

AI ENABLEMENT COMPANION GUIDE:

POST‑ACQUISITION PLAYBOOK

2

AI Enablement Companion Guide – Post‑Acquisition Playbook

Preface to Section 1: Strategic Context & Technical Validation……………………………………………………………………………………………6

1.0 Overview………..7

1.1 Understanding the Difference Between AI and “AI” .. 7

The Disconnect Between The Aspirational Vision & The Reality ... 8

For the Acquirer, Apex SaaS Bridge Technology is the Tension Release That’s Needed .. 8

2.0 Unlocking the Potential of AI Ownership……….9

2.1 From Localized AI Patching to Enterprise-Wide AI Ownership .. 9

2.2 The AI Multiplier Effect ... 9

2.3 The AI Ownership Advantage ... 10

2.4 Coexistence, Not Disruption ... 11

Short Term: Compatibility and Enhancement .. 11

Medium Term: Apex as the Common AI Substrate... 11

Long Term: Path to AI Independence ... 12

2.5 Strategic Implications for the Fitness Acquirer .. 12

Apex Breaks Industry Parity .. 12

Apex Simultaneously Protects and Expands the Acquirer’s Market Share ... 13

Apex Unlocks New Revenue Streams .. 13

Apex Increases Morale of Internal Technology Teams & Empowers Them to Succeed ... 14

Liberation from Third Party AI Companies Who Seek to Replace the SaaS Industry ... 14

3.0 Technical Validation: The Mechanics Behind Apex’s Value…………………………………………………………………………………………..16

3.1 Overview .. 16

3.2 Data Model Schema .. 16

3.2.1 Member Data Layer .. 16

3.2.2 Agreement & Billing Layer.. 20

3.2.3 Staff & Operational Metadata .. 20

3.2.4 Product, Revenue Stream & GL Mapping ... 20

3.3 Fact Table Derivation Logic .. 21

3.3.1 Attendance Fact Table ... 21

3.3.2 Revenue Fact Table .. 22

3.3.3 Retention / Attrition Fact Table ... 22

3.3.4 Sales Performance Fact Table .. 23

3.3.5 Benchmarking & Cohort Fact Table ... 23

3.3.6 Closing Remarks ... 24

3.4 Onboarding Logic Tree ... 24

3.4.1 Input Mapping .. 24

3.4.2 Conditional Module Activation ... 24

3

3.4.3 KPI Scope Controls .. 25

3.4.4 Configuration Output Paths ... 25

3.4.5 Closing Remarks .. 26

3.5 Embedded Business Rules ... 26

3.5.1 System Thresholds .. 26

3.5.2 Risk Flag Logic ... 26

3.5.3 Module Trigger Rules ... 27

3.5.4 Staff Performance Attribution ... 27

3.5.5 Closing Remarks .. 27

3.6 Prompt-to-Schema Logic .. 28

3.6.1 Core Prompt Formats .. 28

3.6.2 Persona-Based Routing ... 28

3.6.3 Join & Cross-Table Behavior ... 28

3.6.4 Fallback & Filter Logic .. 29

3.6.5 Closing Remarks .. 29

3.7 KPI & UI Rendering Map .. 29

3.7.1 Dashboard Module Mapping ... 29

3.7.2 Tab + Modal Triggers ... 30

3.7.3 Widget Hierarchies ... 30

3.7.4 Chatbot UI Awareness ... 30

3.7.5 Closing Remarks .. 30

4.0 Integration Into New Systems of Origin……….32

4.1 Overview .. 32

4.2 Step-by-Step Integration Process .. 32

4.2.1 High Level Example Integration Budget .. 33

4.2.2 Team Roles & Responsibilities .. 33

4.2.3 Project Plan & Milestones ... 34

4.2.4 Risk Management .. 35

4.2.5 Significance for Acquirer ... 35

4.3 Why This Matters .. 35

4.4 Conclusion (Core Flow) .. 36

4.5 Error Handling & Schema Resilience ... 36

4.6 Security & Governance .. 36

4.7 Non-CMS Integration Scenarios (CRM Example) ... 37

4.8 Final Remarks .. 37

Preface to Section 2: (Post-Acquisition Growth & AI Roadmap)…………………………………………………………………………………………39

5.0 Data Lakes & Microservices Integration………40

5.1 Overview.. 40

4

Budget for Building an Industry-Specific AI Chatbot Using Data Lakes and Microservices 40

5.2 Cost Breakdown (Budget $160k–$300k) ... 41

5.3 Team Roles & Responsibilities .. 41

5.4 Project Plan & Milestones ... 42

6.0 Content Management System Potential Upgrade Paths……………………………………………………………………………………………….44

6.1 Overview of Current State and Rationale .. 44

Scenario A: Upgrade to Xperience by Kentico ... 44

Scenario A1: Resource & Allocation Model for Upgrading to Xperience by Kentico ... 45

Scenario A2: Project Plan for Upgrading to Xperience by Kentico ... 45

Scenario B: Migrate to Umbraco .. 46

Scenario B1: Resource & Allocation Model for Migrating to Umbraco ... 47

Scenario B2: Project Plan for Upgrading to Migrating to Umbraco .. 47

6.2 Scenario Comparison (Kentico vs Umbraco) ... 48

6.3 Chatbot Options ... 49

Chatbot Option A: Integration with the Upgraded Prototype ... 49

Chatbot Option A1: Integration with the Upgraded Prototype Budget .. 50

Chatbot Option B: Logic Extraction and Rewrite Project Plan .. 50

Chatbot Option B1: Logic Extraction and Rewrite Budget ... 51

7.0 “Enterprise Wide” AI Chatbot Capability Scenarios…….52

7.1 Integrate Complex Industry-Specific AI Chatbot with Upgraded Prototype .. 52

Project Plan & Milestones ... 52

7.2 Building an Industry-Specific AI Chatbot (Logic Extraction and Rewrite) ... 53

Project Plan & Milestones ... 53

5

6

Preface to Section 1: Strategic Context & Technical Validation

Part 1 establishes the strategic and technical foundations of Apex SaaS Bridge Technology. It begins by clarifying

the state of artificial intelligence in the SaaS market and defining the difference between “AI” features and enterprise-

wide intelligence. From there, it describes the problems that acquirers face with fragmented portfolios and explains

how Apex provides a unifying architecture to resolve those challenges.

This document is designed to be read in conjunction with the Apex SaaS Bridge Technology Manual. The Technology

Manual provides the full engineering blueprint — schemas, APIs, ETL flows, and configuration references — whereas

this diligence document translates those technical foundations into their strategic and commercial significance for

an acquirer.

Together, the two provide a complete view: the Technology Manual demonstrates how Apex is built, and this

document demonstrates why that architecture matters in the context of acquisition, integration, and long-term value

creation.

Sections 1.0 through 7.0 should be read as a complete diligence framework:

• Sections 1–2 articulate the market context, the ownership advantage of Apex, and the strategic implications

for the acquirer.

• Sections 3–6 provide detailed technical validation of Apex’s architecture, data model, logic encoding, and AI

readiness.

• Section 7 demonstrates the repeatable process by which Apex integrates new systems of origin and scales

through the Onboarding & Settings Wizard.

Together, these sections show not only what Apex is but why it works. This is the foundation of the acquisition

thesis: Apex is a proven, repeatable, and extensible intelligence layer that turns fragmented SaaS portfolios into

unified, AI-operable platforms.

7

1.0 Overview

1.1 Understanding the Difference Between AI and “AI”

AI is still early enough in its commercial lifecycle that even the market itself hasn’t agreed on a shared vocabulary —

the same term is used to describe both a narrowly trained feature buried in one module and a fully integrated,

enterprise-wide intelligence layer. This lack of clarity isn’t just academic; it has real consequences. It masks the gap

between what most companies have today and what they believe they’ve achieved.

In practice, this has created a world where two very different realities operate under the same banner:

• Enterprise-Wide AI: AI embedded across systems, functions, and workflows, powered by a unified data and

logic layer.

Depending upon where the discussion is being had within (or around) a given business context, this same

concept of “Enterprise-Wide AI” could also be commonly referred to as:

• “End-to-End AI”: Often used in product and vendor marketing; emphasizes that AI spans from data

ingestion to decision-making to execution across the value chain.

• “Full-Stack AI”: Borrowed from software engineering; in AI contexts, it means the organization

controls the entire AI stack — data, models, logic, delivery — instead of only consuming pieces of it.

• “Integrated AI”: Used by Gartner/Forrester to differentiate AI that is embedded in core business

processes vs. siloed, bolt-on features.

• “AI-Driven Enterprise”: Broader but well understood; used to describe companies where AI underpins

strategic and operational decisions across departments.

• Localized (Point Solution) AI: AI deployed in isolated pockets, each trained on its own siloed data, often

purchased from external vendors.

As with Enterprise-Wide AI, solutions which address narrow use cases, whose overall value proposition to
end users are surface level at best — is also known by many names.

• “Point Solution AI”: AI built for a single feature, function, or module (e.g., a chatbot for scheduling).

• “Single-Use AI”: AI deployed for one defined task; has no generalization to other processes.

• “Siloed AI”: AI locked to one system or dataset, unable to see or act beyond its local environment.

• “Task-Specific AI”: AI tuned for a specific operational job, like invoice classification or churn scoring.

• “Feature-Level AI”: AI embedded into a single feature of a larger application; the “checkbox” approach

to AI adoption.

• “Piecemeal AI”: Informal but vivid; different pockets of AI that don’t talk to each other.

• “Verticalized AI”: AI that is domain-specific but still narrow, operating in isolation from other vertical

processes.

8

The Disconnect Between The Aspirational Vision & The Reality

Regardless of what you call it, how the investors of SaaS technology companies and the users of SaaS technology

solutions define “Artificial Intelligence” is based on what they see in the movies or television:

They envision this all knowing “thing’ that can do anything they want, on command, figure anything out quickly, who is

never wrong and remembers every conversation you ever had with it.

The disconnect in how investors in SaaS and users of it aspirationally perceive AI and the reality of what achieving

enterprise-wide AI requires puts the technology teams within SaaS companies in an extraordinarily difficult situation.

SaaS companies in every area of the industry have become ecosystems of acquired technologies who were never

architected to be part of a holistic solution — let alone support enterprise-wide AI.

