SSSSSSSSS

il
Beyond Vibe Coding

Making LLM Assisted
Development
Deterministic

By Edgar Joya, VP Full Stack Development COE
Gabe Arce, Talavera Solutions CEO

The Problem with "Vibe Coding”

Over the last couple of months, I've been trying to determine
how to work effectively with Al. LLMs have been exceptional
at transforming my half-engineered ideads into reality—only
the ether knows how much ADHD driven curiosity has been
satisfied. But for real-world production software, like most of
us, I've been caught in an endless cycle of discovery:
bouncing between code snippets, exploring new ideas, and
testing different pathways to create software.

The feedback loop of iterating back and forth with a system
of neural matrices—hoping each generation brings you
closer to what you actually need—starts to feel like playing
slots at a casino, waiting for that magical block of code to
give you the outcome you wanted. After a while, it gets
exhausting. I've genuinely had more fun watching brew or
apt package updates scroll by.

This is what some call "vibe coding” - development driven by
intuition and crossing your fingers that the generated code
is actually correct. The code looks right, the patterns seem
reasonable, but there's no concrete way to verify correctness
beyond ‘it compiles and doesn't immediately crash.’

The problem isn't the LLM - it's the lack of constraints
and context. When you ask an LLM to ‘create an order
processing endpoint,” sure, you'll get code. But does it
actually match what you needed? Does it handle edge
cases? Will it survive the next refactor? Who knows!
feels like a round of Russian roulette.

Enter: Test-Driven Development
with Copilot Chat

Here's the thing that changed everything for me: What if
the tests told Copilot exactly what to build?

Instead of this mess:

enhancement

Me: 'Create a prompt
endpoint’

Copilot: *generates 200 lines of code*
Me: "Looks good!” *nervously hits save*

| started doing this:

Feature File: "When | POST a vague prompt to
[api/vl/enhance, | should get an enhanced
version’

Test: FAIL - "Endpoint not found at
[api/vl/enhance'’

Copilot Chat: *generates minimal endpoint*
Terminal: Test output shows "Response missing
‘enhanced_prompt field"

Copilot Chat: *adds enhanced _prompt*

Test: PASS

Mermaid Diagram: Level 1 (Basic) architecture
Feature File: "When | POST a vague prompt to
[api/vi[enhance, | get enhanced version”
Terminal: FAIL - "Endpoint not found at
[api/vl/enhance’

Copilot: *suggests minimal endpoint based on

diagram + test output*

Terminal: FAIL - "Response missing
‘enhanced_prompt field"

Copilot: *adds enhanced_prompt field*
Terminal: PASS

My Workflow: | use GitHub Copilot in VS Code with
terminal feedback loops. Tests run in the terminal, Copilot
sees the output + feature files + Mermaid diagrams, and
generates code that satisfies the constraints. No manual
LLM prompting needed.

———

o

Example: A simple prompt enhancement endpoint that

The Feature-Driven Development

Pattern

Phase 0: Visualize Before You Code (with
Progressive Architecture)

Before writing any feature files or tests, | start with
diagrams. But here's the critical part: don't document
your dreams, document your journey.

Instead of creating one beautiful diagram showing your

future microservices architecture, create three
progressive diagrams that match reality:

Level 1: Basic (What You're Building First)

User = APl Endpoint = enhance_prompt() = LLM

(Gemini) — Database

When: First implementation, MVP, proving the concept
Characteristics:

e Inline logic in controllers/views

e Functions, not services

e Simple data structures (dicts, basic models)
e Direct LLM calls

takes vague prompts and makes them specific

Level 2: Intermediate (Next 2-4 Features)

User — APl — Enhanced Functions — LLM — Database (+
new models)

d

Validation Layer

-

Domain Logic (quality checks, versioning)

When: Adding features, handling edge cases, storing
history

Characteristics:

e New models (PromptVersion, EnhancementHistory)
e Validation and error handling

e Domain-specific logic

e Still monolithic, but organized

Example: Add prompt versioning, quality scoring, and
comparison between original//enhanced prompts.

