthetized rats.
Importantly, although recording LC-MUA for long durations
and with stable spiking activity in behaving animals contin-
ues to present an immense challenge, anesthesia permits
stable, long-lasting recordings to study physiological interac-
tions between the LC and PFC. Here, we report cross-regional
phase-amplitude coupling between LC-MUA 5-Hz oscilla-
tions and high c (hc; 60–200Hz) LFP power in the PFC.
Transient increases in PFC hc power preceded LC-MUA 5-Hz
oscillation peaks by a delay consistent with the known con-
duction velocity from the PFC to the LC. hc transients were
associated with PFC unit-pair spike synchrony. Taken to-
gether, our results demonstrate that during epochs when LC
population firing rate oscillates at 5Hz, hc transients may be
a sign of PFC top-down excitatory control over the LC.

MATERIALS AND METHODS

Subjects

All experimental procedures were carried out with approval
from the local authorities and in compliance with the German
Law for the Protection of Animals in experimental research
(Tierschutzversuchstierverordnung) and the European
Community Guidelines for the Care and Use of Laboratory
Animals (EU Directive 2010/63/EU). Male Sprague-Dawley
rats (350– 450g) were used. Animals (specific-pathogen-free)
were ordered from Charles River Laboratories (Sulzfeld,
Germany). Animals were pair-housed and on a 0800 to 2000
dark to light cycle. Data were collected from rats used in a
prior study (18).

Anesthesia and Surgical Procedures

Rats were anesthetized using an intraperitoneal (ip) injec-
tion of urethane at a dose of 1.5 g/kg body wt (Sigma-Aldrich,
U2500). Oxygen was administered throughout the procedure
and body temperature was maintained at 37�C using a heat-
ing pad and rectal probe to monitor body temperature. The
skull was leveled to 0�, such that the difference between
lambda and bregma was less than 0.2mm.

Stereotaxic Coordinates and Electrode Placement

Electrodes were targeted for the LC and the prelimbic cor-
tex (PL). The coordinates for LC were 4.0mm posterior from
lambda, 1.2mm lateral from lambda, and �6.0mm ventral
from the brain surface (implanted at a 15� posterior angle).
The following coordinates, in relation to bregma and the
brain surface, were used for PL: 3.0mm anterior, 0.8mm lat-
eral, and 3.0mmventral.

The LC electrode was targeted based on standard electro-
physiological criteria. These criteria included a slow sponta-
neous firing rate, biphasic response to noxious sensory
stimuli (foot shock), audible presence of jaw movement-re-
sponsive cells in the mesencephalic nucleus of cranial nerve
V with undetectable single units (<0.2mV) from that struc-
ture. LC electrode placements were also verified using histo-
logical examination in 50-μm sections that were stained for
cresyl violet or a 3,30-diaminobenzidine (DAB) and horse rad-
ish peroxidase reaction with hydrogen peroxide to visualize

an antibody against tyrosine hydroxylase (the catecholamine
synthesis enzyme).

Electrodes

The LC was recorded using either a single tungsten probe
(FHC, Model UEWMFGSMCNNG) or a multichannel silicone
probe (NeuroNexus, Model A1x32-Poly3-10mm-25s-177-A32).
Deep-layer PFC LFP was recorded using a single tungsten
probe (FHC). The impedance was 200–800 kX. For record-
ings of PFC single units, a Neuronexus A4x2-tet-5mm-500-
400-312 probe was used. The probe was oriented running an-
terior-posterior in the deep layers.

Recording and Signal Acquisition

A silver wire inserted into the neck muscle was used as a
reference for the electrodes. Electrodes were connected to
a preamplifier (in-house constructed) via low noise cables.
Analog signals were amplified (by 2,000 for LC and 500 for
cortex) and filtered [8 kHz low pass, direct current (DC)
high pass] using an Alpha-Omega multichannel processor
(Alpha-Omega, Model MPC Plus). Signals were then digi-
tized at 24 kHz using a data acquisition device (CED,
Model Power1401mkII).

Administration of Clonidine

At the end of the recording, a 0.05mg/kg dose of the a-2
adrenergic agonist clonidine was injected intraperitoneally
(Sigma-Aldrich, Product identification C7897). The recording
was continued at least until LC activity ceased.