As a result, internal product teams within these SaaS ecosystems are often forced into a survival strategy we call

Localized AI Patching. This means deploying disconnected AI tools to solve isolated problems, with each AI instance

operating in its own vacuum:

• A chatbot in the member portal

• A churn model in the CRM

• An upsell predictor in the POS

These teams are not failing due to lack of talent or effort; they are constrained by the systems they’ve inherited.

Without a unifying data and logic layer, they can only deliver piecemeal AI, even as the organization talks about AI as

though it were a single, coherent capability.

For the Acquirer, Apex SaaS Bridge Technology is the Tension Release That’s Needed

Apex SaaS Bridge Technology will solve the single biggest problem that internal teams face at the largest SaaS

companies serving the Fitness space, and in doing so will unlock, for the first time, the ability to achieve true

enterprise-wide AI (both internally for themselves and monetize that value externally).

One company will gain this capability and that capability will break the log jam of parity that exists within the SaaS

space for Fitness, with every company who does not successfully acquire Apex being unable to respond (either at all,

or quickly enough to defend their market share).

The reality is that every company who seeks to acquire Apex SaaS Bridge Technology will have to confront the fact

that the AI and Data “Strategies” they are already employing are derivatives of the incompatible technology their

teams have inherited. Apex should not be a point of friction within a company’s current technology initiatives- it

should be viewed as a liberator of the people being forced into patchwork solutions due to the legacy systems they

have acquired.

Apex SaaS Bridge Technology is one of those rare enablers that amplifies the impact and value of everything it

connects to and everyone it touches. Among the vast landscape of reasons why acquiring Apex is an attractive

proposition, the fact that its addition can serve as a tension release point and new beginning is something that

should not be ignored.

9

2.0 Unlocking the Potential of AI Ownership

2.1 From Localized AI Patching to Enterprise-Wide AI Ownership

The distinction made in Section 1.0 between Enterprise-Wide AI and Localized (Point Solution) AI is not just semantic

— it determines who owns the most strategic asset in the age of AI: the intelligence layer itself.

• Localized AI, even when successful at the feature level, is almost always owned and operated by external

vendors or trapped in a single acquired system’s silo.

• Enterprise-Wide AI, by definition, sits on top of the organization’s entire operational data set, applies its own

embedded business logic, and can be connected to any model the company chooses — including models it

builds and owns outright.

Apex SaaS Bridge Technology is engineered to be that unifying layer. It is not another “point AI,” nor does it compete

with the buyer’s existing AI pilots. Instead, it enables those tools to perform better today and creates the foundation

for the buyer to develop AI capabilities that are entirely their own.

2.2 The AI Multiplier Effect

Apex makes every AI tool in the acquirer’s portfolio more accurate, consistent, and valuable — immediately — by

feeding each one the same clean, contextualized data and business rules.

How it works:

1. Data Ingestion: Multi-source extraction from CMS, POS, CRM, billing, scheduling, and ancillary platforms.

2. Data Harmonization: ETL pipelines transform source-specific structures into a unified schema, resolving

naming conflicts and normalizing relationships.

3. Embedded Logic Layer: Middleware codifies domain-specific business rules (retention scoring, upsell

triggers, benchmarking) into fact tables and calculated measures.

4. AI Integration Points: REST/JSON APIs and event triggers deliver this unified intelligence to any AI model;

optional microservices endpoints bypass CMS runtime for high-concurrency use cases.

Real World Implication:

A fitness SaaS provider offers a core CMS, a scheduling app, a sales CRM, and a member engagement

platform. Each has its own “AI” — lead scoring in the CRM, churn prediction in the engagement tool, class fill-

rate forecasting in scheduling — but because they’re siloed, these features don’t inform each other.

Connecting them through a unified data and logic layer sharpens every AI feature, driving higher customer

retention, boosting cross-sell adoption, and growing recurring revenue. At scale, that lift in ARR, and customer

lifetime value translates directly into a higher enterprise valuation.

10

2.3 The AI Ownership Advantage

Localized AI patching almost always benefits the vendor more than the platform owner. When external AI tools are

fed your proprietary operational data:

• The vendor’s model gets smarter across all their customers.

• Your competitive edge diminishes, because the intelligence you’re funding is not yours.

• In some cases, the vendor’s roadmap leads to them competing for your customers directly.

The implementation of Apex Saas Bridge Technology and layering proprietary AI models atop its foundation reverses

these dynamics completely:

• Data Sovereignty: Apex ingests data from every operational source (CMS, POS, CRM, billing, scheduling) into a

governed, unified warehouse under your control. Nothing leaves unless you allow it.

• Logic Sovereignty: Apex’s middleware encodes your proprietary business rules — retention algorithms, pricing

logic, customer segmentation strategies — as reusable, system-agnostic functions. This logic layer is portable

across models and immune to vendor lock-in.

• Model Sovereignty: You can train and deploy AI models that run on your infrastructure, using your data and

logic, and you retain the model weights. These models are strategic assets that can be sold, licensed, or

embedded across your product suite.

Real World Implication:

In many fitness software portfolios, the core club management platform is flanked by a constellation of

acquired products — a scheduling system for boutique studios, a CRM for sales teams, a mobile training app,

a marketing automation tool, and a standalone BI dashboard. On paper, these are presented as a “single

platform.” In reality, each runs on its own database and logic layer, connected only by surface-level

integrations.

The result is that AI lives in silos. The BI tool might run churn predictions based on attendance data from the

CMS. The CRM might use a scoring model to prioritize leads. The training app might recommend workouts

based on past sessions. But none of these models share context with each other, and each is blind to data the

others hold. A lead scored as “hot” in the CRM might simultaneously be flagged as “inactive” by the BI tool —

both correct in their own limited worlds, both wrong in the big picture.

With Apex in place, all of those systems continue doing what they do best, but they no longer think in

isolation. Apex ingests their data into a single, governed warehouse, applies one set of embedded business

rules, and serves that unified intelligence back to every module. Now, the BI tool, CRM, and training app are

working from the same truth. Lead scores and churn predictions are aligned, outreach is consistent, and AI

models are no longer vendor-owned black boxes — they’re powered by your own data and logic, and the

intelligence they generate is yours to keep.

11

2.4 Coexistence, Not Disruption

Apex does not replace your current AI initiatives — it integrates with and amplifies them from day one.

Short Term: Compatibility and Enhancement

Apex connects into your existing AI endpoints and begins feeding them unified, context-rich data. Even a vendor

chatbot trained only on one module will deliver more relevant and accurate outputs when its data is harmonized

across the business.

Real World Implication:

A multi-location operator is using a sales CRM module it was cross-sold by their Club Management System

provider to track and follow up with prospects. The CRM’s “AI” flags high-priority leads based on initial inquiry

activity — but it can’t see class trial attendance or app engagement because those sit in other (disconnected)

acquired systems.

In the first weeks after connecting to Apex’s unified data layer, the CRM’s lead prioritization suddenly reflects

the full spectrum of a prospect’s behavior across all platforms, without replacing the CRM or retraining its

team.

Medium Term: Apex as the Common AI Substrate

Over time, Apex becomes the feature store for all AI workloads. Internal teams stop building data prep pipelines

from scratch for each AI project and instead pull from the unified Apex layer, ensuring consistency, speed to market,

and governance.

Real World Implication:

A corporate fitness chain runs a membership CMS alongside a separate marketing automation product from

the same vendor’s portfolio. Both have their own segmentation logic and contact lists, forcing the marketing

team to manually reconcile differences before launching campaigns.

With Apex, a single shared data layer becomes the single audience source for both systems, so campaigns in

the marketing tool draw directly on up-to-date membership data without exports, imports, or duplicate

segmentation work.

12

Long Term: Path to AI Independence

The buyer can progressively swap third-party AI services for internally trained models — one use case at a time —

without losing momentum. Apex supports a hybrid AI estate during the transition, so business continuity is never at

risk.

Real World Implication:

An enterprise fitness operator has a portfolio of in-person fitness businesses, operating under multiple

brands, each brand leveraging a different Club Management System (because of the industry niche in which

they operate) with each CMS leveraging common adjacent Sales and Marketing SaaS systems — with all

platforms rolling up under a singular industry SaaS Provider’s broader technology ecosystem.

Historically, forecasting for attrition, seasonal demand, or ancillary revenue has been done brand-by-brand,

because no system could analyze the full portfolio in one pass. With Apex in place, the SaaS Provider can

offer unparalleled value to this client because its ability to bridge the data living in the disparate systems this

account uses will enable AI training models to look across all brands and member types, identifying macro

trends and opportunities the siloed forecasts never revealed — while each brand’s front-line tools continue to

operate as before.

This coexistence strategy allows internal teams to keep delivering visible AI wins while quietly shifting the

foundation from vendor-dependency to owned infrastructure. For leadership, it means there is no “rip-and-replace”

moment — only continuous improvement.

2.5 Strategic Implications for the Fitness Acquirer

Apex Breaks Industry Parity

Right now, the top SaaS platforms in fitness are locked in a parity trap — they offer similar features, built on similar

architectures, suffering from similar technical debt. Apex is a structural disruptor that allows one acquirer to leapfrog

competitors in AI capability without a multi-year rebuild. Once deployed, the gap is difficult to close because the

compounding value of owned AI increases over time.

Real World Implication:

In a crowded market, three of the largest providers each promote an “integrated platform” made up of multiple

acquired systems. A regional chain evaluating new technology demos the top contenders and finds them

nearly identical — similar modules, similar feature lists, similar pricing.

The first provider who can demonstrate portfolio-wide intelligence that can, in a single motion, identify at-risk

members, coordinate outreach, and measure outcomes across every module will stand out instantly. The

ability to not only say — but show customers how technology can power their business is a lethal strategic

advantage.

13

Apex Simultaneously Protects and Expands the Acquirer’s Market Share

Owning your AI means never depending on a third-party vendor whose incentives may shift. The inclusion of Apex

SaaS Bridge Technology ensures that your proprietary data isn’t training models that competitors will use. In a

market where AI-native challengers are entering, this is both an offensive and defensive advantage.

Real World Implication:

A fast-moving, AI-native startup enters the market with a single, modern platform designed from scratch to

unify data and member engagement. Established providers have the customer base but lack the structural

cohesion to match the startup’s real-time personalization.