-
Level 3: Advanced (Future/Production Scale) Why Three Levels Matter

User — When you create all three diagrams upfront:

APl Gateway — Auth Service = Enhancement
Service

1. Level 1diagram keeps your initial implementation simple
_ (no over-engineering)

— LLM Service 2.Level 2 diagram shows your next step (clear growth path)
— Memory Service 3.Level 3 diagram documents your vision (team alignment,
— Analytics Service but not immediate)

— Cache Layer

- Brstelees CluEEr Critical: When implementing a feature, give Copilot Chat the

correct level diagram. Don't give it the Advanced
microservices diagram when you're building Basic!

When: Scaling to thousands of users, multiple teams,

need separate deployments Preferred Format: | use Mermaid diagrams in markdown -
they're version-controllable, render in GitHub/VS Code, and
Characteristics: easy to update as the system evolves.

e Microservices architecture
e Separate databases per service
* Message queues

e Complex orchestration

Example: Full production system with dedicated services
for caching, rate limiting, analytics, and multimodel LLM
routing.

-

Practical Sequence Diagram Example (Level 1- Mermaid)

Before any code, | draw the exact interaction flow using Mermaid syntax:

Diagram 1

Client AP Gemini Database
POST fenhance
{prompt: "help me"}
-
Validate prompt
{length, format)
«
Request enhancement
L
Enhanced prompt text
===
INSERT prompt_draft
-
draft_id
-
201 Created
{draft_id, enhanced _prompl}
A ————
Client AP Gemini Database

This diagram becomes my “contract” that tests will enforce. |
save it as docs/sequence-diagrams/promptenhancement-
basic.md so Copilot can reference it.

Level 1 Flow Summary:

User — APl Endpoint = enhance_prompt() = Gemini —

Database

When: First implementation, MVP, proving the concept

Characteristics:
e Inline logic in controllers/views
e Functions, not services
e Simple data structures (dicts, basic models)
e Minimal abstractions

Example: ‘| need an APl endpoint that enhances prompts’

* One PromptController

e One enhance_prompt() function
e Calls Gemini API directly

e Saves to PromptDraft table

Why Mermaid?
e Version-controlled as plain text
e Copilot can read it as context
e Easy to update as architecture evolves

Level 2: Intermediate (Next 2-4 Features)

User = API = Enhanced Functions — Business Logic —
External Service — Database

When: Adding related features, seeing patterns emerge
Characteristics:

e Extracted business logic functions

e Additional models for data relationships
e Configuration files for domain knowledge
e Still monolithic

Example: ‘Now | need version comparison, change
tracking, and context preservation®

e Add compare_versions() , track_changes() functions
e Add PromptVersion model for audit trail

e Add enhancement_rules.json for business logic

e Still in same codebase

Level 3: Advanced (When You Actually Need It)

User = APl Endpoint = enhance_prompt() = Gemini =

Database

When: Real scaling problems, multiple teams,
performance bottlenecks

Characteristics:

e Separate services with clear boundaries
e Event-driven architecture

e Dedicated components (caching, queuing)
e Microservices-ready

Example: "We process 10k enhancements/hour and need
multiple teams’

e Separate Enhancement

e Service Event Bus for async processing

e Context Service handles user preferences
e Multiple databases

Critical Rule: You create all three diagrams upfront, but
only implement Level 1. Move to Level 2 when you have

real problems Level 1 can't solve. Move to Level 3 when Level
2 breaks.

-

Why Progressive Architecture
Matters

Without it:

Me: 'Build a prompt enhancement APl

Copilot: *Creates microservices architecture with event
sourcing*

Me: 'Too complex for MVP"

Copilot: *Backs off to something too simple*
Me: "This won't support conversation context”
Copilot: *Confused, generates inconsistent code*

With it:

Me: "Build prompt enhancement. Here's the Level 1 diagram.”
Copilot Chat: *Creates clean function-based
implementation*

Tests: All passing [Later...]

