
A key component of the solution was
in-place tokenization, which allows sensitive
data to be protected at rest and in use,
without changing its format or location. This
approach ensures that data remains usable
for business processes and analytics while
reducing the risk of exposure.
By tokenizing the data where it resides, the
organization avoided the complexity and
risk of moving or duplicating sensitive
information, aligning directly with the goal of
protecting data without disrupting
operational workflows.

DataStealth endpoints were configured to
read data from the mainframe DB2. Vaulted
tokenization was used to protect sensitive
data: the original values are replaced with
tokens stored directly in the database, with
no mathematical relationship to the original

data. This approach ensures that
sensitive data is never exposed in clear
text, supports format preservation, and is
inherently quantum-resistant due to the
absence of any computational linkage
between the token and the real value.

An alternative approach was considered:
keeping the data in clear text on the
mainframe and applying protection
dynamically during access, replication, or
transmission; using methods like dynamic
masking or generating test or synthetic
data on the fly. While this option offered
flexibility and avoided changes to the
original data, it was not chosen due to
the added complexity, the risk that
protection might not always be applied,
and a stronger need to keep the data
securely protected at rest.

Format preservation during tokenization
was crucial.

This is vital for legacy systems like
mainframe DB2, where altering schemas or
data formats can be exceptionally risky or
entirely unsupported.

Many mainframe databases employ data
integrity checks, such as validation
constraints or Luhn checks for credit card
numbers, before committing updates.

Case Study:
Securing Legacy Mainframe
Data with DataStealth
Customer Profile: A financial services or
telecommunications company operating IBM DB2
instances on a mainframe environment.

DataStealth’s vaulted tokenization method
generates tokens that preserve the original
data's structure and pass these business
logic rules, ensuring that system workflows
continue uninterrupted.

For instance, a tokenized credit card number
would still pass a Luhn check, preventing the
system from rejecting it or failing in
downstream processes.

Controlled replication was a critical
component in ensuring secure data
movement across systems while
maintaining compliance.

DataStealth endpoints intercepted
replication flows from the mainframe DB2
to downstream systems—such as an
Oracle database used for fraud
detection—to enforce data protection
policies in transit. This allowed the
organization to leverage de-identified data
for advanced analytics without exposing
sensitive data in cleartext, ensuring that
privacy and regulatory requirements were
upheld throughout the replication process.

Data protection policies were applied to
secure sensitive data throughout this
process, even if the data had already been
tokenized on the mainframe. This
additional layer of protection helps ensure
consistent enforcement of policies across
environments. DataStealth uses vaulted
tokenization, where the mapping between
each original value and its token is stored
in a secure, centralized vault. These
mappings are unique to each vault,
meaning tokens generated in one vault
cannot be resolved in another. This
separation is intentional; it enforces strict
data boundaries between environments or
security zones, reducing the risk of
unauthorized re-identification or
cross-environment data leakage.

Depending on the configuration and the
destination system, several actions could
be taken:

• Pass-through: If the target system
shared access to the same vault,
tokenized data could be passed
through directly.

• Controlled detokenization: If the
target system required access to the
original cleartext values such as for
processing, analytics, or integration
with legacy applications then
detokenization could be performed.
However, this was done under strict
controls, since exposing sensitive
data, even temporarily, increases the
risk of data leakage or misuse. Access
was typically governed by fine-grained
policies, audit logging, and
time-limited access to minimize the
exposure window and ensure
compliance with data protection
requirements.

• Re-tokenization: More securely, data
could be detokenized from the source
vault and then re-tokenized using a
different vault associated with the
target system. This preserved security
boundaries while maintaining
reversibility within each domain.

A key component of the solution was
in-place tokenization, which allows sensitive
data to be protected at rest and in use,
without changing its format or location. This
approach ensures that data remains usable
for business processes and analytics while
reducing the risk of exposure.
By tokenizing the data where it resides, the
organization avoided the complexity and
risk of moving or duplicating sensitive
information, aligning directly with the goal of
protecting data without disrupting
operational workflows.

DataStealth endpoints were configured to
read data from the mainframe DB2. Vaulted
tokenization was used to protect sensitive
data: the original values are replaced with
tokens stored directly in the database, with
no mathematical relationship to the original

data. This approach ensures that
sensitive data is never exposed in clear
text, supports format preservation, and is
inherently quantum-resistant due to the
absence of any computational linkage
between the token and the real value.

