
By Edgar Joya, VP Full Stack Development COE
Gabe Arce, Talavera Solutions CEO

Beyond Vibe Coding
Making LLM Assisted

Development
Deterministic

PromptShelf AI
Powered by

The Problem with "Vibe Coding"
Over the last couple of months, I've been trying to determine
how to work effectively with AI. LLMs have been exceptional
at transforming my half-engineered ideas into reality—only
the ether knows how much ADHD driven curiosity has been
satisfied. But for real-world production software, like most of
us, I've been caught in an endless cycle of discovery:
bouncing between code snippets, exploring new ideas, and
testing different pathways to create software.

The feedback loop of iterating back and forth with a system
of neural matrices—hoping each generation brings you
closer to what you actually need—starts to feel like playing
slots at a casino, waiting for that magical block of code to
give you the outcome you wanted. After a while, it gets
exhausting. I've genuinely had more fun watching brew or
apt package updates scroll by.

This is what some call "vibe coding" - development driven by
intuition and crossing your fingers that the generated code
is actually correct. The code looks right, the patterns seem
reasonable, but there's no concrete way to verify correctness
beyond "it compiles and doesn't immediately crash."

The problem isn't the LLM - it's the lack of constraints
and context. When you ask an LLM to "create an order
processing endpoint," sure, you'll get code. But does it
actually match what you needed? Does it handle edge
cases? Will it survive the next refactor? Who knows!
feels like a round of Russian roulette.

2

Enter: Test-Driven Development
with Copilot Chat
Here's the thing that changed everything for me: What if
the tests told Copilot exactly what to build?

Instead of this mess:

My Workflow: I use GitHub Copilot in VS Code with
terminal feedback loops. Tests run in the terminal, Copilot
sees the output + feature files + Mermaid diagrams, and
generates code that satisfies the constraints. No manual
LLM prompting needed.

3

Me: "Create a prompt enhancement
endpoint"
Copilot: *generates 200 lines of code*
Me: "Looks good!" *nervously hits save*

Feature File: "When I POST a vague prompt to
/api/v1/enhance, I should get an enhanced
version"
Test: FAIL - "Endpoint not found at
/api/v1/enhance"
Copilot Chat: *generates minimal endpoint*
Terminal: Test output shows "Response missing
'enhanced_prompt' field"
Copilot Chat: *adds enhanced_prompt*
Test: PASS

Mermaid Diagram: Level 1 (Basic) architecture
Feature File: "When I POST a vague prompt to
/api/v1/enhance, I get enhanced version"
Terminal: FAIL - "Endpoint not found at
/api/v1/enhance"
Copilot: *suggests minimal endpoint based on
diagram + test output*
Terminal: FAIL - "Response missing
'enhanced_prompt' field"
Copilot: *adds enhanced_prompt field*
Terminal: PASS

I started doing this:

4

The Feature-Driven Development
Pattern
Phase 0: Visualize Before You Code (with
Progressive Architecture)

Before writing any feature files or tests, I start with
diagrams. But here's the critical part: don't document
your dreams, document your journey.

Instead of creating one beautiful diagram showing your
future microservices architecture, create three
progressive diagrams that match reality:

Level 1: Basic (What You're Building First)

Example: A simple prompt enhancement endpoint that
takes vague prompts and makes them specific

User → API Endpoint → enhance_prompt() → LLM
(Gemini) → Database

Level 2: Intermediate (Next 2-4 Features)

User → API → Enhanced Functions → LLM → Database (+
new models)
↓
Validation Layer
↓
Domain Logic (quality checks, versioning)

When: Adding features, handling edge cases, storing
history

Characteristics:

New models (PromptVersion, EnhancementHistory)
Validation and error handling
Domain-specific logic
Still monolithic, but organized

Example: Add prompt versioning, quality scoring, and
comparison between original//enhanced prompts.