Determination of Cortical State

Cortical states were separated based on characteristics of
the LFP signal examined in 7-s windows. Two characteristics
were considered: a ratio of the cortical LFP power below 4Hz
and the power above 20Hz and the kurtosis of the distribu-
tion of LFP values. The LFP was first decimated and low-pass
filtered to 500Hz. The distribution of power ratio values and
kurtosis values for each 7-s window were fit with Gaussian
mixturemodels. We used the power ratio to label windows of
data as putative activated states if they were less than 1
standard deviation from the lower Gaussian’s mean or they
were labeled putative slow oscillation states if they were
more than �1 standard deviation from the higher Gaussian’s
mean. We used the kurtosis values to label windows of data
as putative activated states if they were >1 standard devia-
tion from the higher Gaussian’s mean or as putative slow os-
cillation states if they were<1 standard deviation from the
lower Gaussian’s mean. Any labels that agreed across the
kurtosis-based labels and the power ratio-based labels were
used as the final state assignments for those windows. Any
windows that were unlabeled or did not agree across the two
characteristics were ignored to conservatively reduce mis-
taken classifications. The raw LFP signals were plotted for
visual inspection to assess the accuracy of labeling.

Detection of LC MUAOscillations

The LFP (digitized and stored at 24kHz) recorded in the LC
was bandpass filtered for high frequency, spiking activity
(400–3,000Hz) to obtain a multiunit spiking signal, as would
be done typically for sorting single-unit spikes. The signal was
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downsampled to 9kHz. The signal was then rectified. This sig-
nal is termed the MUA signal. The power spectral density
(PSD) of the MUA signal was obtained using a multitaper esti-
mation generated from the Chronux toolbox inMATLAB (par-
ams.tapers = [3 5]). For each recording session (one per rat),
the PSD of LC-MUA was calculated in 4-s windows. The
resulting PSDs were k-means clustered. An optimal k was
determined by a gap statistic. The mean PSD for each cluster
was plotted and manually inspected for a 4- to 7-Hz peak. In
some cases, multiple clusters of PSDs had a peak in the 4–
7Hz range with the only difference being the amplitude of the
spectral peak. For each recording session, all clusters with 4-
to 7-Hz peak were accepted as epochs with LC-MUA 5-Hz
oscillations.

Cortical Spectrogram Calculation

Cortical spectrograms, triggered on LC-MUA oscillation
peaks, were calculated as follows. The LC-MUA signal was
bandpass filtered at around a 5-Hz peak frequency (4–6Hz)
and Hilbert transformed to obtain the instantaneous phase.
We selected peak times that occurred during the 4-s win-
dows with 5-Hz oscillations (defined by PSD clustering, see
METHODS section). A cortical spectrogram was generated
for ±5 s around this peak using a complex Morelet wavelet
transform. The large window was used to discount edge arti-
facts. The resulting analytic amplitudes were then cut to a
small time around the oscillation. At each cortical frequency,
the spectrogram was normalized as a Z-score. The normal-
ization was done around each LC-MUA oscillation peak,
then averaged across peaks for each rat. The presented spec-
trograms are the averages across rats.

Coupling between LC-MUA Oscillation Phase and
Cortical LFP Oscillation Amplitude

The phase-amplitude coupling was calculated using the
LC-MUA signal as the oscillation for phase and the cortical
LFP signal (downsampled to 9kHz) as the oscillation for am-
plitude. The relationship between phase of one frequency
and the amplitude of another frequency was quantified
using the modulation index (MI), which is based on the
Kullback–Leibler divergence of the circular distribution
from uniformity (19). MI was calculated for each frequency
pair (a frequency for phase, fP, and a frequency for ampli-
tude, fA). Only fA that were two times fP were considered, so
that phase of at least two oscillation cycles was present for
measuring the MI. We binned phase into 18 bins, where j is a
bin, and then calculated the mean amplitude, hAfAi of fA in
each phase bin of fP. This resulted in a phase distribution of
amplitudes, hAfAihfP ðjÞ. We normalized the distribution by

dividing each bin by the sum across all bins. The resulting
distribution is as follows:

P jð Þ ¼
hAfAihfP ðjÞ

PN

k¼1
hAfAihfP ðkÞ

;

where k is the phase bin and N is the total number of phase
bins. The third step was to quantify the difference of this am-
plitude distribution from a uniform circular distribution.
This was done using the Kullback–Leibler divergence. The

first step in calculating the divergence was to calculate the
Shannon Entropy of P(j), which is as follows:

H Pð Þ ¼ �
XN

j¼1

P jð Þlog ½P jð Þ�:

The second step was to calculate the Kullback–Leibler
divergence of the amplitude distribution from a uniform dis-
tribution, which is related to Shannon Entropy as follows:

D P;Uð Þ ¼ log Nð Þ � HðPÞ;
where U is the uniform circular distribution. Note that, if the
amplitude distribution is flat and the amplitude of fA is the
same for all phase bins of fP, then log(N) is the maximal possi-
ble entropy in which P(j) = 1/N and phase is equally distributed
across all bins, j. Accordingly, the Kullback–Leibler divergence
is normalized by the maximal entropy, log(N), in which case a
uniformly distributed P(j) that is not different fromUwill push
the MI to 0. Otherwise, MI will range 0 to 1, with 1 indicating
that oscillations of fA exist in a single fP(j). TheMI is thus,

MIfA;fP ¼ DðPfA;fP
;UÞ

log ðNÞ :

To control for chance modulation, we constructed a surro-
gate set of MI values to measure the level of coupling
between fA and fP that could occur by chance. We shuffled fA
and then calculated a surrogate MI. We performed this pro-
cedure 100 times. A 99% confidence interval threshold was
subtracted from the MI of the real data, such that values
equal to or less than 0 were nonsignificant.

PFC Single-Unit Spike Sorting

Single-unit spike sorting was performed usingMountainSort
(20). Units were assessed for amplitude stability over time, a
low proportion (<1 quarter of the shoulder of the auto-correlo-
gram) of spikes in the ±1 ms interval of the autocorrelogram,
and cross-correlograms not indicative of recordings from the
same unit split intomultiple clusters.

Joint Perievent Time Histograms

The joint perievent spike histogram was calculated in 10
ms bins to capture spiking synchronized across single units
with enough temporal proximity to evoke postsynaptic
effects on target neurons (21–23). The joint perievent time
histograms were normalized by subtracting the top 5% value
obtained by selecting random event times that were equiva-
lent to the number of hc events. We plotted the coincidence
histogram using the values along the ±30 ms diagonal of the
joint perievent time histogram. These values were chosen
because the hc transients to which the histograms were
aligned lasted�60ms.

Statistical Analyses

Mean and standard error are reported for normally distrib-
uted data. Median and standard deviation are reported for
data that were not normally distributed. The names of the
statistical tests are reported in the results and includes the
test statistic and P value. When results were significant, a
post hoc power calculation was included.

Data were tested for normality using a Shapiro–Wilk test
(a=0.05) and homogeneity of variance (a=0.05) using an F
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test (vartest2 in MATLAB). A Wilcoxon–Mann–Whitney test
was used for comparing two groups when data were not nor-
mally distributed, otherwise a t test was used. In cases where
variance was inhomogeneous, we used Welch’s t test. Effect
sizes are reported as Cohen’s D for analysis of two groups.
Post hoc power was calculated with sampsizepwr inMATLAB.
For circular data, uniformity was assessed using Rayleigh’s
test for circular uniformity (a=0.05) in the CircStat toolbox in
MATLAB (24).

RESULTS
Our goal was to study the nature and directionality of LC-

PFC interactions during epochs when LC population firing
rate oscillated at 5Hz. For this purpose, we used urethane-
anesthetized rats, a common model for studying LC-PFC
interactions (12, 14, 17, 18, 25, 26). We recorded wide-band
(0.1–8kHz) extracellular activity from deep layers of the pre-
limbic division of the rat PFC and from the LC core. LC-MUA
was measured by first bandpass filtering (400 Hz to 3kHz) to
resolve extracellular spiking and then rectifying the signal.
Figure 1A shows an example trace of bandpass filtered
extracellular spiking signal (gray line) and the rectified LC-
MUA signal (purple line). Large amplitude fluctuations in
LC-MUA are generated primarily by action potentials pro-
duced by the neuronal population within 300 μm of the elec-
trode (27, 28). This recording radius is comparable with the
smallest dimension of LC core (29). Therefore, MUA was
likely only capturing LC neuronal activity. We verified that
the MUA originated from LC norephinephrine (NE)-contain-
ing neurons by injecting clonidine (0.05mg/kg, ip) at the
end of the recording session. Clonidine completely abolished
the extracellular spiking that contributes to MUA signal in

all rats (an example rat is shown in Fig. 1B). Clonidine
inhibits LC norepinephrine (NE) neurons by binding to
a-2 auto-inhibitory adrenoreceptors present on the soma
and dendrites of LC-NE neurons (30). Clonidine adminis-
tration discriminates extracellular unit spiking by LC-NE
neurons from surrounding non-LC neurons because struc-
tures in the vicinity of the recording electrode do not have
a-2 receptors (31).