An alternative approach was considered:
keeping the data in clear text on the
mainframe and applying protection
dynamically during access, replication, or
transmission; using methods like dynamic
masking or generating test or synthetic
data on the fly. While this option offered
flexibility and avoided changes to the
original data, it was not chosen due to
the added complexity, the risk that
protection might not always be applied,
and a stronger need to keep the data
securely protected at rest.

Format preservation during tokenization
was crucial.

This is vital for legacy systems like
mainframe DB2, where altering schemas or
data formats can be exceptionally risky or
entirely unsupported.

Many mainframe databases employ data
integrity checks, such as validation
constraints or Luhn checks for credit card
numbers, before committing updates.

SCARCITY OF COBOL
DEVELOPERS

CLEARTEXT AT REST

REPLICATION TO
EXTERNAL SYSTEMS

The Challenge: Unlocking
Mainframe Data Securely

Organizations in sectors like financial
services and telecommunications often rely
on mainframes to store vast quantities of
historical customer data. While this data is
critical, it frequently resides in cleartext,
posing a significant security risk.

The inherent complexity and age of
mainframe application code (e.g. COBOL)
and legacy database structures make
modifications high-risk, expensive, and
time-consuming. Adding to this issue is the
scarcity of skilled mainframe developers.

A key concern is that organizations
typically want to avoid installing agents

©2025 DataStealth Inc. All Rights Reserved.

datastealth.io

directly on mainframes because doing so
can impact performance, introduce
operational risks, and is often
unsupported or restricted. Furthermore,
sensitive data is often replicated from
the mainframe to other systems.

This replication increases the attack
surface, particularly when data traverses
trust boundaries or different security
zones. These downstream systems may
also incorporate external enrichment
data, such as geolocation or behavioural
information, which must be protected
with the same rigour as the original
mainframe data.

TN3270 TERMINAL SESSIONS

Accessing data on mainframes
introduces unique security challenges
due to legacy protocols like TN3270,
which are still widely used for
terminal-based sessions.

Supporting TN3270 terminal sessions is a
critical yet complex requirement for
protecting data on mainframes. These
legacy access methods allow users to
interact directly with sensitive data, often
out of reach for modern security
controls. Because TN3270 transmits data
in real-time to user screens, protecting

information at the point of display becomes
essential.

This requires role-based enforced dynamic
masking, and the ability to apply policies
inline, all without disrupting the user
experience. The broader challenge lies in
achieving unified visibility and control
across both database replication and
terminal access so that consistent, robust
data protection can be enforced at every
point where data leaves the mainframe.

DataStealth’s vaulted tokenization method
generates tokens that preserve the original
data's structure and pass these business
logic rules, ensuring that system workflows
continue uninterrupted.

For instance, a tokenized credit card number
would still pass a Luhn check, preventing the
system from rejecting it or failing in
downstream processes.

Controlled replication was a critical
component in ensuring secure data
movement across systems while
maintaining compliance.

DataStealth endpoints intercepted
replication flows from the mainframe DB2
to downstream systems—such as an
Oracle database used for fraud
detection—to enforce data protection
policies in transit. This allowed the
organization to leverage de-identified data
for advanced analytics without exposing
sensitive data in cleartext, ensuring that
privacy and regulatory requirements were
upheld throughout the replication process.

Data protection policies were applied to
secure sensitive data throughout this
process, even if the data had already been
tokenized on the mainframe. This
additional layer of protection helps ensure
consistent enforcement of policies across
environments. DataStealth uses vaulted
tokenization, where the mapping between
each original value and its token is stored
in a secure, centralized vault. These
mappings are unique to each vault,
meaning tokens generated in one vault
cannot be resolved in another. This
separation is intentional; it enforces strict
data boundaries between environments or
security zones, reducing the risk of
unauthorized re-identification or
cross-environment data leakage.

Depending on the configuration and the
destination system, several actions could
be taken:

• Pass-through: If the target system
shared access to the same vault,
tokenized data could be passed
through directly.

• Controlled detokenization: If the
target system required access to the
original cleartext values such as for
processing, analytics, or integration
with legacy applications then
detokenization could be performed.
However, this was done under strict
controls, since exposing sensitive
data, even temporarily, increases the
risk of data leakage or misuse. Access
was typically governed by fine-grained
policies, audit logging, and
time-limited access to minimize the
exposure window and ensure
compliance with data protection
requirements.

• Re-tokenization: More securely, data
could be detokenized from the source
vault and then re-tokenized using a
different vault associated with the
target system. This preserved security
boundaries while maintaining
reversibility within each domain.