The acquirer of Apex will be the only industry incumbent who could realistically extend unified intelligence

across its existing products to neutralize the startup’s differentiator before it gains a foothold.

Apex Unlocks New Revenue Streams

With Apex, Enterprise-Wide AI becomes a monetizable product line, enabling its acquirer to:

• Package predictive analytics, automation, and conversational AI into premium tiers for existing customers.

• License AI capabilities to adjacent verticals or partner ecosystems without exposing your core IP.

• Cross-sell AI-driven modules across your entire install base with minimal integration effort.

Real World Implication:

A national operator’s current member engagement tools are scattered across the CMS, a training app, and a

marketing automation platform — each with its own limited targeting logic. Today, cross-sell campaigns are

confined to whatever segmenting a single module can do, such as emailing all members who downloaded the

app but ignoring whether they’ve engaged with a trainer or attended specific programs.

By drawing on unified behavioral data — class bookings, digital program completions, attendance patterns —

the operator can surface highly specific opportunities (e.g., members completing an 8-week challenge but not

enrolled in ongoing programming) and package that as a premium “smart engagement” service for all

customer sites. This creates a monetizable add-on that feels immediately valuable to operators without

introducing a new standalone product.

14

Apex Increases Morale of Internal Technology Teams & Empowers Them to Succeed

Apex removes the architectural roadblocks that have forced internal teams into Localized AI Patching. Instead of

spending countless hours propping up capabilities atop a compromised foundation, internal technology teams can

unleash their true vision and creativity by delivering the enterprise-wide AI leadership they’ve always wanted instead

of being hamstrung by the technology they inherited.

Real World Implication:

In a large multi-brand fitness portfolio, the internal product team has been tasked with “making the platform

AI-driven” for over two years. The reality is they’re working with three different CMS codebases, and a half-

dozen acquired products, each with its own database and API quirks.

Every new “AI feature” request turns into a six-month integration project involving custom connectors,

duplicated data transformations, and endless reconciliation across systems that were never designed to work

together. The team knows what they could build if they had a unified foundation, but the inherited architecture

keeps them in constant firefighting mode — patching, syncing, and explaining why certain ideas can’t be

implemented.

After implementing Apex and establishing a unifying data and logic layer, the team can finally prototype

features that draw on the entire member lifecycle without re-engineering every integration from scratch.

Instead of debating which system “owns” a piece of data or writing yet another one-off connector, they can

focus on creating genuinely new capabilities — from predictive retention programs to intelligent scheduling

assistants — that ship in weeks instead of quarters. The shift from reactive patching to proactive innovation

changes how leadership views the team and how the team sees its own role in the company’s success.

Liberation from Third Party AI Companies Who Seek to Replace the SaaS Industry

Satya Nadella has been clear about Microsoft’s long-term vision: AI-native agents that can handle entire workflows

end-to-end, often removing the need for traditional software interfaces. In his words, the future is “agents that just do

the work” — navigating systems, making decisions, and executing tasks without the user ever touching the old UI.

That vision is powerful for Microsoft’s growth, but it should set off alarms for any SaaS company that currently

“hosts” Microsoft AI inside its own products.

In the fitness SaaS space, it’s easy to see how this could play out.

Imagine a portfolio with multiple acquired systems — a core club management platform, a sales CRM, a personal

training app, and a BI tool — each enhanced with Azure AI plug-ins. Azure provides the chatbot interface for the CRM,

generates workout plans in the training app, and produces predictive analytics in the BI dashboard.

These plug-ins are woven into the products’ workflows, marketed to customers as part of the platform’s value.

However, every member query, attendance record, and sales transaction that flows through those Azure services is

enriching Microsoft’s own foundation models. And because Azure’s business model is to build broadly applicable AI

agents, Microsoft can repackage those capabilities into vertical-specific solutions — including fitness — without the

SaaS intermediary. In this scenario, the SaaS company has not only trained a competitor’s brain, it has also

conditioned its own customers to interact with Microsoft’s AI as the trusted interface.

15

The danger isn’t hypothetical. If a Microsoft AI agent can connect directly to payment processing, scheduling, and

engagement tools — all of which exist as APIs in most modern SaaS stacks — it can bypass the SaaS platform

entirely. The SaaS brand becomes invisible, and the relationship shifts to Microsoft. What began as a shortcut to

“add AI quickly” becomes a slow disintermediation of the entire product line

Apex SaaS Bridge Technology, functioning as a strategic AI control layer, ends vendor dependency, preserves

competitive advantage, and creates the conditions for perpetual AI-driven innovation across the acquirer’s entire

portfolio.

16

3.0 Technical Validation: The Mechanics Behind Apex’s Value

3.1 Overview

The following sections were authored by Dr. James Joyce and are intended to provide the technical schema, data

model, and embedded AI logic layer that make the strategic capabilities outlined in the Sections 1.0 and 2.0 possible.

The following sections were designed to outline the architectural blueprint that allows Apex to unify disparate

systems, encode proprietary business rules, and operationalize enterprise-wide AI across an acquirer’s entire

portfolio — without replacing existing systems.

This material is designed to give acquirers and their diligence teams a clear view into the architecture that allows

Apex to:

• Integrate with and unify data from disparate systems.

• Apply and manage proprietary business rules in a reusable, system-agnostic way.

• Support multiple approaches to layering AI across a portfolio without replacing existing platforms.

3.2 Data Model Schema

This section describes the foundational data structures in Apex — the “raw ingredients” of the intelligence layer. Each

sub-layer is a table or entity grouping that holds a specific category of business data (e.g., members, agreements,

staff, products). This structure is intentionally platform-agnostic, so it can normalize data from multiple acquired

systems into a consistent model without requiring changes to the source systems.

3.2.1 Member Data Layer

The purpose of this layer is to track the individual identity, segment classification, engagement window, and lifecycle

status of the members (customers) of the target business (in this case, in person fitness or multi-function facilities)

Specific Fields:

• member_id

• first_name

• last_name

• gender

• age

• join_date

• cancel_date

• tenure_months

• member_type

20

3.2.2 Agreement & Billing Layer

The purpose of this layer is to categorize the method in which the member (customer) interacts or transacts with the

target business. More specifically, it is designed to connect each member with recurring or fixed-term plans. This

layer controls billing logic and engagement eligibility.

Specific Fields:

• agreement_number

• member_id

• plan_type

• start_date

• end_date

• agreement_status

• freeze_flag

• autopay_enabled

3.2.3 Staff & Operational Metadata

The purpose of this layer is to begin the process of connecting the impact that the staff working at the target

business have with the business outcomes which are reported. More specifically, in this instance are the

relationships that exist between individual staff members, paying customers and the transactions which come as a

result (sales, retention, upsells). This layer is used to establish attribution but also to begin determining the “types”

of customers that certain staff members might have more success with as opposed to others.

Specific Fields:

• employee_id

• assigned_role

• conversion_rate

• pt_sales_total

• service_type

• team_id

3.2.4 Product, Revenue Stream & GL Mapping

The source systems for the Fitness Club Management Technology sector are known as “Club Management

Systems”. Club Management Systems are, at their core, accounting systems which process payments and payroll in

addition to providing some scheduling capabilities. As a result of how these systems are designed (in tandem with

their originally intended utility), the manner in which data lives in these systems is consistent for accounting

practices.

21

In order to provide the necessary expanded utility for this data to end users (in addition to training an AI), this

forensic accounting/transaction data must be “bridged” into actionable, predictive sales and marketing data. As a

result, this level of the data schema functions to inject practical organization to past and current transactions so that

there is a pathway forward for this historical information to accurately inform present day business decisions, in a

manner that is both accurate and scalable.

Specific Fields:

• product_id

• product_type

• revenue_stream

• pricing_tier

• frequency

• gl_code

This base data model is the bedrock for everything that follows. A unified, well-defined schema ensures that when AI
models or analytics tools query the system, they’re pulling from a single, consistent truth — not reconciling
mismatched fields from different sources. This is what enables enterprise-wide AI without data silos undermining
accuracy.

3.3 Fact Table Derivation Logic

This section explores how raw transactional and operational data is transformed into “fact tables” — pre-calculated

metrics and indexes that power real-time analytics and AI. These calculations are encoded with domain-specific

knowledge, so they are ready for immediate use in predictive models and operational dashboards.

3.3.1 Attendance Fact Table

The purpose of this fact table is to establish a framework for humans (or AI) to understand the patterns, trends and

predictive analysis around the frequency, recency and cadence of active members (customers) relative to their

usage of the in-person fitness or multi-function facility, as a potential relational pretext for past/present and future

buying behavior and spending patterns.

Key Inputs:

• checkin_log

• class_roster

• facility_usage

Derived Fields:

• attendance_count

• avg_weekly_visits

• last_visit_date

• inactive_days

• attendance_index

22

3.3.2 Revenue Fact Table

The purpose of this fact table is to address the inconsistencies which often occur in accounting systems when

product, program or revenue stream naming conventions sometimes change or evolve based on events, promotions

or changes within the target business. These occurrences can often produce variations in the way things are named

which (to an algorithm, generalized AI or uninformed human) could provide incomplete or even misleading

information.

“Data driven” decisions rely on accurate data to inform the correct decisions. The accuracy of the data being used

requires a high degree of contextualization within its foundation before it can be trusted. The Revenue Fact Table is

one of many steps Apex takes to address these nuances in support of creating a solid, accurate foundation for

proper decision making.

Key Inputs:

• invoice_line_item

• product

• agreement

• GL mapping

Derived Fields:

• monthly_recurring_revenue

• total_invoiced

• refunds

• net_revenue

• revenue_per_member

3.3.3 Retention / Attrition Fact Table

The purpose of this Fact Table is to create the basis for predicting the longevity and future behavior of members.

At its most basic level, it seeks to help the target business protect its revenue by proactively identifying its most

valuable members (customers) and flagging those members if their usage of the facility begins to change.

More broadly, this lays a portion of a foundation which can be built upon that will allow an AI to proactively offer

suggestions or even actions which will be meant not only to improve retention, but to increase the value of the

members which are retained based on the individual attribute models that each member has.