When: First implementation, MVP, proving the concept

Characteristics:

Inline logic in controllers/views
Functions, not services
Simple data structures (dicts, basic models)
Direct LLM calls

5

Level 3: Advanced (Future/Production Scale)

User →
 API Gateway → Auth Service → Enhancement
Service
 → LLM Service
 → Memory Service
 → Analytics Service
 → Cache Layer
 → Database Cluster

When: Scaling to thousands of users, multiple teams,
need separate deployments

Characteristics:

Microservices architecture
Separate databases per service
Message queues
Complex orchestration

Example: Full production system with dedicated services
for caching, rate limiting, analytics, and multimodel LLM
routing.

Why Three Levels Matter
When you create all three diagrams upfront:

1. Level 1 diagram keeps your initial implementation simple
(no over-engineering)

2.Level 2 diagram shows your next step (clear growth path)
3.Level 3 diagram documents your vision (team alignment,

but not immediate)

Critical: When implementing a feature, give Copilot Chat the
correct level diagram. Don't give it the Advanced
microservices diagram when you're building Basic!

Preferred Format: I use Mermaid diagrams in markdown -
they're version-controllable, render in GitHub/VS Code, and
easy to update as the system evolves.

6

Practical Sequence Diagram Example (Level 1 - Mermaid)

Before any code, I draw the exact interaction flow using Mermaid syntax:

Diagram 1

7

This diagram becomes my "contract" that tests will enforce. I
save it as docs/sequence-diagrams/promptenhancement-
basic.md so Copilot can reference it.

User → API Endpoint → enhance_prompt() → Gemini →
Database

When: First implementation, MVP, proving the concept

Characteristics:
Inline logic in controllers/views
Functions, not services
Simple data structures (dicts, basic models)
Minimal abstractions

Example: "I need an API endpoint that enhances prompts"

One PromptController
One enhance_prompt() function
Calls Gemini API directly
Saves to PromptDraft table

Why Mermaid?
Version-controlled as plain text
Copilot can read it as context
Easy to update as architecture evolves

Level 2: Intermediate (Next 2-4 Features)

User → API → Enhanced Functions → Business Logic →
External Service → Database

When: Adding related features, seeing patterns emerge

Characteristics:

Extracted business logic functions
Additional models for data relationships
Configuration files for domain knowledge
Still monolithic

Example: "Now I need version comparison, change
tracking, and context preservation"

Add compare_versions() , track_changes() functions
Add PromptVersion model for audit trail
Add enhancement_rules.json for business logic
Still in same codebase

Level 1 Flow Summary:

8

Level 3: Advanced (When You Actually Need It)

When: Real scaling problems, multiple teams,
performance bottlenecks

Characteristics:

Separate services with clear boundaries
Event-driven architecture
Dedicated components (caching, queuing)
Microservices-ready

Example: "We process 10k enhancements/hour and need
multiple teams"

Separate Enhancement
Service Event Bus for async processing
Context Service handles user preferences
Multiple databases

Critical Rule: You create all three diagrams upfront, but
only implement Level 1. Move to Level 2 when you have
real problems Level 1 can't solve. Move to Level 3 when Level
2 breaks.

User → API Endpoint → enhance_prompt() → Gemini →
Database

Why Progressive Architecture
Matters
Without it:

With it:

Me: "Build a prompt enhancement API"
Copilot: *Creates microservices architecture with event
sourcing*
Me: "Too complex for MVP"
Copilot: *Backs off to something too simple*
Me: "This won't support conversation context"
Copilot: *Confused, generates inconsistent code*

Me: "Build prompt enhancement. Here's the Level 1 diagram."
Copilot Chat: *Creates clean function-based
implementation*
Tests: All passing [Later...]
Me: "Add conversation context and version tracking. Here's
the Level 2 diagram."
Copilot Chat: *Adds enhanced functions and event model*
Tests: Still all passing

9

The Magic: Your BDD tests work across all three levels. Same API contract. Same behavior. Different implementation complexity.

Sequence Diagrams for Each Level (Mermaid)

For each level, create Mermaid diagrams showing the exact sequence of operations:

Level 1 (Basic) - Simple Direct Flow:

Diagram 2

10

Level 2 (Intermediate) - Add Business Logic Layer:

Diagram 3

11

Level 3 (Advanced) - Event-Driven Microservices:

Diagram 4

Key Insight: The client gets the same response (201
Created with prompt details) regardless of which level
you've implemented. Tests don't change. Only the internal
complexity changes.