A key component of the solution was
in-place tokenization, which allows sensitive
data to be protected at rest and in use,
without changing its format or location. This
approach ensures that data remains usable
for business processes and analytics while
reducing the risk of exposure.
By tokenizing the data where it resides, the
organization avoided the complexity and
risk of moving or duplicating sensitive
information, aligning directly with the goal of
protecting data without disrupting
operational workflows.

DataStealth endpoints were configured to
read data from the mainframe DB2. Vaulted
tokenization was used to protect sensitive
data: the original values are replaced with
tokens stored directly in the database, with
no mathematical relationship to the original

data. This approach ensures that
sensitive data is never exposed in clear
text, supports format preservation, and is
inherently quantum-resistant due to the
absence of any computational linkage
between the token and the real value.

An alternative approach was considered:
keeping the data in clear text on the
mainframe and applying protection
dynamically during access, replication, or
transmission; using methods like dynamic
masking or generating test or synthetic
data on the fly. While this option offered
flexibility and avoided changes to the
original data, it was not chosen due to
the added complexity, the risk that
protection might not always be applied,
and a stronger need to keep the data
securely protected at rest.

Format preservation during tokenization
was crucial.

This is vital for legacy systems like
mainframe DB2, where altering schemas or
data formats can be exceptionally risky or
entirely unsupported.

Many mainframe databases employ data
integrity checks, such as validation
constraints or Luhn checks for credit card
numbers, before committing updates.

©2025 DataStealth Inc. All Rights Reserved.

datastealth.io

Organizations in sectors like financial
services and telecommunications often rely
on mainframes to store vast quantities of
historical customer data. While this data is
critical, it frequently resides in cleartext,
posing a significant security risk.

The inherent complexity and age of
mainframe application code (e.g. COBOL)
and legacy database structures make
modifications high-risk, expensive, and
time-consuming. Adding to this issue is the
scarcity of skilled mainframe developers.

A key concern is that organizations
typically want to avoid installing agents

directly on mainframes because doing so
can impact performance, introduce
operational risks, and is often
unsupported or restricted. Furthermore,
sensitive data is often replicated from
the mainframe to other systems.

This replication increases the attack
surface, particularly when data traverses
trust boundaries or different security
zones. These downstream systems may
also incorporate external enrichment
data, such as geolocation or behavioural
information, which must be protected
with the same rigour as the original
mainframe data.

Accessing data on mainframes
introduces unique security challenges
due to legacy protocols like TN3270,
which are still widely used for
terminal-based sessions.

Supporting TN3270 terminal sessions is a
critical yet complex requirement for
protecting data on mainframes. These
legacy access methods allow users to
interact directly with sensitive data, often
out of reach for modern security
controls. Because TN3270 transmits data
in real-time to user screens, protecting

information at the point of display becomes
essential.

This requires role-based enforced dynamic
masking, and the ability to apply policies
inline, all without disrupting the user
experience. The broader challenge lies in
achieving unified visibility and control
across both database replication and
terminal access so that consistent, robust
data protection can be enforced at every
point where data leaves the mainframe.

DataStealth’s vaulted tokenization method
generates tokens that preserve the original
data's structure and pass these business
logic rules, ensuring that system workflows
continue uninterrupted.

For instance, a tokenized credit card number
would still pass a Luhn check, preventing the
system from rejecting it or failing in
downstream processes.

Controlled replication was a critical
component in ensuring secure data
movement across systems while
maintaining compliance.

DataStealth endpoints intercepted
replication flows from the mainframe DB2
to downstream systems—such as an
Oracle database used for fraud
detection—to enforce data protection
policies in transit. This allowed the
organization to leverage de-identified data
for advanced analytics without exposing
sensitive data in cleartext, ensuring that
privacy and regulatory requirements were
upheld throughout the replication process.

Data protection policies were applied to
secure sensitive data throughout this
process, even if the data had already been
tokenized on the mainframe. This
additional layer of protection helps ensure
consistent enforcement of policies across
environments. DataStealth uses vaulted
tokenization, where the mapping between
each original value and its token is stored
in a secure, centralized vault. These
mappings are unique to each vault,
meaning tokens generated in one vault
cannot be resolved in another. This
separation is intentional; it enforces strict
data boundaries between environments or
security zones, reducing the risk of
unauthorized re-identification or
cross-environment data leakage.

Depending on the configuration and the
destination system, several actions could
be taken:

• Pass-through: If the target system
shared access to the same vault,
tokenized data could be passed
through directly.

• Controlled detokenization: If the
target system required access to the
original cleartext values such as for
processing, analytics, or integration
with legacy applications then
detokenization could be performed.
However, this was done under strict
controls, since exposing sensitive
data, even temporarily, increases the
risk of data leakage or misuse. Access
was typically governed by fine-grained
policies, audit logging, and
time-limited access to minimize the
exposure window and ensure
compliance with data protection
requirements.