Me: 'Add conversation context and version tracking. Here's
the Level 2 diagram.”

Copilot Chat: *Adds enhanced functions and event model*
Tests: Still all passing

The Magic: Your BDD tests work across all three levels. Same APl contract. Same behavior. Different implementation complexity.

Sequence Diagrams for Each Level (Mermaid)

For each level, create Mermaid diagrams showing the exact sequence of operations:

Level 1 (Basic) - Simple Direct Flow:

Client APl enhance_prompt Gemini Database

POST fapifrifpromptsfenhance
{prompt”: “help me code"}

-
Validate prompt
=
Request enhancement
L
enhanced_content
q.- -
INSERT prompt_draft
=
draft_id
q. s =
1draft_id, enhanced_prompt}
- --
201 Created
A
Client API enhance_prompt Gemini Database

Diagram 2

Level 2 (Intermediate) - Add Business Logic Layer:

Diagram 3

Client AP validate_rules enhancement_rules json enhance_prompt Gemini Databaze
POST fapifvil/promptsfenhance
-
Check business rules
-
Load rules
validation config
==
Execute enhancement
=
Request enhancement
-
enhanced_conient
Hesccecscsisasssascs s as s s s s e
INSERT prompt_drafi
-
INSERT prompt_version
-
IDs
- 4
rezponse
=== &
201 Created
==
Client API validate_rules enhancement_rules. json enhance_prompt Gemini Databaze

10

Level 3 (Advanced) - Event-Driven Microservices:

Diagram 4

Client APl Gateway Enhancement Service Event Bus Gemini Database
POST fprompts/enhance
-
enhance_prompt_command
=
enhancement_requested event
=
Request emhancement
=
enhanced_content
.‘-.. R pp——
Write prompt_draft
=
enhancement_completed event
=
Listen for enhancement_completed
201 Created (async)
-
Client APl Gateway Enhancement Service Event Bus Gemini Database

Context Senvice

o
Update user context

—

Context Senvice

-

Key Insight: The client gets the same response (201
Created with prompt details) regardless of which level
you've implemented. Tests don't change. Only the internal
complexity changes.

Phase 1: Write Human-Readable Requirements

Scenario: Enhance a vague prompt

Given | have a vague prompt "help me write code’
When | request enhancement via the API

Then the response status should be 200

Pro Tip: Save these as separate files:

e docs/sequence-diagrams/prompt-
enhancement-basic.md

: And the response should contain an enhanced_prompt
e docs/sequence-diagrams/prompt-

And the enhanced prompt should be more specific than
the original
And the enhanced prompt should be at least 3x longer

enhancement-intermediate.md
e docs/sequence-diagrams/prompt-
enhancement-advanced.md

Then reference the appropriate one when working with

Copilot Chat! Key Point:
Non-technical people can actually read this. Your PM can

validate it. Your designer can understand it. And it maps directly
to the sequential diagram you drew.

Non-technical people can read this. Your PM can validate it.

Your designer can understand it. And it maps to whichever level
diagram you're currently implementing.

12

Phase 2: Create Failing Tests

@given("the prompt enhancement API is running and
accessible")
def step_impl_api_running(context):
endpoint_path = "[api/vl/prompts/enhance"
try:
resolve(endpoint_path)

except Resolver404 as exc:
raise AssertionError(
f'Endpoint not found at ' {endpoint_path}'. "
‘Implement the endpoint following the Level 1
(Basic)
diagram.”
) from exc

Key Point: The test actually checks that your
implementation exists for core business logic. Mock
external dependencies (LLM APIs, email services, external
databases) but verify your own code paths exist. And the
failure message points to the right architectural level.