Consistent with an earlier report on LC-MUA (17), we con-
firmed that LC-MUA oscillates at both 1–2Hz and 5Hz during
urethane anesthesia. We characterized LC-MUA oscillations
by calculating the power spectral density (PSD) of the LC-
MUA. For each recording session (n = 35 rats), we calculated
the PSD in 4-s epochs and clustered them using principal
components analysis and k-means clustering. Epochs with
�5-Hz oscillations of LC-MUA were identified as a cluster
with a peak in the 4–7Hz range. Figure 1C shows the average
power spectrum of all 4-s data epochs with LC-MUA 5-Hz
oscillations versus epochs without LC-MUA 5-Hz oscillations.
Figure 1D shows an example clip of LC population rhythmic
firing at 5Hz. By examining the power of LC-MUA firing rate
in 4-s windows, we reveal numerous epochs in which the
recorded LC population activates and deactivates periodically
every�200ms (i.e., at 5 cycles per s).

We next determined how LC single-unit firing rate fluctu-
ated during LC-MUA 5-Hz oscillations. The oscillation can-
not be detected in LC single units because units fire only
�1Hz. We instead assessed the relationship between single-
unit spike timing and the LC neuronal population oscilla-
tion. Nearly all single units (67.3% of 168 units) were signifi-
cantly phase locked (Rayleigh’s test for circular uniformity,
P< 0.05) to the peak of the LC-MUA 5-Hz oscillation (i.e., the
purple line in Fig. 1). Prior work has defined two types of LC
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Figure 1. Multiunit activity (MUA) in the
locus coeruleus (LC) exhibited rhythmic 5-
Hz fluctuations. A: high-pass filtered
(>400Hz) extracellular activity (gray line)
recorded from the LC. The band-limited
power (purple line) was obtained by recti-
fying the 400–3,000Hz bandpass-filtered
signal. B: systemic administration of cloni-
dine caused cessation of LC-MUA. C: the
average LC-MUA power spectrum (nor-
malized by total power) during epochs
with and without LC-MUA �5-Hz oscilla-
tions (n =25 of 35 rats). Each 4-s recording
epoch was classified as LC-MUA 5Hz or
non-5Hz epoch and averaged within rat.
The plots present the grand average
across rats with standard error shown as
shading. D: an example of LC-MUA 5-Hz
oscillatory activity. The gray line is the
high-pass filtered LC-MUA (>400Hz). The
purple line is the band limited power (pur-
ple line) of the 400–3,000Hz bandpass-
filtered signal, as in A and B. The orange
line is the 4–6Hz filtered LC-MUA. The
wavelet transform of the purple line (LC-
MUA) shows a clear 4- to 6-Hz oscillation.
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single units, those with narrow waveforms and those with
wide waveforms (18). About 52.6% of 76 narrow-type units
and 79.3% of 92 wide-type units were phase locked to the LC-
MUA 5-Hz oscillation. Thus, LC single units emit spikes as
part of the LC neuronal population oscillating at 5Hz. Given
that 5-Hz oscillations are observable in only the LC-MUA sig-
nal, the remaining analyses focused on LC-MUA.

Prior research has demonstrated that slow (1–2Hz) rhyth-
mic LC activity occurs during sleep and anesthesia when the
cortex is in a slow oscillation state in the same frequency
range (14, 16–18, 26, 32) However, the brain state during
which LC-MUA 5-Hz oscillations occur is not known. We
assigned each 4-s recording epoch with LC-MUA 5-Hz oscil-
lations to a “slow oscillation” or an “activated” cortical state
(see MATERIALS AND METHODS for cortical state classification).
The slow oscillation state consisted of periodically (1–2Hz)
alternating epochs of high and low neuronal excitability,
whereas the “activated” state was one of continuously
enhanced neuronal excitability (Fig. 2A). LC-MUA 5-Hz oscil-
lations occurred mostly during the cortical activated state
(Fig. 2B). Significantly more epochs of LC-MUA 5Hz were
observed during the cortical activated state in comparison
with the slow oscillation state (v2 = 3,494.7, P < 0.0001).
Having observed a brain state-dependency of LC-MUA 5-Hz
oscillations, we focused the remaining analyses on the re-
cording sessions with more than 40s of LC-MUA 5-Hz oscil-
lations in the activated cortical state. In total, 19 of 35
recording sessions had less than 40s of LC-MUA 5-Hz oscil-
lations and the cortical activity recorded in those rats
consisted nearly entirely of the slow oscillation state
(77.8%±8.1% of total recording time). In contrast, the 16 re-
cording sessions with LC-MUA 5-Hz oscillations were in the
cortical activated state for 74.3%±7.7% of the recording
session.