Key Inputs:

• Member

• Agreement

• Attendance

• revenue

23

Derived Fields:

• churn_flag

• tenure_month

• retention_index

• attrition_risk_score

3.3.4 Sales Performance Fact Table

The purpose of this Fact Table is to link the outcomes which are attributable to staff members of the target business

to the business outcomes which are reported. Understanding these relationships at the highest level, while also

having the benefit of a robust Member (customer) attribute model, will enable highly valuable, granular, situational

analysis of the efficacy staff members have when generating outcomes with certain types of members (customers).

Key Inputs:

• Employee

• Opportunity

• agreement

Derived Fields:

• lead_conversion_rate

• pt_package_sales

• avg_ticket_size

• sales_index

3.3.5 Benchmarking & Cohort Fact Table

The purpose of this Fact Table is to provide a scalable framework to compare the performance of multi-location

hierarchies (both connected and disconnected) within a common framework that standardizes the way

products/revenue streams/staff and members (customers) intersect.

Key Inputs:

• member

• facility

• product

Derived Fields:

• avg_revenue_per_location

• churn_rate_cohort

• utilization_ratio

• cohort_index

24

3.3.6 Closing Remarks

The derivation logic contained within Section 3.3 is not generic BI math — it is specifically tailored to the in-person

fitness vertical. This means Apex comes with a library of pre-built, explainable metrics (e.g., churn risk scores, upsell

indices) that can be reused in any AI model, dashboard, or integration. This significantly reduces deployment time,

ensures data is contextually accurate, and lowers implementation risk across the portfolio.

3.4 Onboarding Logic Tree

This section describes how Apex configures itself during onboarding to adapt to different business models,

operational scopes, and customer contexts. The onboarding logic is a critical differentiator: it makes the platform

scalable across an acquirer’s portfolio without requiring engineering-heavy customizations at every deployment. For

diligence purposes, this section demonstrates how Apex removes friction for internal technology teams, accelerates

rollout across hundreds or thousands of sites, and ensures that data consistency is preserved from the very start of

the customer lifecycle.

3.4.1 Input Mapping

The purpose of Input Mapping is to capture and standardize the essential attributes of a business at the moment of

onboarding. By doing so, Apex ensures that every subsequent metric, visualization, or AI insight is contextualized to

that business’s unique model. This prevents the common problem of “one-size-fits-all” analytics that can distort

results when applied across different customer types.

Key Inputs:

• business_type

• plan_frequency

• enabled_streams

• number_of_locations

• staff_roles_configured.

Stored In:

• onboarding_settings_json is generated and mapped to a default ruleset, ensuring portability across multiple

clients while preserving specific context for each.

3.4.2 Conditional Module Activation

Conditional activation ensures that businesses only see what is relevant to them. A boutique personal training studio

does not need EFT logic, while a hybrid health club does. This selective activation reduces noise, prevents confusion,

and accelerates time-to-value by presenting each customer with only the logic that applies to their business.

25

Key Inputs:

• Enabled streams and business type as captured in onboarding

Derived Configuration:

• PT-only studios activate PT logic layer and disable EFT logic.

• Hybrid clubs activate all relevant modules, enabling cross-stream prompts.

3.4.3 KPI Scope Controls

The purpose of KPI Scope Controls is to prevent irrelevant or misleading metrics from being displayed to a business.

By scoping KPIs to what is truly relevant, Apex prevents users from chasing “false signals” and ensures that both

humans and AI agents are making decisions with appropriate thresholds. This alignment is particularly important for

businesses with different member models (e.g., high-dues clubs vs. budget gyms).

Key Inputs:

• onboarding input defining business segment and enabled modules

Derived Configuration:

• Revenue modules limited to enabled streams

• Churn and engagement scores vary by segment (higher threshold for high-dues members, lower for value

gyms)

3.4.4 Configuration Output Paths

Config output paths determine how the onboarding decisions cascade into the user experience. By tying onboarding

inputs directly into the dashboards, AI prompt profiles, and alert engines, Apex ensures that the system feels “pre-

configured” on day one. This creates the rare experience where what a customer sees in a demo is exactly what they

receive in production — populated with their own data, ready to use immediately.

Key Inputs:

• Dashboard tab defaults

• AI prompt profiles

• Alert engine logic flags

Derived Configuration:

• Dynamic dashboards scoped by tenant_id

• AI assistants tailored by user persona and client type

• Alerting rules enabled/disabled according to business model

26

3.4.5 Closing Remarks

The Onboarding Logic Tree ensures that Apex is not only technically deployable across many customer types but

also contextually correct for each one.

For the acquirer, this means:

• Rapid rollout across heterogeneous portfolios without engineering bottlenecks.

• High customer satisfaction because the product “fits” the business out of the box.

• Reduced churn risk, since data inconsistencies and irrelevant KPIs are filtered out at onboarding.

Apex can be rolled out rapidly across diverse portfolio businesses with minimal engineering effort, delivering an

experience that fits the customer’s operating model on day one. This makes the system both scalable and

sustainable as the foundation for enterprise-wide AI.

3.5 Embedded Business Rules

This section describes how Apex translates domain-specific business conditions into encoded rules and triggers.

These rules ensure that calculations are not only observed but acted upon consistently across the entire system. For

diligence, the embedded business rules demonstrate how Apex transforms raw data into contextual signals that

drive automation, reduce manual intervention, and align human and AI decision-making to the same operational

truth.

3.5.1 System Thresholds

System thresholds define the conditions under which members or revenue streams should be considered at risk or in

need of attention. Without these definitions, analytics remain descriptive rather than actionable. By encoding

thresholds natively into Apex, the platform ensures that operators, executives, and AI assistants are all working off

the same definition of “at risk,” “delinquent,” or “expiring,” eliminating subjective interpretations that can dilute

outcomes.

Examples of Thresholds:

• Inactivity: checkins_last_30_days < 2 → considered disengaged

• Past Due Flag: unpaid_balance > $50 for > 14 days → delinquent

• Membership Expiry Risk: agreement_end_date within 14 days → renewal alert

3.5.2 Risk Flag Logic

Risk flags take thresholds a step further by encoding specific business events that require immediate action. The “so

what” here is that Apex doesn’t leave it to operators to figure out when something unusual is happening — it

automatically recognizes the pattern and flags it before revenue is lost. This makes the system proactive rather than

reactive.

27

Examples of Risk Flags:

• PT Cancellation Spike: 10%+ cancellations in last 30 days → stream risk alert

• Family Plan No-Show: family member_type AND zero attendance in 30 days → usage gap alert

• Revenue Downstream Risk: two consecutive negative revenue delta quarters → executive flag

3.5.3 Module Trigger Rules

Modules in Apex can be selectively activated, but their usefulness depends on knowing when to activate. Trigger

rules connect onboarding context and system conditions with functional logic, so the right modules and alerts

activate only when relevant. This prevents bloat, keeps the experience clean, and ensures that business logic

remains aligned with customer realities.

Examples of Triggers:

• Messaging module activates if onboarding.messaging = true

• PT module activates if any product_type = 'PT' AND stream is enabled

• Alert logic executes via scheduled jobs (e.g., ApexOpsFlagJob)

3.5.4 Staff Performance Attribution

Staff attribution rules connect member outcomes directly to the employees responsible for them. For the acquirer,

this means Apex enables precise workforce analytics — not just who sold the most packages, but who retained the

most members, prevented the most churn, or delivered the highest lifetime value across member types. This level of

attribution can drive more intelligent compensation models, training initiatives, and AI-assisted routing of leads or

opportunities.

Examples of Attribution Rules:

• PT Conversion Rate per employee: # sold / # assigned trials

• Staff-level churn prevention tracking: member tenure delta vs. coaching sessions attended

• Preferred routing: assigned_role='PT' AND conversion_rate > 30% → receives lead priority

3.5.5 Closing Remarks

The Embedded Business Rules are what transform Apex from a data warehouse into an operational intelligence

layer. For an acquirer, these rules represent codified business wisdom that ensures consistency at scale:

• No matter how large or fragmented the portfolio, every system recognizes risk the same way.

• Human staff and AI assistants are aligned to the same definitions and thresholds.

• The platform proactively prompts action, reducing reliance on interpretation or guesswork.

28

3.6 Prompt-to-Schema Logic

This section explains how Apex translates natural language queries into schema-aware instructions. This enables

both humans and AI assistants to retrieve accurate, role-specific insights without relying on manual SQL queries or

inconsistent ad hoc logic. For an acquirer, this demonstrates how Apex makes advanced analytics and AI usable by

everyone, while still maintaining technical fidelity and governance.

3.6.1 Core Prompt Formats

The purpose of core prompt formats is to establish a common library of natural language questions that map

directly to structured queries. This ensures that everyday users — regardless of technical skill — can ask questions

like “Who is at risk of churn?” and receive an answer based on standardized calculations. It democratizes data

access while protecting consistency.

Details:

• “Show me churn risk”: Queries churn_risk_score, checkins_last_30_days, agreement_status.

• “Compare revenue”: Queries invoice_amount, revenue_stream, product_type, club_id, invoice_date.

• “Top performing staff”: Queries employee_id, pt_sales_total, assigned_role, conversion_rate.

3.6.2 Persona-Based Routing

Different stakeholders need different views of the same data. Persona-based routing ensures that a general

manager, a private equity sponsor, and a data analyst can all query the same system but receive responses tailored

to their context. This avoids both under-sharing and over-complicating information, ensuring the right level of insight

for each audience.

Details:

• General Manager (GM) Prompts: Operational insights, local trends, staff performance.

• PE Buyer Prompts: Cohort deltas, benchmark risk zones, portfolio-wide churn.

• Data Analyst Prompts: Schema-aware filters, joins, and time-series tracking.

3.6.3 Join & Cross-Table Behavior

The purpose of join and cross-table behavior is to ensure that data relationships (members → agreements →

revenue → attendance) are preserved and leveraged in every query. This guarantees that answers reflect the full

business context rather than isolated fragments of data, which is especially important for AI training and prediction

accuracy.

29

Details:

• Members joined to agreements by member_id → used for billing logic prompts.

• Check-ins joined by member_id + location_id → engagement prompts.

• Invoices joined with products by product_id → revenue prompts.

3.6.4 Fallback & Filter Logic

The purpose of fallback and filter logic is to preserve system integrity when queries cannot be answered directly.