Pro Tip: Save these as separate files:

12

docs/sequence-diagrams/prompt-
enhancement-basic.md
docs/sequence-diagrams/prompt-
enhancement-intermediate.md
docs/sequence-diagrams/prompt-
enhancement-advanced.md

Phase 1: Write Human-Readable Requirements

Scenario: Enhance a vague prompt
Given I have a vague prompt "help me write code"
When I request enhancement via the API
Then the response status should be 200
And the response should contain an enhanced_prompt
And the enhanced prompt should be more specific than
the original
And the enhanced prompt should be at least 3x longer

Key Point:
Non-technical people can actually read this. Your PM can
validate it. Your designer can understand it. And it maps directly
to the sequential diagram you drew.

Non-technical people can read this. Your PM can validate it.
Your designer can understand it. And it maps to whichever level
diagram you're currently implementing.

Then reference the appropriate one when working with
Copilot Chat!

Key Point: The test actually checks that your
implementation exists for core business logic. Mock
external dependencies (LLM APIs, email services, external
databases) but verify your own code paths exist. And the
failure message points to the right architectural level.

When to Mock:
External APIs (Gemini, OpenAI, SendGrid)
Third-party services you don't control

Phase 2: Create Failing Tests
@given("the prompt enhancement API is running and
accessible")
def step_impl_api_running(context):
 endpoint_path = "/api/v1/prompts/enhance"
 try:
 resolve(endpoint_path)
 except Resolver404 as exc:
 raise AssertionError(
 f"Endpoint not found at ' {endpoint_path}'. "
 "Implement the endpoint following the Level 1
(Basic)
 diagram."
) from exc

Slow operations (file I/O, network calls) in unit tests
Before CI/CD integration is set up

When to Use Real Implementation:
Your own business logic
Database operations (use test database)
Core application flows
Integration tests with actual service interactions

Phase 3: Let Tests Drive Copilot Chat Code
Generation
Now when you ask Copilot Chat to implement something,
you've got:

1. Clear requirements (the feature file - no more vague
"build me a thing")

2. Specific failure messages (exactly what's broken and
where from terminal output)

3. Explicit success criteria (the test either passes or it
doesn't)

4. The right architectural level (Basic diagram, not your
future microservices dream)

My workflow: I run the tests in the VS Code terminal, then
ask Copilot Chat to help, using # mentions to provide
context:

13

14

The test failed. Please implement the endpoint following
the Basic diagram.
#terminalLastCommand
#file:features/prompt_enhancement.feature
#file:docs/sequence-diagrams/prompt-enhancement-
basic.md
#file:api/urls.py
#file:api/views.py

Copilot's output is no longer gambling - it's constrained by
concrete assertions and appropriate complexity. No more slot
machine vibes. No more over-engineered solutions.

What you give Copilot Chat (via # mentions):

The magic: Copilot's suggestions are constrained by:

The test failure (via #terminalLastCommand - it knows
exactly what's broken)
The diagram (via #file: - it follows the right
architecture level)
Your codebase conventions (via #file: - it matches
your style)
The terminal feedback loop (each iteration gets more
specific)

Example of providing context to Copilot Chat:

The terminal output might show:

Please fix the failing test.
#terminalLastCommand

#terminalLastCommand - Terminal output with specific
failure
#file:features/*.feature - Your feature file with clear
requirements
#file:docs/sequence-diagrams/*.md - The Mermaid
diagram at the correct architectural level
#file:api/*.py - Your existing code patterns

$ behave features/prompt_enhancement.feature

FAIL: Endpoint not found at '/api/v1/prompts/enhance'.
Implement the endpoint following the Level 1 (Basic)
diagram.
Add the route to api/urls.py with path:
'prompts/enhance'

15

With this context, Copilot suggests the exact minimal
implementation needed. No over-engineering. No
guessing.