Frequency-Specific Modulation of the PFC Activity
during LC Population Oscillations at�5 Hz

Although a phasic increase in LC-MUA has been proposed
as a driver of the cortical activated state, the nature and
directionality of LC-PFC interactions during epochs when LC
population activity oscillates at 5Hz have not yet been char-
acterized. We first measured the relationship between the
phase of LC-MUA 5-Hz oscillations (i.e., relative increases
and decreases in LC population spike rate) and changes in

the power spectrum of the PFC LFP. This relationship was
quantified using a modulation index (MI) that measured the
nonuniformity of the phase distribution of PFC LFP ampli-
tude between 30 Hz and 300Hz (19). Following the method
of Tort et al. (19), we subtracted the 99th largest MI value
from 100 shuffled data sets, such that any MI values that are
larger than zero are significant (one-sided permutation test,
P < 0.01). Subtracting the 99% confidence intervals from the
measured MI produces extremely small, yet significant MI
values (typically, 10�3). The values shown in Fig. 3A are simi-
lar to those reported in other studies (33–35). Moreover, LC-
MUA 5-Hz oscillation peak-triggered cortical power spectra
show a clear power modulation (Fig. 3B). This confirms the
results of the MI analysis.

The MI analysis revealed that LC-MUA 5-Hz oscillations
are associated with frequency band-specific modulation of
PFC LFP power between 60Hz and 200Hz. This band
includes high c (hc) as well as high-frequency oscillations
(HFOs) (36–39). We will refer to this range (60–200Hz) as the
hc band, although it also includes HFOs. Figure 3A shows
the average MI value across all recording sessions in which
LC-MUA 5-Hz oscillation epochs were present during the corti-
cal activated state. Four of these rats lacked a clearmodulation
in the PFC power spectrum that was inconsistent with the pop-
ulation mean (especially in the frequencies higher than
250Hz) and were excluded. The excluded data are shown with
typical examples from individual rats in Supplemental Fig.
S1 (https://figshare.com/s/56f03e7eabce0f2a6508). A boxplot
illustrates the distribution, across rats, of the average MI value
for 4–7Hz phase with hc (60–200Hz) amplitude (Fig. 3B). The
temporal relationships between the PFC hc amplitude and LC-
MUA 5-Hz oscillation phase are shown on PFC LFP power
spectrograms triggered on the peaks of the LC-MUA 5-Hz oscil-
lation (Fig. 3C). Consistent temporal relations between the LC-
MUA rhythmic increases at 5Hz and PFC LFP power increases
exclusively in the hc band contrasts with prior work, demon-
strating LC activation triggering a less specific (>30Hz)
change in PFC LFP (25, 26).

The Directionality of the LC-PFC Interaction

Having established that transient increases in PFC hc
power are phase-locked to LC-MUA 5-Hz oscillations, we
turned to assessing the directionality of this interaction. The
perievent spectrogram in Fig. 3C shows a PFC hc power
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change preceding the increase in LC-MUA activity, which
suggests a directional interaction from the PFC to the LC.
Indeed, the PFC can also exert both inhibitory and excitatory
influences on LC activity (12, 14); however, interactions can
also occur in the opposing direction given that the LC is an
ascending neuromodulatory system that drives changes in
the cortex (1–8). To infer the directionality of the LC-PFC
interaction during epochs of LC-MUA 5-Hz oscillations, we
used information theoretic measures to calculate the trans-
fer entropy (TE) from the phase of the LC-MUA 5-Hz signal
to the amplitude of the PFC LFP hc signal, as well as PFC to
LC (40, 41). This measure quantifies the ability to predict the

current state of signal Y based on its past alone compared
with when the past of signal X is included. For example,
higher TE from X to Y would indicate that signal Y can be
predicted from the past of signal X beyond what signal Y’s
self-history allows one to predict about its current state.

We observed that the direction of interaction during LC-
MUA 5-Hz oscillations was actually predominantly from the
PFC to the LC (Fig. 4A). Transfer entropy was larger from the
past of the PFC LFP hc amplitude to present LC-MUA 5-Hz
phase than vice versa (Wilcoxon rank-sum test, Z=4.128, P =
3.66E-5, power= 1.0, Cohen’sD=2.833). This result is consist-
ent with the perievent spectrogram presented in Fig. 3C,
which show themedian latency from the PFC hc powermod-
ulation to the LC-MUA 5-Hz oscillation peak is 29.1 ms (Fig.
4B). This delay after the hc transient is consistent with the
previously reported glutamatergic conduction time from the
prelimbic division of the PFC to the LC in the rat (average 35
ms, range = 10–70 ms (12). The higher TE values from the
PFC to the LC, as well as the consistency of the PFC hc to LC-
MUA 5-Hz delay with the known conduction time from PFC
to LC suggest that PFC hc transients may indicate the timing
of the top-down excitatory input to LC.