Instead of returning “no data,” Apex explains why data is unavailable and offers a comparable alternative. This builds

user trust and ensures continuity, even when conditions change or certain modules are disabled.

Details:

• If requested stream is not enabled → fallback prompt with explanation.

• If no data exists for a prompt → return logic path and offer a comparable metric.

• All prompts respect onboarding-enabled module flags and default filters.

3.6.5 Closing Remarks

Prompt-to-Schema Logic ensures that data is always contextualized, role-appropriate, and consistent with the

system’s unified model. For an acquirer, this guarantees that insights delivered through Apex — whether surfaced in

dashboards, chat interfaces, or executive reviews — are accurate, explainable, and aligned across all stakeholders in

the business.

3.7 KPI & UI Rendering Map

This section illustrates how Apex connects the intelligence layer (fact tables, logic, and prompts) to the front-end

interface. By defining how KPIs, tabs, widgets, and chat assistants are rendered, Apex ensures that users see

consistent, actionable intelligence where they work every day. For an acquirer, this section demonstrates how Apex

closes the loop between back-end logic and front-end usability — making advanced analytics and AI truly accessible

to operators, executives, and customers.

3.7.1 Dashboard Module Mapping

The purpose of dashboard module mapping is to translate the derived logic into user-facing dashboards. This

ensures that the same fact tables and metrics used by AI are also surfaced in visualizations, eliminating

discrepancies between “what the dashboard says” and “what the AI says.”

Details:

• PT Summary → srtDash/PTOverview.ascx

• Revenue By Stream → CMSModules/Revenue/StreamAnalysis.ascx

30

• Member Churn Panel → KPIContainer/ChurnView.ascx

3.7.2 Tab + Modal Triggers

Tab and modal triggers control how users navigate to deeper insights within the application. The purpose is to align

user actions with pre-configured data contexts, ensuring that drill-downs and modals always display consistent, role-

appropriate information. This reduces confusion and streamlines workflows.

Details:

• Tabs: CMS.DashboardTabID = 'PTPerformance', 'EngagementTrends', 'FinancialOverview'

• Modals: /ModalSimplePage.master for flag review, /ModalDialogPage.master for config update

3.7.3 Widget Hierarchies

Widgets are the building blocks of the interface. By structuring them hierarchically, Apex ensures that related

insights (e.g., staff performance → PT sales → conversion rates) are always presented in a logical sequence. This

helps users understand not just the “what” but the “why” behind the numbers.

Details:

• Widget pt_summary has children: pt_conversion_rate_graph, pt_revenue_ytd_table

• Engagement widget: churn_trend_graph, tenure_distribution_chart

3.7.4 Chatbot UI Awareness

The chatbot must be aware of UI structure to act as a true assistant. UI awareness allows the AI to suggest

navigation actions (“click here”) or surface relevant dashboards directly in response to a prompt. This creates a

seamless bridge between conversational AI and operational dashboards.

Details:

• Prompt output can reference: tab, widget, or modal by ID

• Chatbot can suggest: “Click on ‘Engagement Trends’ to drill into visit gaps.”

• CMS rendering structure sourced from LiveTree.master and TabsHeader.master logic

3.7.5 Closing Remarks

The KPI & UI Rendering Map demonstrates how Apex delivers intelligence all the way to the end-user interface. For

the acquirer, this ensures that AI insights and KPIs are not hidden in a back-end system but embedded directly into

daily workflows — creating a unified experience where dashboards, alerts, and conversational AI all speak from the

same truth.

31

32

4.0 Integration Into New Systems of Origin

4.1 Overview

For the acquirer of Apex SaaS Bridge Technology, one of the most immediate concerns is whether the platform can

be deployed rapidly across heterogeneous legacy systems without rebuilding each environment from scratch.

Section 7 demonstrates how Apex connects to new systems of origin, maps their data into a unified schema, and

applies embedded business logic so that insights, dashboards, and AI readiness are available on day one.

Unlike traditional re-platforming projects, Apex was designed to integrate with existing CMS, POS, CRM, or ancillary

tools as they are today — extracting, transforming, and normalizing data without demanding structural changes in the

source systems.

4.2 Step-by-Step Integration Process

Step 1: Initial Evaluation

• Determine access method supported by the new system:

• Direct database connection (preferred for CMS)

• REST API pull with OAuth/token authentication

• Scheduled flat-file export (CSV/Excel)

• Assess the availability of key categories: revenue, membership, attendance, staff performance, and

engagement.

Step 2: Data Access Setup

• Configure connectors in Apex’s ETL layer (ETL Works).

• Nightly or hourly jobs (RunDailyDataImport()) ingest tables or API payloads.

• All fields are mapped into Apex’s master schema with tenant_id tagging

Step 3: Historical Data Import

• Using the same ETL configuration, historical data (typically 36 months) is imported.

• QA routines validate totals against client system reports (revenue, membership, attendance).

Step 4: Onboarding Wizard Configuration

• The Onboarding & Settings Wizard prompts a non-technical operator to input:

o Business type (boutique studio, multi-site health club, hybrid)

o Number of locations

o Enabled revenue streams

o Staff role configurations

• Wizard automatically generates an onboarding_settings_json object, aligning the source system to Apex’s
logic layer.

33

Step 5: Rule Application & Dashboard Deployment

• Conditional module activation enables only what applies (e.g., EFT logic excluded for PT-only studios).

• KPI scope is adjusted (high-dues vs budget gyms).

• Dashboards, AI prompts, and alert engines render “pre-configured” on day one, populated with the client’s

own data

Step 6: Go-Live & Monitoring

• Nightly ETL continues, with sync health monitored for 14 days.

• Schema change detection routines automatically log and flag new fields.

• Support team validates alignment with expected client outputs

4.2.1 High Level Example Integration Budget

Scenario Est Time Est Cost Notes

Integration of Apex

SaaS Bridge with a

New System of Origin

3 – 6 months $50k – $120k

High Level project cost break down:

Design & Mapping (20%)

ETL Development & Historical Import (30%)

Wizard Configuration & Business Logic Alignment (25%)

Testing, Validation & Deployment (15%)

A Contingency Budget of 15%–20%

is added to cover AI training challenges.

4.2.2 Team Roles & Responsibilities

Role Responsibilities Number Needed

Project Manager Oversees timeline, budget, stakeholder coordination. 1

Solution Architect Designs integration flow (DB/API/File), schema mapping, governance controls. 1

Data Engineer Builds ETL pipelines, configures sync jobs, manages historical imports. 1–2

QA Engineer Validates mapping accuracy, tests dashboard outputs, ensures error handling works. 1

Domain Expert Confirms business logic alignment; validates KPIs and operational thresholds. 1 (part time)

34

4.2.3 Project Plan & Milestones

Phase Description Duration Resources Required Milestones

Assessment

& Evaluation

Determine access method

(DB, API, flat file) and assess data

categories (revenue, membership,

staff, engagement).

2–3 weeks
Solution Architect,

Domain Expert

Access method

confirmed; baseline

data inventory

complete.

Data Access Setup
Configure ETL Works connectors;

establish nightly or delta sync jobs.
2–3 weeks Data Engineer

ETL jobs operational;

test sync run

successful.

Historical Import
Backfill 24–36 months of history;

reconcile totals vs source system.
3–4 weeks

Data Engineer,

QA Engineer

Historical data loaded;

QA variance <1%.

Wizard

Configuration

Use Onboarding & Settings Wizard

to Input business type, enabled

streams, roles, and locations;

generate onboarding JSON.

2 weeks
Solution Architect,

Domain Expert

Onboarding settings

applied; dashboards

and alerts provisioned.

Logic &

Dashboard

Deployment

Activate only relevant modules

(e.g., PT logic, EFT), scope KPIs,

and render dashboards and AI prompts.

2 weeks
Solution Architect,

QA Engineer

Dashboards live;

AI prompt profiles

generated.

Testing &

Validation

Monitor sync accuracy; validate reports

and outputs with client; schema

monitoring enabled.

2–3 weeks
QA Engineer,

Domain Expert

Validation signed off;

monitoring stable for

14 days.

Deployment

& Go-Live

Transition to production;

configure ongoing monitoring

and governance.

1–2 weeks
Project Manager,

Data Engineer

Go-live confirmed;

tenant fully

operational.

35

4.2.4 Risk Management

Risk Mitigation

Schema changes in Source System Schema monitoring logs new fields; flagged for review before production sync.

API Limits or Instability Throttling and delta-sync logic reduce load; retries handled in ETL Works.

Data Quality or Mismatched Naming Normalization logic in ETL layer; domain expert validation of KPIs.

Security Exposure TLS 1.2+, AES-256 encryption, Okta SSO and RBAC enforced at onboarding.

4.2.5 Significance for Acquirer

• Speed to Deploy: Replaces months-long replatforming with weeks-long integration.

• Portfolio Scale: Wizard templates make repeat onboarding consistent across hundreds of sites.

• Contextual Accuracy: Every new customer receives dashboards, KPIs, and AI prompts matched to their

business model.

• Governance & Resilience: Schema change monitoring, audit logs, and SSO keep the system compliant and

stable.

• Beyond CMS: CRM integrations show Apex’s adaptability — delivering value even when the origin system isn’t

a full club management platform.

4.3 Why This Matters

• Rapid Deployment at Scale: Apex’s integration templates allow hundreds or thousands of locations to be

onboarded without custom engineering, a process proven across Fitness One deployments.

• Contextual Accuracy from Day One: The Wizard ensures every customer sees dashboards, KPIs, and AI

prompts that match their operating model, avoiding irrelevant or misleading metrics.

• Non-Technical Usability: Because the Wizard abstracts complexity, internal teams do not need specialized

engineers for every new client or acquisition; portfolio rollout becomes repeatable.

• Future-Proofed AI Readiness: Once data is ingested and contextualized, the same unified layer feeds

predictive models, chatbots, and automation engines — eliminating the patchwork “localized AI” survival

strategy common in today’s CMS ecosystems

36

4.4 Conclusion (Core Flow)

The Integration Framework and Onboarding Wizard together transform what would normally be a 6–12 month re-
platforming effort into an out-of-the-box deployment cycle measured in days or weeks. For the acquirer, this ensures
Apex can be dropped into any portfolio company’s existing stack, harmonize data immediately, and begin returning
monetizable outputs — without interrupting day-to-day operations.