• Re-tokenization: More securely, data
could be detokenized from the source
vault and then re-tokenized using a
different vault associated with the
target system. This preserved security
boundaries while maintaining
reversibility within each domain.

The Solution:
DataStealth’s Agentless
Mainframe Protection
The company implemented DataStealth’s Data
Discovery and Classification (DDC) and Data
Tokenization (DT) to address these multifaceted
challenges without requiring intrusive code
changes to its legacy mainframe environment.

DataStealth’s approach is rooted in
agentless mainframe interaction.

The solution was deployed inline,
enabling communication with the
mainframe using native protocols such
as TN3270 for terminal access and
relevant database protocols for DB2.
This eliminated the need for high-risk
software installation or code alteration
on the mainframe itself.

A key component of the solution was
in-place tokenization, which allows sensitive
data to be protected at rest and in use,
without changing its format or location. This
approach ensures that data remains usable
for business processes and analytics while
reducing the risk of exposure.
By tokenizing the data where it resides, the
organization avoided the complexity and
risk of moving or duplicating sensitive
information, aligning directly with the goal of
protecting data without disrupting
operational workflows.

DataStealth endpoints were configured to
read data from the mainframe DB2. Vaulted
tokenization was used to protect sensitive
data: the original values are replaced with
tokens stored directly in the database, with
no mathematical relationship to the original

data. This approach ensures that
sensitive data is never exposed in clear
text, supports format preservation, and is
inherently quantum-resistant due to the
absence of any computational linkage
between the token and the real value.

An alternative approach was considered:
keeping the data in clear text on the
mainframe and applying protection
dynamically during access, replication, or
transmission; using methods like dynamic
masking or generating test or synthetic
data on the fly. While this option offered
flexibility and avoided changes to the
original data, it was not chosen due to
the added complexity, the risk that
protection might not always be applied,
and a stronger need to keep the data
securely protected at rest.

Format preservation during tokenization
was crucial.

This is vital for legacy systems like
mainframe DB2, where altering schemas or
data formats can be exceptionally risky or
entirely unsupported.

Many mainframe databases employ data
integrity checks, such as validation
constraints or Luhn checks for credit card
numbers, before committing updates.

Agentless Mainframe
Interaction

©2025 DataStealth Inc. All Rights Reserved.

datastealth.io

DataStealth’s vaulted tokenization method
generates tokens that preserve the original
data's structure and pass these business
logic rules, ensuring that system workflows
continue uninterrupted.

For instance, a tokenized credit card number
would still pass a Luhn check, preventing the
system from rejecting it or failing in
downstream processes.

Controlled replication was a critical
component in ensuring secure data
movement across systems while
maintaining compliance.

DataStealth endpoints intercepted
replication flows from the mainframe DB2
to downstream systems—such as an
Oracle database used for fraud
detection—to enforce data protection
policies in transit. This allowed the
organization to leverage de-identified data
for advanced analytics without exposing
sensitive data in cleartext, ensuring that
privacy and regulatory requirements were
upheld throughout the replication process.

Data protection policies were applied to
secure sensitive data throughout this
process, even if the data had already been
tokenized on the mainframe. This
additional layer of protection helps ensure
consistent enforcement of policies across
environments. DataStealth uses vaulted
tokenization, where the mapping between
each original value and its token is stored
in a secure, centralized vault. These
mappings are unique to each vault,
meaning tokens generated in one vault
cannot be resolved in another. This
separation is intentional; it enforces strict
data boundaries between environments or
security zones, reducing the risk of
unauthorized re-identification or
cross-environment data leakage.

Depending on the configuration and the
destination system, several actions could
be taken:

• Pass-through: If the target system
shared access to the same vault,
tokenized data could be passed
through directly.

• Controlled detokenization: If the
target system required access to the
original cleartext values such as for
processing, analytics, or integration
with legacy applications then
detokenization could be performed.
However, this was done under strict
controls, since exposing sensitive
data, even temporarily, increases the
risk of data leakage or misuse. Access
was typically governed by fine-grained
policies, audit logging, and
time-limited access to minimize the
exposure window and ensure
compliance with data protection
requirements.

• Re-tokenization: More securely, data
could be detokenized from the source
vault and then re-tokenized using a
different vault associated with the
target system. This preserved security
boundaries while maintaining
reversibility within each domain.