The source of the cross-frequency LC-PFC interaction dur-
ing epochs when the LC population oscillates at 5Hz is
unknown. However, the LFP signal, which reflects perisy-
naptic input around the electrode, did not have a 5-Hz oscil-
lation in the PFC (Fig. 5). Therefore, it is unlikely that 5-Hz
rhythmic synaptic input to the PFC is driving periodic
changes in PFC activity, which, in turn, drive rhythmic
changes in LC-MUA at 5Hz. Accordingly, the synaptic and
network events that drive this LC-PFC interaction to occur
periodically at�200ms are, at present, unknown.

The PFC Spike Rate during LC-PFC Interactions

The extracellular potential changes recorded in PFC as hc
oscillations are highly localized and cannot directly affect LC
neurons; rather, it is the spiking output of PFC neurons that
drives LC activity. We next assessed the spike rate of PFC
units during LC-MUA 5-Hz oscillations. To assess how PFC
spiking and hc power relate to 5-Hz rhythmic fluctuations of
LC-MUA, we aligned PFC multiunit spike rate to the peaks of

A

B

C

3 4 5 6 7 8 9

1

2

3

PF
C

 L
FP

 o
sc

illa
tio

n 
(H

z)

500

250

80
60
40
30

100
150
200

0

1

2

3
x10-4

LC-MUA oscillation (Hz)

0

1

2

3

av
er

ag
e 

M
I i

n 
w

in
do

w
 o

f i
nt

er
es

t

x10-4

-150 -100 -50 0 50 100 200
Time around 

LC-MUA 5 Hz peak (msec)

P
FC

 L
FP

 fr
eq

ue
nc

y 
(H

z)

150

200

250

500

80
60
40
30

100

Figure 3. The phase of locus coeruleus-multiunit activity (LC-MUA) 5-Hz
oscillations was associated with a frequency-specific (60–200 Hz) modu-
lation of prefrontal cortex (PFC) local field potential (LFP). A: the average
modulation index (MI) is plotted for each LC-MUA oscillation phase against
PFC LFP oscillation amplitude. Zero values (black) are not significantly
higher than those expected by chance (one-sided permutation test, P <
0.01). B: the boxplot shows the distribution of MIs, across rats, in the win-
dow of interest (4- to 7-Hz phase, 60- to 200-Hz amplitude). For each rat,
the values in this window of interest were not normally distributed
(Shapiro–Wilk test) and the mean was influenced by very high values (i.e.,
the “hot spot” in A). As we wanted to quantify the magnitude of this hot
spot across rats, we used the mean, rather than the median, to obtain a
summary MI value for each rat. The boxplot shows the distribution of the
MI hot spot magnitude across rats. Two outlier MIs (highly significant),
which were 9.5E-4 and 5.4E-4, are not shown on the boxplot to allow visu-
alization of the distribution of data. C: the PFC LFP power spectrogram is
plotted aligned to the peak of LC-MUA 5-Hz oscillation. The spectrogram
was first averaged across LC-MUA 5-Hz peaks and then averaged across
rats. The white line shows LC-MUA (4–6Hz filtered) aligned to peaks and
averaged over all accepted sessions. The PFC LFP power is Z-score nor-
malized within each frequency bin. The high c (hc) power increase preced-
ing the peak of LC-MUA 5-Hz oscillation is apparent.
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the LC-MUA 5-Hz oscillation. We highpass filtered the wide-
band PFC extracellular signal (at 500Hz), detected spike
times by thresholding the signal (3.5 standard deviations
from the noise), and constructed a spike density function
from those spike times using a 100 ms Gaussian kernel. We
found that PFC MUA was modulated around LC-MUA 5-Hz
oscillation peaks, albeit with a slight phase shift compared
with PFC hc power (Fig. 6A).

Having demonstrated that both PFC spiking and PFC hc
power cofluctuate around the peak of LC-MUA 5-Hz oscilla-
tions, we predicted that PFC single units would be phase-
locked to LC-MUA 5-Hz oscillations. In four of the rats shown
in Fig. 3, we used a 4-shank silicone probe (200 μm between
shanks) placed in the anterior-posterior plane within the
PFC deep layers. These probes were chosen to isolate PFC
single units. Each shank had two recording tetrodes sepa-
rated by 500 μm in the dorsal-ventral direction. Using these
probes, we recorded 83 PFC single units (SE = 17 ±2 units per
rat, range = 9–22 units). Single-unit spike trains were con-
verted to spike density functions using a 100-ms Gaussian