4.5 Error Handling & Schema Resilience

To ensure that integrations remain stable as upstream systems evolve, Apex includes schema monitoring and fault-
tolerant ingestion. This prevents unexpected source changes from breaking the intelligence layer.

Details:

• Schema Change Monitoring: New fields are automatically detected, logged to staging, and flagged for

review.

• Error Isolation: Failed jobs write to error logs and disable only the affected job, preventing cross-tenant

impact.

• Retry Logic: Jobs can be re-run manually or automatically up to policy thresholds

Significance:

This ensures portfolio-wide stability. A schema change or bad file in one system does not disrupt the rest of the

environment. Operators can continue daily use while integration teams resolve flagged issues.

4.6 Security & Governance

To protect sensitive customer and financial data across multi-tenant deployments, Apex applies standardized
encryption, identity, and audit controls.

Details:

• Encryption in Transit & at Rest: TLS 1.2+ for all connections; AES-256 encryption for stored credentials.

• Identity & Access Management: Okta SSO integration, role-based access control (RBAC), and tenant-scoped

permissions.

• Audit Logging: All data access and job changes are logged, enabling traceability during diligence or

compliance reviews.

Significance:

The buyer can trust that Apex meets enterprise-grade requirements without building custom security for each new
system of origin. Governance is enforced uniformly across the portfolio

37

4.7 Non-CMS Integration Scenarios (CRM Example)

To demonstrate that Apex applies beyond club management systems, this scenario shows how a CRM can serve as
a system of origin.

Details:

• Data Gained from CRM Integration: Leads, prospect activity, tour logs, and attribution of conversions.

• Data Absent from CRM Alone: No direct visibility into contracts, financials, or attendance.

• Combined Value: When CRM is integrated alongside CMS or financial systems, Apex bridges engagement

and transactional data into a full customer lifecycle model.

Significance:

This flexibility proves Apex’s utility is not limited to CMS environments. For an acquirer with multiple system types in
its portfolio, Apex extends value by harmonizing disparate systems into one unified intelligence layer

4.8 Final Remarks

The Integration & Onboarding process demonstrates how Apex adapts to a wide variety of source systems,

normalizing their data and operationalizing it through the Onboarding & Settings Wizard. For an acquirer, this

transforms what would normally be a lengthy re-platforming initiative into a standardized, repeatable integration

process that can be executed by non-technical teams.

It is important to note that the inputs and outputs vary depending on the type of origin system.

• When the source is a Club Management System (CMS), Apex ingests a full operational picture: contracts,

financials, attendance, and member lifecycle data.

• When the source is a Customer Relationship Management (CRM) system, Apex primarily captures prospect

and engagement activity (leads, tours, conversion attribution). In these cases, Apex delivers significant value

by extending visibility into the top of the funnel — but it does not replace the need for contract or attendance

data from a CMS to complete the customer lifecycle view.

By handling both CMS and CRM integrations with the capability of integrating with any system that stores customer

behavioral data, Apex proves its flexibility. It can deliver immediate value when plugged into engagement-only

systems and unlock its full strategic potential when connected to systems of record that carry financial and

operational data. This variance does not compromise Apex’s repeatability; it reinforces that the platform adapts to

the acquirer’s environment rather than requiring the acquirer to standardize all systems up front.

With the foundation established — validating Apex’s architecture, demonstrating its integration repeatability, and

proving its adaptability across system types — the next section turns from what Apex is to what an acquirer can build

on Apex once it is theirs. Part 2 outlines post-acquisition scenarios, modernization paths, and long-term AI strategies

that extend the value of Apex beyond initial deployment.

38

39

Preface to Section 2: (Post-Acquisition Growth & AI Roadmap)

Part 2 moves beyond validation and into expansion. It outlines the pathways an acquirer can pursue once Apex has

been integrated into their portfolio. These are not hypothetical exercises; they are derived from technical memoranda

and roadmap documents prepared to anticipate diligence questions about modernization, scalability, and future

growth.

This document should again be understood as a companion to the Apex SaaS Bridge Technology Manual. Where the

Technology Manual defines how Apex is engineered and operated at a system level, this diligence framework builds

on that foundation to show what an acquirer can do with Apex once it is deployed. It translates technical options

(such as data lakes, microservices, and CMS upgrades) into strategic scenarios and investment decisions.

Sections 8.0 through 12.0 cover:

• Data Lakes & Microservices Integration as a method for modularizing logic and scaling AI workloads.

• CMS Upgrade Paths that weigh modernization options for Kentico Xperience and Umbraco.

• AI Chatbot Capability Scenarios, offering project plans for both prototype integration and full logic extraction.

• A Long-Term AI Roadmap (2025–2045) that situates Apex within future AI, security, and governance trends.

• Conclusions & Recommendations for how an acquirer can capitalize on Apex to accelerate growth and

defend market share.

This part is forward-looking by design. It demonstrates not only what Apex enables today but also what an acquirer

can build tomorrow, once Apex is established as the portfolio’s unifying intelligence layer

40

5.0 Data Lakes & Microservices Integration

To build an industry-specific AI chatbot, the original prototype’s business logic is extracted and reorganized into

discrete microservices while a data lake provides on-demand access to distributed data without centralizing storage.

This mirrors the Database Architecture & Back-End ETL Process and AI Ready Middle Tier in the Technology Manual

(§§ 1.3–1.4), where Apex transforms raw data into actionable insights in real time. The table below summarizes the

cost breakdown from the source document.

5.1 Overview

The following paragraphs reproduce the Data Lakes & Microservices Integration memorandum verbatim so that no

detail is lost. This text provides deeper rationale behind the tables above and should be read alongside the

Technology Manual’s discussion of the AI-ready middle tier and ETL pipelines.

Budget for Building an Industry-Specific AI Chatbot Using Data Lakes and Microservices

The redesigned AI chatbot extracts business logic from the prototype and incorporates microservices architecture to

modularize components (e.g., separate services for data access, business-logic processing, AI inference and user

interaction). This allows independent scaling and development.

To address the central storage issue, data lakes (implemented as a scalable repository, e.g., using Azure Data Lake

or AWS S3 with query-federation tools like Presto or Athena) enable on-demand access to data from multiple

databases without full centralization, reducing storage needs by querying in place or caching only necessary

subsets.

This adds complexity, increasing costs for architecture design, containerization (e.g., Docker/Kubernetes), API

management (e.g., API Gateway) and data-orchestration tools. The budget estimate is $160,000 – $300,000, a 20–

30% increase over the non-microservices version due to added DevOps, data-engineering and cloud-infrastructure

expenses (e.g., $5,000–$15,000 per month for cloud data-lake services during development).

Factors such as industry regulations (e.g., data privacy in healthcare) could push costs toward the higher end of the

spectrum however, savings from reusability of prototype logic has the potential to offset some costs by up to 15–

20%.

41

5.2 Cost Breakdown (Budget $160k–$300k)

Category Estimated Cost Details

Assessment & Logic Extraction $25k – $50k
Audit prototype code; extract business logic and map to
microservices. Includes data-lake feasibility analysis using
data-virtualization tools.

Design & Architecture $25k – $45k
Design microservices (e.g., data-access and logic services) and
federated data-lake queries. Incorporate API designs and security
models.

Development & Integration $50k – $100k
Build microservices (e.g., .NET Core), integrate AI (NLP/LLMs),
and set up data lakes for on-demand access using containers
and orchestration.

Training & Optimization $25k – $50k
Fine-tune models with data from lakes; optimize for low-latency
queries across distributed sources.

Testing & QA $20k – $30k
Test microservices resilience, data-lake performance, security,
bias and industry-specific scenarios.

Deployment & Maintenance $15k – $25k
Cloud deployment, monitoring tools and initial three-month
support. Ongoing annual maintenance $20k–$40k.

5.3 Team Roles & Responsibilities

The project requires a cross-functional team of between 9–12 specialists with a mix of full-time and part-time roles.

Agile pods focus on microservices and data-lakes integration. Specialists in data engineering and DevOps are

essential.

Role Responsibilities
Number

Needed

Project Manager Coordinates timeline, budget, sprints and stakeholder communication. 1

Solution Architect
Designs the overall architecture, including microservices decomposition

and data-lake integration.
1

AI/ML Engineer
Builds and trains AI models and integrates large language models (LLMs)

with business logic.
2

Data Engineer
Sets up data lakes, federates data from multiple databases and ensures

data pipelines are reliable.
1 – 2

42

Role Responsibilities
Number

Needed

NLP Specialist
Develops natural language processing for conversational AI and query

handling.
1

Backend Developer (.NET)
Implements microservices and APIs, integrates prototype logic and

modernizes the .NET code.
2

DevOps Engineer
Manages containerization (Docker/Kubernetes), CI/CD pipelines and cloud

infrastructure for scalability.
1

Data Scientist
Prepares datasets from data lakes and optimizes models for

industry-specific accuracy.
1

UI/UX Designer
Designs chatbot interfaces and user flows, integrated with the Angular

front end.
1 (part-time)

QA Engineer
Tests functionality, performance, security and integrations across

microservices and data lakes.
1 – 2

Domain Expert (industry-specific)
Validates business logic and provides industry knowledge for queries and

data handling.
1 (part-time)

5.4 Project Plan & Milestones

The timeline below outlines the phased approach for building the AI chatbot using microservices and data lakes. The

structure reflects the agile methodology recommended in the source document.

Phase Description Duration Resources Required Milestones

Assessment
& Logic Extraction

Audit the prototype code

(e.g., BI algorithms in .NET),

extract and document business rules,

assess data sources for lake

integration and plan microservices.

3 – 4 weeks

Project Manager,

Solution Architect,

.NET Developer,

Domain Expert,

Data Engineer

Logic extraction

report; data-lake

feasibility approved;

requirements

document

Design &

Planning

Design the chatbot architecture,

including microservices (data-service,

AI-service), data-lake schemas

(raw/processed zones) and

conversation flows. Select AI stack.