A key component of the solution was
in-place tokenization, which allows sensitive
data to be protected at rest and in use,
without changing its format or location. This
approach ensures that data remains usable
for business processes and analytics while
reducing the risk of exposure.
By tokenizing the data where it resides, the
organization avoided the complexity and
risk of moving or duplicating sensitive
information, aligning directly with the goal of
protecting data without disrupting
operational workflows.

DataStealth endpoints were configured to
read data from the mainframe DB2. Vaulted
tokenization was used to protect sensitive
data: the original values are replaced with
tokens stored directly in the database, with
no mathematical relationship to the original

data. This approach ensures that
sensitive data is never exposed in clear
text, supports format preservation, and is
inherently quantum-resistant due to the
absence of any computational linkage
between the token and the real value.

An alternative approach was considered:
keeping the data in clear text on the
mainframe and applying protection
dynamically during access, replication, or
transmission; using methods like dynamic
masking or generating test or synthetic
data on the fly. While this option offered
flexibility and avoided changes to the
original data, it was not chosen due to
the added complexity, the risk that
protection might not always be applied,
and a stronger need to keep the data
securely protected at rest.

Format preservation during tokenization
was crucial.

This is vital for legacy systems like
mainframe DB2, where altering schemas or
data formats can be exceptionally risky or
entirely unsupported.

Many mainframe databases employ data
integrity checks, such as validation
constraints or Luhn checks for credit card
numbers, before committing updates.

In-Place Tokenization

©2025 DataStealth Inc. All Rights Reserved.

datastealth.io

Card Holder

Card Number

Exp. Date

Mark Smith

4242 4242 4242 4242
12

30
2027

Card Holder

Card Number

John Doe

4012 8888 8888 1881Exp. Date
12

15
2025

DataStealth’s vaulted tokenization method
generates tokens that preserve the original
data's structure and pass these business
logic rules, ensuring that system workflows
continue uninterrupted.

For instance, a tokenized credit card number
would still pass a Luhn check, preventing the
system from rejecting it or failing in
downstream processes.

Controlled replication was a critical
component in ensuring secure data
movement across systems while
maintaining compliance.

DataStealth endpoints intercepted
replication flows from the mainframe DB2
to downstream systems—such as an
Oracle database used for fraud
detection—to enforce data protection
policies in transit. This allowed the
organization to leverage de-identified data
for advanced analytics without exposing
sensitive data in cleartext, ensuring that
privacy and regulatory requirements were
upheld throughout the replication process.

Data protection policies were applied to
secure sensitive data throughout this
process, even if the data had already been
tokenized on the mainframe. This
additional layer of protection helps ensure
consistent enforcement of policies across
environments. DataStealth uses vaulted
tokenization, where the mapping between
each original value and its token is stored
in a secure, centralized vault. These
mappings are unique to each vault,
meaning tokens generated in one vault
cannot be resolved in another. This
separation is intentional; it enforces strict
data boundaries between environments or
security zones, reducing the risk of
unauthorized re-identification or
cross-environment data leakage.

Depending on the configuration and the
destination system, several actions could
be taken:

• Pass-through: If the target system
shared access to the same vault,
tokenized data could be passed
through directly.

• Controlled detokenization: If the
target system required access to the
original cleartext values such as for
processing, analytics, or integration
with legacy applications then
detokenization could be performed.
However, this was done under strict
controls, since exposing sensitive
data, even temporarily, increases the
risk of data leakage or misuse. Access
was typically governed by fine-grained
policies, audit logging, and
time-limited access to minimize the
exposure window and ensure
compliance with data protection
requirements.

• Re-tokenization: More securely, data
could be detokenized from the source
vault and then re-tokenized using a
different vault associated with the
target system. This preserved security
boundaries while maintaining
reversibility within each domain.

A key component of the solution was
in-place tokenization, which allows sensitive
data to be protected at rest and in use,
without changing its format or location. This
approach ensures that data remains usable
for business processes and analytics while
reducing the risk of exposure.
By tokenizing the data where it resides, the
organization avoided the complexity and
risk of moving or duplicating sensitive
information, aligning directly with the goal of
protecting data without disrupting
operational workflows.

DataStealth endpoints were configured to
read data from the mainframe DB2. Vaulted
tokenization was used to protect sensitive
data: the original values are replaced with
tokens stored directly in the database, with
no mathematical relationship to the original

data. This approach ensures that
sensitive data is never exposed in clear
text, supports format preservation, and is
inherently quantum-resistant due to the
absence of any computational linkage
between the token and the real value.