kernel. In line with this prediction, we found that 20 of 83
PFC single units (27%) were significantly phase-locked to LC-
MUA 5-Hz oscillations (Rayleigh’s test for circular uniform-
ity, P < 0.05). The phase preference of these PFC units con-
centrated around the trough of the LC-MUA 5-Hz oscillation
(Fig. 6B). The spike rate of the PFC single units, which were
phase locked to LC-MUA 5-Hz oscillation, increased �100
ms before the LC-MUA peak (Fig. 6C). This delay is inconsis-
tent with the known conduction delays (�29 ms) from the
PFC to the LC (12). Our findings suggest that the spiking of
some PFC single units has a temporally consistent relation-
ship with the LC-MUA 5-Hz oscillation, but that these spikes
occur far earlier (�100 ms) in the LC-MUA oscillation cycle
tomonosynaptically drive its ascending phase given conduc-
tion delay of �29 ms. Although polysynaptic influence of
these PFC spikes on LC could not be ruled out, our sample of
PFC units does not support the claim that PFC spike output
monosynaptically drives the 5-Hz rhythmic firing in LC.

The role of PFC spikes phase locked to the trough of the
LC-MUA 5-Hz oscillation remains unclear (Fig. 6B). The fir-
ing of a subset of PFC single units during the trough of the
LC-MUA 5-Hz oscillation suggests that they may have a role
in the rhythmic prefrontal-coeruleus interaction. One possi-
bility is that an increase in PFC spiking �100 ms before the
LC-MUA peak is a local circuit mechanism that drives both
the hc power increase and synchronous PFC spiking. We
examined this possibility by calculating TE between PFC hc
amplitude and PFC single units phase locked to LC-MUA 5-
Hz oscillation (Fig. 7). We found that PFC spiking was predic-
tive of the upcoming hc power increase (Wilcoxon rank-sum
test due to lack of normal distribution, Z=2.61, P = 0.009,
Cohen’s D=0.776, power=0.736). The spiking of PFC units
with no consistent relation to LC-MUA 5-Hz oscillation
(Rayleigh’s test for circular uniformity, P > 0.2) was not pre-
dictive of the hc power change (Wilcoxon rank-sum test,
Z= 1.429, P = 0.153, Cohen’sD=0.343, power=0.336).

The PFC Unit-Pair Spike Synchrony during LC-PFC
Interactions

Synchronous spiking between PFC neurons could be an al-
ternative mechanism mediating the PFC effects on the LC.
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We tested the possibility that the increases in PFC hc power
are associated with a transient increase in synchronous spik-
ing across PFC single units. We constructed joint perievent
time histograms of PFC single-unit spiking using a ±60-ms
window around PFC hc transients (42, 43). This window was
justified as a window that captured the entire duration of the
hc power increase. Figure 3C shows the power transient last-
ing �60 ms. A ±60-ms window centered on the hc power
peak captures the entire hc transient plus 30 ms of “base-
line” on either side. This enabled us to test the hypothesis
that PFC single unit pairwise synchrony increases during hc

power transients. The diagonal of the joint perievent time
histogram was used to calculate a coincidence histogram for
each of the 808 pairs of PFC single units. The coincidence
histograms serve to characterize synchronous spiking
around the time of the hc transient (t = 0 in Fig. 8). We found
an increase in synchrony around PFC hc power peaks in half
(48%) of PFC single-unit pairs (Fig. 8). The synchronous spik-
ing occurred�20 ms before the hc power peak and lasted for
�50 ms. The hc power peak itself occurred �29 ms before
the LC-MUA 5-Hz peak, which means that synchronous PFC
spiking transiently increased �49 ms before the LC-MUA 5-
Hz peak and lasted�21 ms after the LC-MUA 5-Hz peak. PFC
spikes occurring 20 ms after the hc peak are occurring dur-
ing the descending phase of the LC-MUA 5-Hz oscillation.
These spikes are occurring while LC-MUA is still elevated.
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PFC spikes occurring up to 20 ms after the LC-MUA 5-Hz
peak can still drive the elevated LC activity because the
monosynaptic spike conduction time from PFC to LC is as
fast as 10ms for some PFC units. These data suggest a poten-
tial mechanism for PFC monosynaptic control over LC firing
using transiently synchronous spiking during hc transients.
However, it is important to note that the recorded PFC single
units may or may not project to the LC. In summary, it
appears that the subset of PFC neurons that spike during the
troughs of LC-MUA 5-Hz oscillations may drive local hc tran-
sients, which are themselves related to the synchronous
spiking of PFC units that may drive the LC-MUA increase.