When to Mock:
e External APIs (Gemini, OpenAl, SendGrid)
e Third-party services you don't control

-

e Slow operations (file I/O, network calls) in unit tests
e Before CI/CD integration is set up

When to Use Real Implementation:
e Your own business logic
e Database operations (use test database)
e Core application flows
e Integration tests with actual service interactions

Phase 3: Let Tests Drive Copilot Chat Code
Generation

Now when you ask Copilot Chat to implement something,
you've got:

1. Clear requirements (the feature file - no more vague
"build me a thing")

2. Specific failure messages (exactly what's broken and
where from terminal output)

3. Explicit success criteria (the test either passes or it
doesn't)

4. The right architectural level (Basic diagram, not your
future microservices dream)

My workflow: | run the tests in the VS Code terminal, then
ask Copilot Chat to help, using # mentions to provide
context:

The magic: Copilot's suggestions are constrained by:

The test failed. Please implement the endpoint following
the Basic diagram.
#terminalLastCommand

e The test failure (via #terminalLastCommand - it knows
exactly what's broken)

) e The diagram (via #file: - it follows the right

#file:features/prompt_enhancement.feature architecture level)

#file:docs/sequence-diagrams/prompt-enhancement- e Your codebase conventions (via #file:; - it matches

basic.md your style)

#file:api/urls.py e The terminal feedback loop (each iteration gets more

#file:api/views.py specific)

Example of providing context to Copilot Chat:
Copilot's output is no longer gambling - it's constrained by
concrete assertions and appropriate complexity. No more slot
machine vibes. No more over-engineered solutions.

Please fix the failing test.

HterminalLastCommand

What you give Copilot Chat (via # mentions):
The terminal output might show:

#terminalLastCommand - Terminal output with specific
failure
#file:features/*.feature - Your feature file with clear

$ behave features/prompt_enhancement.feature

FAIL: Endpoint not found at '/api/vl/prompts/enhance..
Implement the endpoint following the Level 1 (Basic)

requirements

#file:docs/sequence-diagrams/*.md - The Mermaid
diagram at the correct architectural level
#file:api/*.py - Your existing code patterns

diagram.
Add the route to api/urls.py with path:
‘orompts/enhance’

With this context, Copilot suggests the exact minimal
implementation needed. No over-engineering. No
guessing.

Key Insight: The combination of:

e BDD feature files (requirements)

Terminal test output (immediate feedback)
Mermaid diagrams (architecture constraints)
Copilot (code generation)

..creates a deterministic development loop. The terminal
tells you what's broken, the diagram tells you how to fix it,
and Copilot generates the code that satisfies both.

Why This Actually Changed How |
Work

1. Deterministic Outcomes (Finally!)

Vibe coding
assert response.data # Hope there's data!
Test-driven

assert ‘'session_id" in response.data
assert uuid.UUID(response.data|"session_id"])
assert len(response.data['message’]) > 20

No ambiguity. The UUID is either valid or it's not. The
message is either helpful or it's too short. Done.

2. Self-Documenting Code (That Actually Helps)

Your feature files become living documentation that
people can actually read:

This IS the spec
Scenario: Export session with conversation history
When | request to export the session

Then the export should contain the final prompt
And the export should include conversation history
And the export should provide usage instruct

Product managers can write these. Designers can
validate them. QA can actually trace them. The LLM can
implement them. Everyone’s speaking the same language
for once.

3. Refactoring Without Fear

Six months later, you need to refactor the session logic.
With traditional vibe coding, you're sweating bullets -
what if you break something obscure?

15

-

With test-driven development: The tests are guard rails. The terminal output is the feedback
loop. They channel all that generative power into solving your
$ make test exact problem, not creating art projects.

All tests passing

Real-World Example: How |
refactors aggressively while blasting music ACtuq"y Do This

$ make test

All tests still passing Let me walk you through implementing a feature the way | do it

NOW.