An alternative approach was considered:
keeping the data in clear text on the
mainframe and applying protection
dynamically during access, replication, or
transmission; using methods like dynamic
masking or generating test or synthetic
data on the fly. While this option offered
flexibility and avoided changes to the
original data, it was not chosen due to
the added complexity, the risk that
protection might not always be applied,
and a stronger need to keep the data
securely protected at rest.

Format preservation during tokenization
was crucial.

This is vital for legacy systems like
mainframe DB2, where altering schemas or
data formats can be exceptionally risky or
entirely unsupported.

Many mainframe databases employ data
integrity checks, such as validation
constraints or Luhn checks for credit card
numbers, before committing updates.

©2025 DataStealth Inc. All Rights Reserved.

datastealth.io

4 0 1 2 8 8 8 8 8 8 8 8 1 8 8 1

8 0 2 2 7 8 7 8 7 8 7 8 2 8 7 1

8 2 1616 16 16 16 2

SUM()= 90

L U H N C H E C K

ORIGINAL PAYMENT
CARD NUMBER

x 2 e v e r y s e c o n d d i g i t

m u l t i p l e o f 1 0

1 + 6 1 + 6 1 + 6 1 + 6 1 + 6

FORMAT
PERSERVING

TOKEN

4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2

8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2

SUM()= 80
m u l t i p l e o f 1 0

L U H N C H E C K

DataStealth’s vaulted tokenization method
generates tokens that preserve the original
data's structure and pass these business
logic rules, ensuring that system workflows
continue uninterrupted.

For instance, a tokenized credit card number
would still pass a Luhn check, preventing the
system from rejecting it or failing in
downstream processes.

Controlled replication was a critical
component in ensuring secure data
movement across systems while
maintaining compliance.

DataStealth endpoints intercepted
replication flows from the mainframe DB2
to downstream systems—such as an
Oracle database used for fraud
detection—to enforce data protection
policies in transit. This allowed the
organization to leverage de-identified data
for advanced analytics without exposing
sensitive data in cleartext, ensuring that
privacy and regulatory requirements were
upheld throughout the replication process.

Data protection policies were applied to
secure sensitive data throughout this
process, even if the data had already been
tokenized on the mainframe. This
additional layer of protection helps ensure
consistent enforcement of policies across
environments. DataStealth uses vaulted
tokenization, where the mapping between
each original value and its token is stored
in a secure, centralized vault. These
mappings are unique to each vault,
meaning tokens generated in one vault
cannot be resolved in another. This
separation is intentional; it enforces strict
data boundaries between environments or
security zones, reducing the risk of
unauthorized re-identification or
cross-environment data leakage.

Depending on the configuration and the
destination system, several actions could
be taken:

• Pass-through: If the target system
shared access to the same vault,
tokenized data could be passed
through directly.

• Controlled detokenization: If the
target system required access to the
original cleartext values such as for
processing, analytics, or integration
with legacy applications then
detokenization could be performed.
However, this was done under strict
controls, since exposing sensitive
data, even temporarily, increases the
risk of data leakage or misuse. Access
was typically governed by fine-grained
policies, audit logging, and
time-limited access to minimize the
exposure window and ensure
compliance with data protection
requirements.

• Re-tokenization: More securely, data
could be detokenized from the source
vault and then re-tokenized using a
different vault associated with the
target system. This preserved security
boundaries while maintaining
reversibility within each domain.

Format Preservation

A key component of the solution was
in-place tokenization, which allows sensitive
data to be protected at rest and in use,
without changing its format or location. This
approach ensures that data remains usable
for business processes and analytics while
reducing the risk of exposure.
By tokenizing the data where it resides, the
organization avoided the complexity and
risk of moving or duplicating sensitive
information, aligning directly with the goal of
protecting data without disrupting
operational workflows.

DataStealth endpoints were configured to
read data from the mainframe DB2. Vaulted
tokenization was used to protect sensitive
data: the original values are replaced with
tokens stored directly in the database, with
no mathematical relationship to the original

data. This approach ensures that
sensitive data is never exposed in clear
text, supports format preservation, and is
inherently quantum-resistant due to the
absence of any computational linkage
between the token and the real value.

An alternative approach was considered:
keeping the data in clear text on the
mainframe and applying protection
dynamically during access, replication, or
transmission; using methods like dynamic
masking or generating test or synthetic
data on the fly. While this option offered
flexibility and avoided changes to the
original data, it was not chosen due to
the added complexity, the risk that
protection might not always be applied,
and a stronger need to keep the data
securely protected at rest.

Format preservation during tokenization
was crucial.

This is vital for legacy systems like
mainframe DB2, where altering schemas or
data formats can be exceptionally risky or
entirely unsupported.