Key Insight: The combination of:

BDD feature files (requirements)
Terminal test output (immediate feedback)
Mermaid diagrams (architecture constraints)
Copilot (code generation)

...creates a deterministic development loop. The terminal
tells you what's broken, the diagram tells you how to fix it,
and Copilot generates the code that satisfies both.

No ambiguity. The UUID is either valid or it's not. The
message is either helpful or it's too short. Done.

2. Self-Documenting Code (That Actually Helps)

This IS the spec
Scenario: Export session with conversation history
When I request to export the session
Then the export should contain the final prompt
And the export should include conversation history
And the export should provide usage instructWhy This Actually Changed How I

Work
1. Deterministic Outcomes (Finally!)

Vibe coding
assert response.data # Hope there's data!
Test-driven
assert "session_id" in response.data
assert uuid.UUID(response.data["session_id"])
assert len(response.data["message"]) > 20

Your feature files become living documentation that
people can actually read:

Product managers can write these. Designers can
validate them. QA can actually trace them. The LLM can
implement them. Everyone's speaking the same language
for once.

3. Refactoring Without Fear

Six months later, you need to refactor the session logic.
With traditional vibe coding, you're sweating bullets -
what if you break something obscure?

16

With test-driven development:

$ make test
All tests passing

refactors aggressively while blasting music

$ make test
All tests still passing

The tests are guard rails. The terminal output is the feedback
loop. They channel all that generative power into solving your
exact problem, not creating art projects.

If the tests pass, the behavior is correct. That's it. No
anxiety, no "let me just manually test 47 different
scenarios."

4. Copilot Chat as a Constrained Agent (Not a Chaos
Generator)
Think of Copilot like a brilliant but overeager junior
developer:

Without tests: "Build something cool!" → Goes wild,
creates something interesting but probably not what
you needed
With tests + terminal feedback: "Make this specific test
pass" → Focused, verifiable, actually solves your problem

Real-World Example: How I
Actually Do This
Let me walk you through implementing a feature the way I do it
now.

Step 0: Create the Sequence Diagram

Before touching any code, I draw out the interaction using
Mermaid syntax:

17

The Sequence Diagram

Diagram 5

18

This diagram becomes my "contract" that the tests will enforce.
No more guessing

Scenario: Enhance a vague prompt
Given I have a vague prompt "help me"
When I submit the prompt for enhancement
Then the response status should be 201
And the response should contain a draft_id
And the response should contain an enhanced_prompt
And the prompt draft should be recorded in the database

Here's my actual workflow in VS Code:

1.Run the test in the integrated terminal to see the
failure

2.Open Copilot Chat and ask it to help fix the failing test
3.Use # mentions to explicitly add context:

Step 1: Feature File (Business Logic)

#file:prompt_enhancement.feature - The feature
requirements
#file:docs/sequence-diagrams/prompt-
enhancement-basic.md - The architecture diagram
#terminalLastCommand - The test output showing
what failed
#file:api/urls.py and #file:api/views.py - Files I want it
to edit

Perfect. Clear failure message. No ambiguity about what
needs to happen next.

Note: Each Then step maps directly to something in the
sequence diagram. Everything connects.

Step 2: Run Tests (Watch Them Fail)

$ behave features/prompt_enhancement.feature

FAIL: Prompt enhancement endpoint not found at
'/api/v1/prompts/enhance'.
Please implement the endpoint in Django.
Add the route to api/urls.py with path: 'prompts/enhance'

Step 3: Give Copilot Chat the Context It Needs

19

Example Copilot Chat prompt:

Copilot Chat now has:
Terminal output (via #terminalLastCommand) showing
the specific failure
Feature file (via #file:) with clear requirements
Sequence diagram (via #file:) showing the architecture
Existing code (via #file:) to understand patterns and make
edits

It generates code that directly addresses the test failure,
following the diagram's architecture

The workflow is iterative:
Write feature → Run test → See failure → Ask Copilot Chat
(with context) → Apply changes → Run test again

The test failed. Please implement the missing
endpoint.