Step O: Create the Sequence Diagram

If the tests pass, the behavior is correct. That's it. No

Onxiety’ no "let me just mqnuq”y test 47 different Before tOUChing any COde, | draw out the interaction USing
scenarios.” Mermaid syntax:

4. Copilot Chat as a Constrained Agent (Not a Chaos
Generator)

Think of Copilot like a brilliant but overeager junior
developer:

e Without tests: '‘Build something cool!” — Goes wild,
creates something interesting but probably not what
you needed

e With tests + terminal feedback: "Make this specific test
pass” — Focused, verifiable, actually solves your problem

16

The Sequence Diagram

Database

User APl Gemini
POST /prompts/enhance
{ prompt™: "help me"}
-
Validate prompt
Request enhancement
-
Enhanced prompt fext
-
Create PromptDraft
drafi_id (ULID)
.q. u
201 Crealed
{draft_id, enhanced prompt, original_promptf};
.‘. __
User APl Gemini

Diagram 5

Database

17

This diagram becomes my ‘contract” that the tests will enforce. Perfect. Clear failure message. No ambiguity about what
No more guessing needs to happen next.

Step I: Feature File (Business Logic) Step 3: Give Copilot Chat the Context It Needs
Scenario: Enhance a vague prompt Here's my actual workflow in VS Code:
Given | have a vague prompt "help me’

When | submit the prompt for enhancement .Run the test in the integrated terminal to see the

failure
UL RS (ESEeins Sieliles snetlel e 201 2.0pen Copilot Chat and ask it to help fix the failing test
And the response should contain a draft_id 3.Use # mentions to explicitly add context:

And the response should contain an enhanced_prompt
And the prompt draft should be recorded in the database

#file:prompt_enhancement.feature - The feature
requirements
#file:docs/sequence-diagrams/prompt-
enhancement-basic.nd - The architecture diagram

Note: Each Then step maps directly to something in the
sequence diagram. Everything connects.

Step 2: Run Tests (Watch Them Fail) #terminallastCommand - The test output showing
what failed

#file:api/urls.py and #file:api/views.py - Files | want it
to edit

$ behave features/prompt_enhancement.feature

FAIL: Prompt enhancement endpoint not found at

[api/vl/prompts/enhance'.
Please implement the endpoint in Django.
Add the route to api/urls.py with path: ‘prompts/enhance’

18

Example Copilot Chat prompt: e Each terminal output provides more specific feedback

e Use #terminalLastCommand to give Copilot the latest test
results
e Tests pass when all requirements are satisfied

The test failed. Please implement the missing
endpoint.

#terminalLastCommand Step 4: Copilot Generates Minimal Code

#file:features/prompt_enhancement.feature

#file:docs/sequence-diagrams/prompt-
enhancement-basic.md

#file:api/urls.py

#file:api/views.py

Copilot Chat now has:
e Terminal output (via #terminalLlastCommand) showing
the specific failure
 Feature file (via #file:) with clear requirements
e Sequence diagram (via #file:) showing the architecture
e Existing code ?via #file:) to understand patterns and make
edits

It generates code that directly addresses the test failure,
following the diagram's architecture

The workflow is iterative:
e Write feature — Run test — See failure — Ask Copilot Chat
(with context) = Apply changes — Run test again

api/urls.py
urlpatterns = |

path("prompts/enhance’,
PromptEnhanceView.as_view()),]

api/views.py
class PromptEnhanceView(APIView):
def post(self, request):
draft_id = uuid.uuid4()
Minimal processing - just enough to pass the
test
return Response({
"draft_id" str(draft_id),
"‘enhanced_prompt": "Enhanced version of
the prompt’, "original _prompt’
request.data.get("prompt”)
}, status=201)

19

-

Run tests in terminal. They fail:

FAIL: Response missing 'suggestions' field

Look at that. Minimal, focused, does exactly what the test
requires. No extra bells and whistles.