DISCUSSION
In this study, we examined the relationship between rhyth-

mic (5Hz) increases in LC-MUA and neural activity in the PFC,
an important forebrain target of LC. In contrast to the well-
described slower (1–2Hz) rhythmic increases in LC spiking that
are observed during cortical slow oscillations (16–18), the LC-
MUA 5-Hz oscillations predominantly occurred during the acti-
vated cortical state devoid of cortical slow oscillations. Bymeas-
uring cross-frequency coupling between LC-MUA oscillations
within 1–10Hz range and the power spectrum of PFC LFP (30–
500Hz), we observed a systematic temporal relationship
between the phase of LC-MUA oscillations within a 4–6Hz
range and PFC hc power (60–200Hz). The transient increase in
PFC hc power preceded the LC-MUA 5-Hz oscillation peak by
�29ms. This time lag is consistent with the previously reported
orthodromic conduction times from deep layers of the prelim-
bic division of the PFC in rats (12). Furthermore, using transfer
entropy, we show that PFC hc power is temporally predictive of
LC-MUA 5-Hz phase. The transfer entropy and the biologically
plausible delay time are each evidence for the idea that PFC hc
transients may indicate the timing of the top-down excitatory
input to LC, at least under conditions when LC neuronal popu-
lation activity fluctuates rhythmically at 5Hz.

Hc transients are unlikely to have a direct synaptic effect
on LC neurons because they are highly local. We showed
that synchronous spiking between PFC single units occurs
during hc transients and reached maximum around the
peak of LC-MUA 5-Hz oscillation. We suggest that this
increased population synchrony in PFC may be top-down
excitatory input to LC. The timing between synchronous
PFC spiking and the peak of the LC-MUA oscillation is con-
sistent with the conduction velocity of the prefrontal-coeru-
leus projection. Synchronous spiking is an ideal candidate
for top-down glutamatergic control over LC neurons because
glutamatergic neurons spiking within �5 ms of one another
evoke a larger postsynaptic response (21–23). Collectively,
our findings suggest that the PFC hc transients and, crit-
ically, associated neuronal spike synchrony may be a sign of
PFC top-down control over LC population activity.

We also observed a subpopulation of PFC single units
(�27%) that increased their firing rate �100 ms before the
peak of LC-MUA 5-Hz oscillation. Given the conduction ve-
locity of the prefrontal-coeruleus projection, these spikes are
unlikely to monosynaptically drive LC-MUA. However, their
consistent timing in relation to the trough of LC-MUA 5-Hz
oscillation suggested that these spikes are involved in the
prefrontal-coerulear interaction. Transfer entropy analysis
revealed that the spikes of these PFC neurons were predic-
tive of the upcoming change in PFC hc power. Therefore, a
subset of PFC single units that are phase locked to the trough
of the LC-MUA 5-Hz oscillation (thus preceding the hc power
increase) may drive the hc transient and the associated
synchronized spiking in PFC. It also cannot be excluded that
PFC spikes consistently occurring �100 ms before the LC-
MUA peak could drive LC-MUA directly via multiple polysy-
naptic routes.

Overall, we propose that a local PFC circuit mechanism
drives the synchronous spiking that influences LC-MUA
(Fig. 9). Notably, most (67.3%), but not all LC single units
spiked as part of the LC population firing rate oscillation at
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Figure 9. A putative model of top-down prefrontal control
over the locus coeruleus (LC). We found that prefrontal cor-
tex (PFC) spikes were phase locked to the trough of LC-mul-
tiunit activity (MUA) 5-Hz oscillation. Given the 10- to 70-ms
conduction time from the PFC to the LC, this time point is
too early to conduct a signal that could evoke an increase in
LC-MUA spike rate (red part of the oscillation). Instead,
these PFC spikes were predictive of a local high c (hc;
hGamma) power increase (orange arrow, direction of trans-
fer entropy, TE). This hc transient was, in turn, predictive of
the subsequently increased LC-MUA (red peak). Data are
shown in Fig. 4A. The hc transient precedes the LC-MUA
peak by 29 ms. Data are shown in Fig. 3C and Fig. 4B. In a
window of �20 ms to þ50 ms around the hc peak (or �49
ms to þ21 ms around the LC-MUA peak), PFC single-unit
pairs spike with transiently increased synchrony (gray area
on x-axis). Data are shown in Fig. 8. A chain of neural events
from the PFC spikes time locked to the through of LC-MUA
5-Hz oscillation to hc-associated spike synchrony in the
PFC may drive an increase in LC spike rate.
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5Hz; these nonparticipating LC neurons may be unrespon-
sive to this type of PFC interaction and thus illustrate poten-
tial heterogeneity of the LC neuronal population. It remains
to be determined how the 5Hz rhythmicity in the LC
emerges and if it is specific to anesthesia or has functional
significance in behaving animals.
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