Many mainframe databases employ data
integrity checks, such as validation
constraints or Luhn checks for credit card
numbers, before committing updates.

Controlled Replication

©2025 DataStealth Inc. All Rights Reserved.

datastealth.io

DataStealth’s vaulted tokenization method
generates tokens that preserve the original
data's structure and pass these business
logic rules, ensuring that system workflows
continue uninterrupted.

For instance, a tokenized credit card number
would still pass a Luhn check, preventing the
system from rejecting it or failing in
downstream processes.

Controlled replication was a critical
component in ensuring secure data
movement across systems while
maintaining compliance.

DataStealth endpoints intercepted
replication flows from the mainframe DB2
to downstream systems—such as an
Oracle database used for fraud
detection—to enforce data protection
policies in transit. This allowed the
organization to leverage de-identified data
for advanced analytics without exposing
sensitive data in cleartext, ensuring that
privacy and regulatory requirements were
upheld throughout the replication process.

Data protection policies were applied to
secure sensitive data throughout this
process, even if the data had already been
tokenized on the mainframe. This
additional layer of protection helps ensure
consistent enforcement of policies across
environments. DataStealth uses vaulted
tokenization, where the mapping between
each original value and its token is stored
in a secure, centralized vault. These
mappings are unique to each vault,
meaning tokens generated in one vault
cannot be resolved in another. This
separation is intentional; it enforces strict
data boundaries between environments or
security zones, reducing the risk of
unauthorized re-identification or
cross-environment data leakage.

Depending on the configuration and the
destination system, several actions could
be taken:

• Pass-through: If the target system
shared access to the same vault,
tokenized data could be passed
through directly.

• Controlled detokenization: If the
target system required access to the
original cleartext values such as for
processing, analytics, or integration
with legacy applications then
detokenization could be performed.
However, this was done under strict
controls, since exposing sensitive
data, even temporarily, increases the
risk of data leakage or misuse. Access
was typically governed by fine-grained
policies, audit logging, and
time-limited access to minimize the
exposure window and ensure
compliance with data protection
requirements.

• Re-tokenization: More securely, data
could be detokenized from the source
vault and then re-tokenized using a
different vault associated with the
target system. This preserved security
boundaries while maintaining
reversibility within each domain.

A key component of the solution was
in-place tokenization, which allows sensitive
data to be protected at rest and in use,
without changing its format or location. This
approach ensures that data remains usable
for business processes and analytics while
reducing the risk of exposure.
By tokenizing the data where it resides, the
organization avoided the complexity and
risk of moving or duplicating sensitive
information, aligning directly with the goal of
protecting data without disrupting
operational workflows.

DataStealth endpoints were configured to
read data from the mainframe DB2. Vaulted
tokenization was used to protect sensitive
data: the original values are replaced with
tokens stored directly in the database, with
no mathematical relationship to the original

For terminal access control, DataStealth
endpoints managed terminal sessions by
operating in the flow of TN3270 traffic.

Dynamic Data Masking (DDM) was
selected to provide real-time protection
of sensitive information without disrupting
existing applications or workflows. Unlike
static redaction or manual data filtering,
DDM obfuscates sensitive data at the
time of access, ensuring that only
authorized users can view unmasked
values, while others see masked content.
This approach helps organizations comply
with regulations like GDPR and
significantly reduces the risk of data
exposure or misuse.

Through integration with Identity and
Access Management (IAM) systems such
as Active Directory and Entra ID,
DataStealth identifies users and enforces
masking policies based on roles,
attributes, and permissions. This enables
dynamic, attribute-based masking or
selective detokenization, ensuring each
user sees only the data they’re permitted
to access. With support for both
attribute-based and role-based access
controls (ABAC and RBAC), DDM offers
precise, adaptable policy enforcement
across systems, maintaining security
without compromising usability.

data. This approach ensures that
sensitive data is never exposed in clear
text, supports format preservation, and is
inherently quantum-resistant due to the
absence of any computational linkage
between the token and the real value.

An alternative approach was considered:
keeping the data in clear text on the
mainframe and applying protection
dynamically during access, replication, or
transmission; using methods like dynamic
masking or generating test or synthetic
data on the fly. While this option offered
flexibility and avoided changes to the
original data, it was not chosen due to
the added complexity, the risk that
protection might not always be applied,
and a stronger need to keep the data
securely protected at rest.

Format preservation during tokenization
was crucial.

This is vital for legacy systems like
mainframe DB2, where altering schemas or
data formats can be exceptionally risky or
entirely unsupported.