Step 5: Run Tests Again

Copy that terminal output to Copilot Chat. It fixes it. Repeat
$ behave until everything's green.

features/prompt_enhancement.feature %
The Benefits Actually Compound

* Endpoint found For Teams (1 Just Started Leading One, Growing Pains
e Returns 201 Included)
e Contains session_id
* session_id Is valid UUID | lead a team of four developers (Including myself), and I've
 Contains greeting message > i seen firsthand where LLM-generated code is a game-
e Greeting is helpful (contains keywords: "help", "build") changer and where it falls flat on its face.
All scenarios passing! e Shared understanding: Feature files + progressive
diagrams become the single source of truth

This feeling never gets old. * Bettercode rgviews: Review the tests first, check if
Step 6: lterate When You Need More Implementation m?ltches the current level diagram
dd more requirements to the feature file: * Easier onboarding: New devs can trace requirements —
, level-appropriate diagrams — tests — code
gherkin e Clear progression path: Everyone knows we're at Level],
And the response should include actionable working toward Level 2, with Level 3 documented for the
suggestions future
e Consistent standards: The tests enforce patterns across
the whole team'’s code

20

When everyone's working with LLMs, having tests as guard rails
means we're all building toward the same spec, not four
different interpretations.

For Solo Deveopers

e Confidence in Al-generated code: You know it's correct
because tests say so

e Faster iteration: Clear failure messages = no guessing
what went wrong

 Way less debugging: Catch issues immediately, not at
2am in production

For Copilot Chat Workflow

e Precise requirements: No more "build me an API" —
mystery box of code

* Incremental progress: Each test failure from terminal is
one specific, solvable task

e Instant validation: Every Copilot suggestion gets
immediately verified in terminal

e Tightfeedback loop: Terminal — Copilot Chat - Code —
Terminal

Common Pushback (And Why It's
Wrong)

e Writing tests takes too long!™: You're already writing

e tests - they're just in your head. Making;v’lchem explicit
catches bugs earlier and makes the LLM way more
effective. Plus, honestly? Writing a failing test is faster
than debugging mystery code at llpm.

. "M%l requirements change too fast for this!": Even
better! When rec%uirements change, update the
feature file first. Tests fail, showing you exactly what
needs updating. Then the LLM fixes the
iImplementation. You just turned chaos into a clear
checklist.

e "This doesn't work for exploratory coding!": True! For
prototypes and spikes, vibe away. | still do. But when
It's time to ship to production? Tests or GTFO.

Getting Started (Actually Pretty
Slmple%

1. Pick a Testing Framework
e Python: Behave (BDD) + pytest
e JavaScript: Cucumber + Jest
* Ruby: RSpec + Cucumber
e .NET: SpecFlow + xUnit

Don't overthink this. Pick one and go

2. Diagram First, Code Later

Before writing any code or tests, create progressive
Mermaid diagrams that match your development
journey:

Basic Diagram (document what you have now):

Diagram 6

Client API Gemini DB
POST /enhance
-
enhance{prompt)
-
enhanced_fext
-
INSERT draf
-
draft_id
-
201 {draft_id}
- -
Client API Gemini DB

22

Intermediate Diagram (next 2-3 features):

e Add validation layer, new models (PromptVersion)
e Enhanced functions with context
e Still monolithic

Advanced Diagram (future goal):
e Separate services if needed
e Event-driven architecture
* When you actually scale
Why Mermaid?
e Version-controllable (plain text in markdown)
e Renders in GitHub/VS Code/GitLab
e Easy to update as system evolves
e Copilot understands it as context

Create all three levels upfront in docs/sequence-diagrams/,
but only implement one level at a time.