#terminalLastCommand
#file:features/prompt_enhancement.feature
#file:docs/sequence-diagrams/prompt-
enhancement-basic.md
#file:api/urls.py
#file:api/views.py

Each terminal output provides more specific feedback
Use #terminalLastCommand to give Copilot the latest test
results
Tests pass when all requirements are satisfied

api/urls.py
urlpatterns = [
 path("prompts/enhance",
 PromptEnhanceView.as_view()),]

api/views.py
class PromptEnhanceView(APIView):
 def post(self, request):
 draft_id = uuid.uuid4()
 # Minimal processing - just enough to pass the
 test
 return Response({
 "draft_id": str(draft_id),
 "enhanced_prompt": "Enhanced version of
 the prompt", "original_prompt":
 request.data.get("prompt")
 }, status=201)

Step 4: Copilot Generates Minimal Code

20

Look at that. Minimal, focused, does exactly what the test
requires. No extra bells and whistles.

Step 5: Run Tests Again

$ behave
features/prompt_enhancement.feature

Endpoint found
Returns 201
Contains session_id
session_id is valid UUID
Contains greeting message
Greeting is helpful (contains keywords: "help", "build")

All scenarios passing!

This feeling never gets old.
Step 6: Iterate When You Need More
dd more requirements to the feature file:
```gherkin 
And the response should include actionable
suggestions

Run tests in terminal. They fail:

FAIL: Response missing 'suggestions' field

Copy that terminal output to Copilot Chat. It fixes it. Repeat
until everything's green.

The Benefits Actually Compound
For Teams (I Just Started Leading One, Growing Pains
Included)

I lead a team of four developers (Including myself), and I've
seen firsthand where LLM-generated code is a game-
changer and where it falls flat on its face.

Shared understanding: Feature files + progressive
diagrams become the single source of truth
Better code reviews: Review the tests first, check if
implementation matches the current level diagram 
Easier onboarding: New devs can trace requirements →
level-appropriate diagrams → tests → code
Clear progression path: Everyone knows we're at Level 1,
working toward Level 2, with Level 3 documented for the
future 
Consistent standards: The tests enforce patterns across
the whole team's code



21

When everyone's working with LLMs, having tests as guard rails
means we're all building toward the same spec, not four
different interpretations.

For Solo Deveopers

Confidence in AI-generated code: You know it's correct
because tests say so 
Faster iteration: Clear failure messages = no guessing
what went wrong 
Way less debugging: Catch issues immediately, not at
2am in production 

For Copilot Chat Workflow

Precise requirements: No more "build me an API" →
mystery box of code 
Incremental progress: Each test failure from terminal is
one specific, solvable task 
Instant validation: Every Copilot suggestion gets
immediately verified in terminal 
Tight feedback loop: Terminal → Copilot Chat → Code →
Terminal 

Common Pushback (And Why It's
Wrong)

tests - they're just in your head. Making them explicit
catches bugs earlier and makes the LLM way more
effective. Plus, honestly? Writing a failing test is faster
than debugging mystery code at 11pm. 

"My requirements change too fast for this!": Even
better! When requirements change, update the
feature file first. Tests fail, showing you exactly what
needs updating. Then the LLM fixes the
implementation. You just turned chaos into a clear
checklist.

"This doesn't work for exploratory coding!": True! For
prototypes and spikes, vibe away. I still do. But when
it's time to ship to production? Tests or GTFO. 

Getting Started (Actually Pretty
Simple)
1. Pick a Testing Framework 

Python: Behave (BDD) + pytest 
JavaScript: Cucumber + Jest 
Ruby: RSpec + Cucumber 
.NET: SpecFlow + xUnit

Don't overthink this. Pick one and go

2. Diagram First, Code Later
Before writing any code or tests, create progressive
Mermaid diagrams that match your development
journey: Writing tests takes too long!": You're already writing



22

Basic Diagram (document what you have now): 

Diagram 6



Intermediate Diagram (next 2-3 features):

Add validation layer, new models (PromptVersion) 
Enhanced functions with context 
Still monolithic 

Advanced Diagram (future goal):

Separate services if needed 
Event-driven architecture 
When you actually scale 

Why Mermaid?