3 – 4 weeks

Solution Architect,

AI/ML Engineer,

Data Engineer,

UI/UX Designer,

NLP Specialist

Architecture

blueprints; data-lake

design; conversation

prototypes

43

Phase Description Duration Resources Required Milestones

Development

& Integration

Build microservices and integrate

extracted logic via APIs; set up data

lakes for federated queries; develop

the AI core with retrieval-augmented

generation (RAG) and multi-turn

support; implement Angular front end.

6 – 8 weeks

AI/ML Engineer,

Backend Developer,

Data Engineer,

DevOps Engineer,

Data Scientist

Functional minimum

viable product (MVP);

microservices

deployed in staging;

data-lake integrations

tested

Training &

Optimization

Prepare datasets from data lakes;

train and fine-tune models for industry

accuracy (e.g., > 85% relevance);

optimize microservices for scalability

and low latency.

4 – 5 weeks

Data Scientist,

NLP Specialist,

AI/ML Engineer

Trained models;

performance

benchmarks met

Testing &

Quality Assurance

Conduct unit and integration tests,

security scans, bias checks, user

acceptance testing; validate data-lake

queries/microservices failover in

industry scenarios.

3 – 4 weeks

QA Engineer,

Domain Expert, all

developers

Zero critical issues;

stakeholder sign-off

Deployment

& Launch

Deploy to production (e.g.,

Kubernetes-orchestrated cloud);

set up monitoring for data lakes and

services; provide training and

documentation.

2 weeks

Project Manager,

DevOps Engineer,

AI/ML Engineer

Live chatbot; initial

performance report

Post-

Launch Support

Monitor usage, gather feedback

and iterate (e.g., retrain models,

scale services); maintenance for

1–2 months.

4 – 6 weeks

(ongoing)

Project Manager,

Data Scientist,

DevOps Engineer

User-satisfaction

target (> 80%);

handover complete

44

6.0 Content Management System Potential Upgrade Paths

6.1 Overview of Current State and Rationale

The front end of the current iteration of Apex SaaS Bridge Technology is built using an older version of Angular and

an older .NET Framework. Migration involves not just CMS-specific changes but also upgrading underlying

frameworks for security, performance and compatibility. This includes upgrading to .NET 8 (or latest), Angular 18+,

refactoring legacy code, handling deprecated features and ensuring data/content migration. Kentico 11 is past

end-of-life, increasing urgency due to security risks.

There are two logical scenarios for the buyer:

Upgrading to the Latest Kentico (Xperience by Kentico): A cloud-native digital-experience platform (DXP) as of 2025

Migrating to an Alternative CMS like Umbraco: An open-source, .NET-based platform that is cost-effective for

similar use cases.

Estimates are based on industry averages for medium-complexity projects (e.g., a business-intelligence expert

system with custom modules, data integrations and UI components). Actuals depend on code quality,

customizations and data volume.

After describing the two CMS scenarios, the memorandum outlines two options for building the AI chatbot:

• Integrating With the Upgraded Prototype

• Extracting the Business Logic from the Prototype and Rewriting it Into the Chatbot.

Each option is elaborated with timelines, budgets and team compositions.

Scenario A: Upgrade to Xperience by Kentico

This approach uses Kentico’s Migration Toolkit for content, page types and data transfer. It is less disruptive than

switching vendors but requires redevelopment for modern features like headless APIs and AI integrations.

Challenges include technical debt from 5–8-year-old code and the fact that there is no “one-click” upgrade.

Time: 4–6 months. This includes assessment (1 month), code updates and migration (2–3 months), and testing &

deployment (1–2 months). Planning should start immediately to avoid end-of-support risks for older versions.

Cost: $100,000–$200,000. The breakdown is $40,000–$80,000 for development and code updates; $30,000–

$60,000 for migration-toolkit usage and custom adaptations; $20,000–$40,000 for testing/QA; and $10,000–$20,000

for licensing transition (Kentico Xperience subscriptions start at ~$12,500/year). Additional costs for .NET/Angular

upgrades add ~20–30% of the total due to API changes and refactoring.

The second memorandum evaluates options for modernizing the Kentico 11 prototype to either Xperience by

Kentico or Umbraco and outlines two approaches to building the AI chatbot. These scenarios align with the

Technology Manual’s CMS discussion (§ 3.3), and the associated tables here have been rebuilt manually for clarity.

45

Scenario A1: Resource & Allocation Model for Upgrading to Xperience by Kentico

The roles differ slightly depending on whether the project upgrades to Xperience by Kentico or migrates to Umbraco.

Both scenarios require upgrading the underlying .NET and Angular frameworks and migrating content. The following

tables summarize the responsibilities and team sizes:

Role Core Focus Area Quantity

Project Manager Oversees timeline, budget and coordination between teams. 1

Solution Architect Designs migration strategy, assesses code compatibility and plans integrations. 1

Senior .NET Developer Updates .NET Framework to .NET 8, refactors backend logic and handles API migrations. 2–3

Angular Developer Modernizes the front end and ensures UI compatibility with new CMS APIs. 1–2

Kentico Developer Uses Kentico Migration Toolkit for transfer and customizes page types and modules. 1–2

QA Engineer Tests functionality, performance and security post-migration. 1–2

Domain Expert (BI) Audits/inventories content and ensures business-intelligence logic migrates correctly. 1

Scenario A2: Project Plan for Upgrading to Xperience by Kentico

Phase Description Duration Resources Required Milestones

Assessment & Planning

Conduct a full audit of the existing

Kentico 11 deployment, including code

review, content inventory and

compatibility analysis. Identify custom

features needing redevelopment.

Develop a detailed migration roadmap.

3–4 weeks

Project Manager,

Solution Architect,

Domain Expert

Assessment

report; approved

migration strategy

Backup & Preparation

Create backups of the web project,

database and source control.

Set up staging environment for

Kentico 13 upgrade. Update .NET

Framework to .NET 8 and Angular to

the latest version, refactoring legacy

code.

3–4 weeks

Senior .NET Developer,

Angular Developer,

CMS Specialist

Successful

backups;

intermediate

upgrade to

Kentico 13 tested

46

Phase Description Duration Resources Required Milestones

Migration & Development

Use the Migration Toolkit to transfer

content, page types and data. Rebuild

custom modules within the Xperience

extension framework. Integrate

updated Angular front end and ensure

BI-specific logic works.

8–10 weeks

CMS Specialist,

Senior .NET Developer,

Angular Developer

Content migrated;

80% features

redeveloped

Testing & QA

Perform functional, performance,

security and user-acceptance testing.

Validate industry-specific BI features

and resolve defects.

4–6 weeks

QA Engineer,

Domain Expert,

Developers

Zero critical bugs;

UAT sign-off

Deployment & Go-Live

Deploy production (cloud/SaaS)

and monitor post-launch performance.

Provide training and initial support.

2 weeks

Project Manager,

Solution Architect,

CMS Specialist

Successful

launch; go-live

confirmation

Post-Launch Support

Address issues if any arise,

optimize based on usage and

plan for ongoing maintenance.

~2 months
Project Manager,

QA Engineer

Stable system;

handover to

operations

Scenario B: Migrate to Umbraco

Umbraco is a strong fit because it is open-source, .NET-based and flexible for business-intelligence systems. It

offers cost savings on licensing and easier customizations. The process involves content audit, data mapping and

redeveloping Kentico-specific features. Other options like Sitecore (enterprise-level) would increase costs (>$150k

due to licensing ~$50k/year), while Contentful (headless) suits API-driven needs but requires more front-end work.

Time: 2–3 months (6–12 weeks). This covers audit/planning (2–4 weeks), migration/development (4–6 weeks) and

testing/launch (2 weeks). It is faster than the Kentico upgrade due to Umbraco’s simplicity.

Cost: $50,000–$100,000. The breakdown is $20,000–$40,000 for development and code updates; $15,000–$30,000

for content/data migration; and $10,000–$20,000 for testing. There are no ongoing license fees, while .NET/Angular

updates add $10,000–$20,000.

47

Scenario B1: Resource & Allocation Model for Migrating to Umbraco

Role Core Focus Area Quantity

Project Manager Manages roadmap, audits and post-migration support. 1

Solution Architect Map Kentico deployment to Umbraco, plans data transfer and integrations. 1

Senior .NET Developer Upgrades .NET, refactors backend and implements Umbraco modules. 2

Angular Developer Modernizes the front end and ensures compatibility with new CMS APIs. 1

Umbraco Specialist/Developer Handles content mapping, custom development and SEO retention. 1–2

QA Engineer Performs security and performance checks and user testing. 1

Content Auditor/Domain Expert Inventories content and ensures BI-specific logic migrates correctly. 1

Scenario B2: Project Plan for Upgrading to Migrating to Umbraco

The two CMS scenarios each have their own project plans, which are reproduced below in a simplified table format.

These timelines, derived from the source document, assume an arbitrary start date and highlight key phases and

milestones.

Phase Description Duration Resources Required Milestones

Assessment & Planning

Audit the Kentico 11 site for

content, custom code and BI

modules. Plan mapping. Update

.NET and Angular frameworks to

address legacy issues.

2 weeks

Project Manager,

Solution Architect,

Content Auditor

Domain Expert

Audit report;

Migration mapping

document approved

Design & Preparation

Design Umbraco structure,

including custom modules for BI

functionality. Export data from

Kentico and prepare for import.

Refactor Angular UI for Umbraco

APIs.

2–3 weeks

Umbraco

Specialist/Developer,

Angular Developer,

Senior .NET Developer

Design blueprints;

data export validated

48

Phase Description Duration Resources Required Milestones

Migration & Development

Import content and data into

Umbraco. Develop custom

integrations and rebuild BI

expert-system features.

Preserve SEO & Linking Strategy.

4–5 weeks

Umbraco

Specialist/Developer,

Senior .NET Developer

100% content

migrated;

core features

functional in staging

Testing & QA

Conduct comprehensive testing

(functional, security, performance

and BI-specific validation).

Perform user acceptance testing.

2–3 weeks
QA Engineer,

Domain Expert

All tests passed;

stakeholder approval

Deployment & Go-Live

Launch on production server.

Monitor for issues and provide

team training.

1 week
Project Manager,

Solution Architect

Successful

deployment; go-live

confirmation

Post-Launch Support
Address post-migration issues

and optimize based on feedback.