3. Write One Feature File

Start small. One scenario, 5-10 steps that map to your
Mermaid diagram. Tag it with the implementation level:

@level-basic @conversation

Scenario: Interactive prompt building
Implement with basic architecture

Don't try to describe your entire app on day one.
4. Run Tests, Let Terminal Output Guide Copilot

Write step definitions that check real behavior. Then let
the workflow guide you:

.Run test — Terminal shows specific failure

2.0pen file — Copilot sees terminal output + feature file
+ diagram

3.Start typing — Copilot suggests implementation

4.Run test again — More specific feedback

b.Iterate — Until tests pass

23

Example of terminal-driven development: A 5. Mock External Dependencies, Test Your Logic

Good: Checks behavior, mocks external API
First run @when('l enhance a prompt’)

$ behave features/prompt_enhancement.feature def step_impl(context):
FAIL: Endpoint not found at '/api/vl/prompts/enhance’ with mock.patch('gemini_client.generate’) as
mock_generate:

Open urls.py, Copilot suggests the route mock_generate.return_value = {'content"
Run again 'Enhanced prompt text'}
$ behave feqtures/prompt_enhoncement.feoture context.result =
FAIL: PromptEnhanceView not found enhance_prompt(prompt="help
me")
Open views.py, Copilot suggests the view
Run again assert mock_generate.called # Verify our code
$ behave features/prompt_enhancement.feature called Gemini
FAIL: Response missing '‘enhanced _prompt field assert context.result.enhanced # Verify our
logic
Update view, Copilot suggests the field Welg.Cle
Run again
$ behave features/prompt_enhancement.feature # Bad: Mocks everything, tests nothing

] scenario passed @when('l enhance a prompt)
def step_impl(context):

context.result = mock.Mock(enhanced='Some

Each test failure is immediate feedback that Copilot uses text)
to refine its suggestions . # Just pretending

6. Use # Mentions to Give Copilot Chat Context

Copilot Chat doesn't automatically see everything - you
need to explicitly tell it what to look at using # mentions:

Essential context (use # to reference):

#terminalLastCommand - The most recent test output
#file:features/* feature - Feature file with requirements
#file:docs/sequence-diagrams/*.md - Mermaid diagram
for architecture

#file: for files you're editing (urls.py, views.py, models.py)

Example workflow:

1.Run test: behave features/calculator.feature
2.Test fails with specific error
3.0pen Copilot Chat and prompit:

Fix the failing test.
HterminalLastCommand

#file:features/calculator.feature
#file:calculator.py

4. Copilot generates fix based on the context you
provided
5. Apply the changes and run test again

The more specific context you provide via # mentions, the

better Copilot's suggestions

7. Iterate Until Green

Each failure is a specific, solvable problem:

Run test = Terminal shows what's broken

Ask Copilot Chat with #terminalLastCommand — |t
sees the exact error

Reference your Mermaid diagram with #file: = It
knows how to fix it

Copilot generates the code

Run test again — More specific feedback

Run tests frequently (after each small change). The faster
the feedback loop, the more deterministic the
development.

The key: Use #terminalLastCommand in Copilot Chat
after every test run to give it fresh feedback.

8. Balance Unit and Integration Tests

Use the right tool for the job:

25

Unit Tests (fast, mocked dependencies):

e Test business logic in isolation

e Mock external APIs, databases, slow I/O
e Run on every file save

e Great for TDD red-green-refactor cycles

Integration Tests (slower, real dependencies):

e Test actual service interactions
e Use test database, staging APIs
e Run before commits or in CI/CD
e Verify end-to-end flows work

BDD Feature Tests (behavioral, strategic mocking):

e Focus on user-facing behavior

e Mock what you don't control (Gemini, SendGrid)

e Use real implementation for your code

e Document requirements in human-readable format

The goal isn't 'no mocks ever” - it's strategic mocking that
isolates what you're testing without hiding real bugs.

The Futyre Is Deterministic
(Finally

As Al coding assistants like Copilot get more powerful, the gap
between "what | can imagine’ and "what | can build" keeps
shrinking. But that's only useful if we can verify what we build.