Version-controllable (plain text in markdown) 
Renders in GitHub/VS Code/GitLab 
Easy to update as system evolves 
Copilot understands it as context

Create all three levels upfront in docs/sequence-diagrams/ ,
but only implement one level at a time. 

23

@level-basic @conversation 
Scenario: Interactive prompt building 
     # Implement with basic architecture 

Don't try to describe your entire app on day one. 

4. Run Tests, Let Terminal Output Guide Copilot

Write step definitions that check real behavior. Then let
the workflow guide you:

1.Run test → Terminal shows specific failure 
2.Open file → Copilot sees terminal output + feature file

+ diagram 
3.Start typing → Copilot suggests implementation 
4.Run test again → More specific feedback 
5. Iterate → Until tests pass

3. Write One Feature File

Start small. One scenario, 5-10 steps that map to your
Mermaid diagram. Tag it with the implementation level: 



24

Example of terminal-driven development: 

# First run 
$ behave features/prompt_enhancement.feature 
FAIL: Endpoint not found at '/api/v1/prompts/enhance' 

# Open urls.py, Copilot suggests the route 
# Run again 
$ behave features/prompt_enhancement.feature 
FAIL: PromptEnhanceView not found 

# Open views.py, Copilot suggests the view 
# Run again 
$ behave features/prompt_enhancement.feature 
FAIL: Response missing 'enhanced_prompt' field 

# Update view, Copilot suggests the field 
# Run again 
$ behave features/prompt_enhancement.feature 
1 scenario passed 

5. Mock External Dependencies, Test Your Logic

Each test failure is immediate feedback that Copilot uses
to refine its suggestions

# Good: Checks behavior, mocks external API 
@when('I enhance a prompt') 
def step_impl(context): 
       with mock.patch('gemini_client.generate') as 
             mock_generate: 
             mock_generate.return_value = {'content': 
             'Enhanced prompt text'} 
             context.result =
enhance_prompt(prompt="help
             me") 

       assert mock_generate.called # Verify our code 
       called Gemini 
       assert context.result.enhanced # Verify our
logic 
       worked 

# Bad: Mocks everything, tests nothing 
@when('I enhance a prompt') 
def step_impl(context): 
       context.result = mock.Mock(enhanced='Some
text') 
       # Just pretending



25

6. Use # Mentions to Give Copilot Chat Context

Copilot Chat doesn't automatically see everything - you
need to explicitly tell it what to look at using # mentions: 

Essential context (use # to reference): 

#terminalLastCommand - The most recent test output 
#file:features/*.feature - Feature file with requirements 
#file:docs/sequence-diagrams/*.md - Mermaid diagram
for architecture 
#file: for files you're editing (urls.py, views.py, models.py)

Example workflow:

1.Run test: behave features/calculator.feature 
2.Test fails with specific error 
3.Open Copilot Chat and prompt: 

Fix the failing test. 
#terminalLastCommand 
#file:features/calculator.feature 
#file:calculator.py

The more specific context you provide via # mentions, the
better Copilot's suggestions

7. Iterate Until Green

Each failure is a specific, solvable problem: 

Run test → Terminal shows what's broken 
Ask Copilot Chat with #terminalLastCommand → It
sees the exact error 
Reference your Mermaid diagram with #file: → It
knows how to fix it
Copilot generates the code 
Run test again → More specific feedback 

Run tests frequently (after each small change). The faster
the feedback loop, the more deterministic the
development.

The key: Use #terminalLastCommand in Copilot Chat
after every test run to give it fresh feedback.

8. Balance Unit and Integration Tests 

 Use the right tool for the job: 
     4. Copilot generates fix based on the context you 
         provided 
     5. Apply the changes and run test again 



Unit Tests (fast, mocked dependencies):

Test business logic in isolation 
Mock external APIs, databases, slow I/O 
Run on every file save 
Great for TDD red-green-refactor cycles

Integration Tests (slower, real dependencies):

Test actual service interactions 
Use test database, staging APIs 
Run before commits or in CI/CD 
Verify end-to-end flows work 

BDD Feature Tests (behavioral, strategic mocking):

Focus on user-facing behavior 
Mock what you don't control (Gemini, SendGrid) 
Use real implementation for your code 