Ongoing

(2–4 weeks)

QA Engineer,

Umbraco Developer

System stabilized;

handover complete

6.2 Scenario Comparison (Kentico vs Umbraco)

Scenario Est Time Est Cost Notes

Upgrade to

Xperience by Kentico
4 – 6 months $100k – $200k

Uses Kentico’s Migration Toolkit for content, page

types and data transfer. Includes code updates,

testing, deployment and license transition.

Requires .NET/Angular upgrades (adds 20–30%).

Migrate to Umbraco 2 – 3 months $50k – $100k

Open-source, .NET-based CMS. Includes

development, content/data migration and testing. No

license fees; .NET/Angular updates add $10k – $20k.

49

6.3 Chatbot Options

The buyer has two options for the AI chatbot: integrate with the upgraded prototype or extract logic and rebuild the

chatbot from scratch. Each option has its own timeline and budget. The following tables are reconstructed from the

memorandum.

Chatbot Option A: Integration with the Upgraded Prototype

Phase Description Duration Key Responsibilities Milestones

Ideation & Requirements

Gathering

Define objectives, scope

and tech stack. Analyze

prototype for integration

points and update legacy code.

3 – 4 weeks

Project Manager,

Domain Expert,

AI/ML Engineer

Requirements

document;

high-level

architecture

approved

Design & Conversation Flow

Architect chatbot flows,

UI/UX and data pipelines.

Design custom models for

industry-specific responses.

4 – 6 weeks

UI/UX Designer,

NLP Specialist,

Solution Architect

Conversation

blueprints;

prototype API

designs complete

Development & Integration

Build the core AI and integrate

with the updated prototype

(.NET APIs). Develop the

Angular front end for embedding.

8 – 12 weeks

AI/ML Engineer,

Backend Developer,

Front-end Developer,

Data Scientist

Functional chatbot

prototype; initial

integrations tested

Training & Optimization

Train models on industry datasets,

fine-tune for accuracy (> 85%),

and handle multi-turn dialogues.

4 – 6 weeks

Data Scientist,

NLP Specialist,

AI/ML Engineer

Model accuracy

benchmarks met

Testing & QA

Test functionality, security, bias

and performance. Conduct user

acceptance with domain experts.

4 – 6 weeks
QA Engineer,

Domain Expert

Comprehensive test

results; refinements

applied

Deployment & Launch

Deploy to production

(cloud-hosted), monitor

and roll out with user training.

2 – 3 weeks
Project Manager,

AI/ML Engineer

Live chatbot; launch

metrics report

Post-Launch

Support & Iteration

Gather feedback, iterate

on models and maintain

(e.g., retraining).

Ongoing

(2 – 3 months)

Project Manager,

Data Scientist

User satisfaction

(> 80%) and

continuous

improvements

50

Chatbot Option A1: Integration with the Upgraded Prototype Budget

Scenario Est Time Est Cost Notes

Option A:

Integrate with

Upgraded Prototype

3 – 6 months $100k – $250k

High Level project cost breakdown:

Design (20%), Development/Training (40%),

Testing (25%) and Deployment (15%).

A Contingency Budget of 15%–20%

is added to cover AI training challenges.

Chatbot Option B: Logic Extraction and Rewrite Project Plan

Phase Description Duration Key Responsibilities Milestones

Assessment & Logic

Extraction

Audit the prototype code for

business logic; use static analysis

and visualization tools

(e.g., ReSharper, SonarQube)

to extract and document rules.

Plan modernization to .NET Core/8.

3 – 4 weeks

Project Manager,

Solution Architect,

.NET Developer,

Domain Expert

Logic extraction

report;

requirements

document

approved

Design & Planning

Plan the chatbot architecture,

including NLP flows, API integrations

for extracted logic and UI. Select AI

stack (e.g., ML.NET, Semantic Kernel).

3 – 4 weeks

AI/ML Engineer,

NLP Specialist,

UI/UX Designer

Architecture

blueprints;

conversation

flow prototypes

Development & Integration

Refactor and integrate extracted logic

into the chatbot (via microservices).

Build the AI core with LLMs and

retrieval-augmented generation for BI

queries; modernize the Angular front

end.

6 – 8 weeks

AI/ML Engineer,

.NET Developer,

Data Scientist

Functional MVP;

integrations

tested in staging

Training & Optimization

Prepare datasets from the prototype;

train and fine-tune models for industry

accuracy (> 85% relevance); optimize for

performance and edge cases.

4 – 5 weeks

Data Scientist,

NLP Specialist,

AI/ML Engineer

Trained models;

accuracy

benchmarks

met

Testing & QA

Conduct unit and integration tests,

security scans, bias checks and

user-acceptance testing. Validate

against industry-specific scenarios.

3 – 4 weeks

QA Engineer,

Domain Expert, all

developers

Zero critical

issues;

stakeholder

sign-off

51

Phase Description Duration Key Responsibilities Milestones

Deployment & Launch

Deploy to production (cloud-hosted); set

up monitoring and analytics; provide

training and documentation.

2 weeks
Project Manager,

AI/ML Engineer

Live chatbot;

initial

performance

report

Post-Launch Support

Monitor usage, gather feedback and

iterate (e.g., retrain models). Provide

maintenance for 1–2 months.

Ongoing

(4–6 weeks)

Project Manager,

Data Scientist

User

satisfaction

metrics (> 80%);

handover

complete

Chatbot Option B1: Logic Extraction and Rewrite Budget

Scenario Est Time Est Cost Notes

Option B:

Logic Extraction and

Rewrite Project Plan

3 – 6 months $120k – $220k

High Level project cost break down:

Assessment & logic extraction ($20k–$40k),

Design & architecture ($15k–$30k),

Development & Integration ($40k–$80k),

Training ($20k–$40k), Testing ($15k–$20k)

and Deployment ($10k–$20k).

A contingency of $12k–$33k accounts for

legacy issues and AI platform licensing.

Team size is 8–10 people, assuming a mix of

in-house and outsourced talent (offshoring may

reduce costs by 20–40%).

52

7.0 “Enterprise Wide” AI Chatbot Capability Scenarios

7.1 Integrate Complex Industry-Specific AI Chatbot with Upgraded Prototype

Duration: 4–8 months Estimated Cost: $100,000 – $250,000

The chatbot integrates with the upgraded prototype’s BI expert system via APIs, uses large language models for

industry specific queries and includes custom training on domain data.

Project Plan & Milestones

Phase Description Duration Resources Required Milestones

Assessment
& Requirements

Define scope, integration points
with upgraded BI system,

and identify industry datasets.
3–4 weeks

Project Manager,
Solution Architect,

Domain Expert

Requirements
document; integration

feasibility approved

Design &
Conversation Flow

Architect conversation flows,
specify API integration with BI
system, define fallback logic.

4–6 weeks

Solution Architect,
AI/ML Engineer,
NLP Specialist,
UI/UX Designer

Conversation blueprints;
API integration plan

signed off

Development
& Integration

Build chatbot core, connect APIs
to upgraded prototype,

embed Angular front-end.
8–12 weeks

AI/ML Engineer,
Backend Developer,
Front-End Developer

Prototype functional
in staging; data flows

validated

Training
& Optimization

Fine-tune LLM with industry
datasets; mitigate hallucination;

optimize accuracy.
4–6 weeks

Data Scientist,
AI/ML Engineer,
NLP Specialist

Accuracy benchmarks
achieved; performance

stable

Testing & QA
Bias checks, functional
and security validation,

UAT with domain experts.
4–6 weeks

QA Engineer,
Domain Expert,

Developers

QA sign-off;
stakeholder approval

Deployment
& Launch

Production deployment,
monitoring setup,

early user onboarding.
2–3 weeks

Project Manager,
DevOps Engineer,
AI/ML Engineer

Go-live confirmed;
monitoring enabled

Post-Launch
Support

Iterative retraining,
bug fixes, feedback loop.

2–3 months
AI/ML Engineer,
Data Scientist,
QA Engineer

Stable release; user
satisfaction >80%

Option 1: Risks

• AI hallucination (mitigated by training).

• Integration delays.

Option 1: Dependencies

• Access to upgraded prototype’s APIs & BI expert system.

• Access to industry datasets.

• Licensing/credits for Azure OpenAI (or equivalent LLM platform)

53

7.2 Building an Industry-Specific AI Chatbot (Logic Extraction and Rewrite)

Duration: 4–6 months

Estimated Cost: $120,000 – $220,000

It focuses on extracting business logic from the prototype and building the chatbot around it. The process uses agile
methodology with 2-week sprints.

Project Plan & Milestones

Phase Description Duration Resources Required Milestones

Assessment
& Logic Extraction

Audit prototype code;
extract business rules using

automated tools.

3–4
weeks

Solution Architect,
.NET Developer,
Domain Expert

Logic extraction report;
requirements approved

Design
& Planning

Architect chatbot system from
scratch; design NLP flows and
API structure; choose AI stack.

3–4
weeks

Solution Architect,
AI/ML Engineer,
NLP Specialist,
UI/UX Designer

Architecture blueprints;
sprint plan approved

Development
& Build

Rebuild business logic into
microservices; implement chatbot
core; integrate Angular front-end.

6–8
weeks

AI/ML Engineer,
Backend Developer,
Front-End Developer

Minimum viable chatbot in
staging; integrations tested

Training
& Optimization

Train chatbot on extracted logic
+ industry datasets;
iterative retraining.

4–5
weeks

Data Scientist,
AI/ML Engineer,
NLP Specialist

Accuracy benchmarks
(>85%) achieved

Testing & QA
Unit and integration tests;

validation against extracted
business logic; UAT with operators.

3–4
weeks

QA Engineer,
Domain Expert

UAT sign-off; zero critical
issues

Deployment
& Launch

Production deployment
with monitoring

and model drift detection.
2 weeks

DevOps Engineer,
Project Manager

Go-live confirmed;
usage metrics collected

Post-Launch Support
Sprint-based iteration,
retraining, bug fixes.

4–6
weeks

Project Manager,
Data Scientist,

AI/ML Engineer

Stable production release;
>80% user satisfaction

Risks

• Incomplete logic extraction (mitigated by tools).

• AI model inaccuracy (addressed via iterative retraining).

Dependencies

• Access to prototype source code.

• Industry datasets for training.

• Cloud AI infrastructure (Azure OpenAI, AWS Bedrock, etc.)