Feature-driven development turns Copilot Chat from "code
generator that might be right” into "implementation that is
provably correct.”

It's not about distrusting Al - it's about trusting, but verifying.
Reagan was onto something.

And verification at the speed of Copilot generation with
terminal feedback? That's when things get really interesting.
That's when you stop gambling and start shipping.

26

Try It Yourself (Seriously, Do This)

Here's the absolute simplest example to get started:

features/calculator.feature
Scenario: Add two numbers
When | add 2 and 3

Then the result should be 5 K

features/steps/calculator_steps.py
@when('l add {a:d} and {b:d}’)

def step_impl(context, g, b):

context.result = add(aq, b) # This will fail -
function

doesn't exist yet

@then(‘the result should be {expected:d}’)
def step_impl(context, expected):
assert context.result == expected

Run the test in your VS Code terminal. Watch it fail with a clear
message. Open Copilot Chat and ask it to fix the test, using
#terminalLastCommand to show it the error. Copilot
implements add() . Run the test again. Watch it pass.

-

Run the test in your VS Code terminal. Watch it fail with a clear
message. Open Copilot Chat and ask it to fix the test, using
#terminalLastCommand to show it the error. Copilot
implements add() . Run the test again. Watch it pass.

Now scale that to your entire application. That's it. That's the
whole game.

27

Conclusion: No More Russian Roulette Coding

"Vibe coding” with LLMs is fun, fast, and sometimes even
works. But for production software - code that needs to be
maintained, extended, debugged at 3am, and actually
trusted - we need something better.

Test-driven development with progressive architecture
gives us:

e Clear requirements (feature files that humans can read)

e Specific constraints (test assertions that don't lie)

e Verifiable correctness gtests pass = working code)

e Living documentation (tests are the spec, not some

dusty wiki)

Refactoring safety (tests catch regressions instantly)

e Progressive complexity (architecture that matches your
actual journey: Basic — Intermediate = Advanced)

e Right-sized solutions (LLMs generate code at exactly the
complexity level you need)

The result? Deterministic outcomes from Copilot Chat at
the right complexity level. No more slot machines. No more
crossing fingers. No more ‘it worked on my machine’
followed by production fires. And critically - no more over-
engineered messes or under-built hacks.

You document your reality (Basic), your next ste
(Intermediate), and your future goal (Advanced). Copilot
knows which one you're working on from the diagram you
show it. Your tests work across all three. You move between
levels when you have real problems, not aspirational
architecture.

The workflow: Feature files - Mermaid diagrams —
Terminal test feedback — Copilot Chat (with # mentions)
— Repeat.

The vibes are optional. The tests are not. The terminal
feedback loop? Essential. The # mentions in Copilot Chat?
That's how you give it the right context. And the progressive
architecture? That's what keeps you sane.

And honestly? Once you get used to this workflow - tests
that verify, diagrams that match reality, and architecture
that grows with you - going bback to vibe coding feels like
trying to navigate with your eyes closed. Sure, you might get
where you're going eventually... but why would you want to?

Interested in optimizing your
development process with Al?

PromptShEIf ,ﬂ|| Home Blog

<% Prompt Like A Pro!

Unlock Al's Potential.
Prompt Effortiessly.

your generative Al interactions from guesswork to professional precision. PromptShelf.ai is your int
prompt discovery and curation toolkit for superior Generative Al results ond collaboration.

Whether you're exploring new approaches or
looking to refine your current workflow, we're here
to assist.

Reach out for a consultation or collaboration,
and let’'s discuss how we can help drive
your projects forward.

Gat started for free

Contact us today to get started:
e edgarjoya@talaverasolutions.com
e gabriel@talaverasolutions.com

PromptShelf.Al

Powered by @2) TALAVERA

©&) Website: www.Promptshelf.ai

(0) Instagram: @PromptShelf.qi

X X: @PromptShelfai
@ Reddit: www.Promptshelf.ai

29