Document requirements in human-readable format 

The goal isn't "no mocks ever" - it's strategic mocking that
isolates what you're testing without hiding real bugs. 

The Future Is Deterministic
(Finally)

26

As AI coding assistants like Copilot get more powerful, the gap
between "what I can imagine" and "what I can build" keeps
shrinking. But that's only useful if we can verify what we build.

Feature-driven development turns Copilot Chat from "code
generator that might be right" into "implementation that is
provably correct." 

It's not about distrusting AI - it's about trusting, but verifying.
Reagan was onto something. 

And verification at the speed of Copilot generation with
terminal feedback? That's when things get really interesting.
That's when you stop gambling and start shipping. 



27

Here's the absolute simplest example to get started:

# features/calculator.feature 
Scenario: Add two numbers 
When I add 2 and 3 
Then the result should be 5 �

 # features/steps/calculator_steps.py
@when('I add {a:d} and {b:d}') 
def step_impl(context, a, b): 
       context.result = add(a, b) # This will fail -
function 
       doesn't exist yet 

@then('the result should be {expected:d}') 
def step_impl(context, expected): 
       assert context.result == expected 

Try It Yourself (Seriously, Do This)

Run the test in your VS Code terminal. Watch it fail with a clear
message. Open Copilot Chat and ask it to fix the test, using
#terminalLastCommand to show it the error. Copilot
implements add() . Run the test again. Watch it pass. 

Run the test in your VS Code terminal. Watch it fail with a clear
message. Open Copilot Chat and ask it to fix the test, using
#terminalLastCommand to show it the error. Copilot
implements add() . Run the test again. Watch it pass. 

Now scale that to your entire application. That's it. That's the
whole game. 



28

Conclusion: No More Russian Roulette Coding
"Vibe coding" with LLMs is fun, fast, and sometimes even
works. But for production software - code that needs to be
maintained, extended, debugged at 3am, and actually
trusted - we need something better.

Test-driven development with progressive architecture
gives us: 

Clear requirements (feature files that humans can read) 
Specific constraints (test assertions that don't lie) 
Verifiable correctness (tests pass = working code) 
Living documentation (tests are the spec, not some
dusty wiki) 
Refactoring safety (tests catch regressions instantly) 
Progressive complexity (architecture that matches your
actual journey: Basic → Intermediate → Advanced) 
Right-sized solutions (LLMs generate code at exactly the
complexity level you need) 

The result? Deterministic outcomes from Copilot Chat at
the right complexity level. No more slot machines. No more
crossing fingers. No more "it worked on my machine"
followed by production fires. And critically - no more over-
engineered messes or under-built hacks. 

You document your reality (Basic), your next step
(Intermediate), and your future goal (Advanced). Copilot
knows which one you're working on from the diagram you
show it. Your tests work across all three. You move between
levels when you have real problems, not aspirational
architecture. 

The workflow: Feature files → Mermaid diagrams →
Terminal test feedback → Copilot Chat (with # mentions)
→ Repeat. 

The vibes are optional. The tests are not. The terminal
feedback loop? Essential. The # mentions in Copilot Chat?
That's how you give it the right context. And the progressive
architecture? That's what keeps you sane. 

And honestly? Once you get used to this workflow - tests
that verify, diagrams that match reality, and architecture
that grows with you - going back to vibe coding feels like
trying to navigate with your eyes closed. Sure, you might get
where you're going eventually... but why would you want to?



29

Interested in optimizing your
development process with AI? 
Whether you're exploring new approaches or
looking to refine your current workflow, we’re here
to assist. 

Reach out for a consultation or collaboration,
and let’s discuss how we can help drive
your projects forward.

Contact us today to get started:

edgarjoya@talaverasolutions.com
gabriel@talaverasolutions.com

Website: www.Promptshelf.ai

Instagram: @PromptShelf.ai

X: @PromptShelfai

Reddit: www.Promptshelf.ai