Many mainframe databases employ data
integrity checks, such as validation
constraints or Luhn checks for credit card
numbers, before committing updates.

©2025 DataStealth Inc. All Rights Reserved.

datastealth.io

DataStealth’s vaulted tokenization method
generates tokens that preserve the original
data's structure and pass these business
logic rules, ensuring that system workflows
continue uninterrupted.

For instance, a tokenized credit card number
would still pass a Luhn check, preventing the
system from rejecting it or failing in
downstream processes.

Controlled replication was a critical
component in ensuring secure data
movement across systems while
maintaining compliance.

DataStealth endpoints intercepted
replication flows from the mainframe DB2
to downstream systems—such as an
Oracle database used for fraud
detection—to enforce data protection
policies in transit. This allowed the
organization to leverage de-identified data
for advanced analytics without exposing
sensitive data in cleartext, ensuring that
privacy and regulatory requirements were
upheld throughout the replication process.

Data protection policies were applied to
secure sensitive data throughout this
process, even if the data had already been
tokenized on the mainframe. This
additional layer of protection helps ensure
consistent enforcement of policies across
environments. DataStealth uses vaulted
tokenization, where the mapping between
each original value and its token is stored
in a secure, centralized vault. These
mappings are unique to each vault,
meaning tokens generated in one vault
cannot be resolved in another. This
separation is intentional; it enforces strict
data boundaries between environments or
security zones, reducing the risk of
unauthorized re-identification or
cross-environment data leakage.

Depending on the configuration and the
destination system, several actions could
be taken:

• Pass-through: If the target system
shared access to the same vault,
tokenized data could be passed
through directly.

• Controlled detokenization: If the
target system required access to the
original cleartext values such as for
processing, analytics, or integration
with legacy applications then
detokenization could be performed.
However, this was done under strict
controls, since exposing sensitive
data, even temporarily, increases the
risk of data leakage or misuse. Access
was typically governed by fine-grained
policies, audit logging, and
time-limited access to minimize the
exposure window and ensure
compliance with data protection
requirements.

• Re-tokenization: More securely, data
could be detokenized from the source
vault and then re-tokenized using a
different vault associated with the
target system. This preserved security
boundaries while maintaining
reversibility within each domain.

Vaulted tokenization differs from
vaultless tokenization, which relies on
mathematical algorithms to generate
deterministic tokens without storing the
original value. While vaultless methods for
tokenization avoid the need to manage a
centralized vault, they are not
quantum-resistant and offer limited policy
control. For example, they typically rely on
algorithms to preserve certain characters
or digits from the original data such as
keeping the first six and last four digits of a
credit card number which can increase the
risk of data inference or re-identification.
DataStealth’s use of vaulted tokenization

ensures strong separation between
environments, meets PCI requirements
and allows for policy-driven control over
how and where tokens can be resolved.

This re-tokenization-based approach
enables secure data transfer across trust
boundaries, not just by converting tokens
between vaults, but also by enforcing
protection policies on any external
enrichment data introduced during
replication. This ensures that both original
and newly added data remain consistently
protected throughout the process.

Terminal Access
Control

A key component of the solution was
in-place tokenization, which allows sensitive
data to be protected at rest and in use,
without changing its format or location. This
approach ensures that data remains usable
for business processes and analytics while
reducing the risk of exposure.
By tokenizing the data where it resides, the
organization avoided the complexity and
risk of moving or duplicating sensitive
information, aligning directly with the goal of
protecting data without disrupting
operational workflows.

DataStealth endpoints were configured to
read data from the mainframe DB2. Vaulted
tokenization was used to protect sensitive
data: the original values are replaced with
tokens stored directly in the database, with
no mathematical relationship to the original

data. This approach ensures that
sensitive data is never exposed in clear
text, supports format preservation, and is
inherently quantum-resistant due to the
absence of any computational linkage
between the token and the real value.

An alternative approach was considered:
keeping the data in clear text on the
mainframe and applying protection
dynamically during access, replication, or
transmission; using methods like dynamic
masking or generating test or synthetic
data on the fly. While this option offered
flexibility and avoided changes to the
original data, it was not chosen due to
the added complexity, the risk that
protection might not always be applied,
and a stronger need to keep the data
securely protected at rest.

Format preservation during tokenization
was crucial.

This is vital for legacy systems like
mainframe DB2, where altering schemas or
data formats can be exceptionally risky or
entirely unsupported.

Many mainframe databases employ data
integrity checks, such as validation
constraints or Luhn checks for credit card
numbers, before committing updates.

DataStealth’s vaulted tokenization method
generates tokens that preserve the original
data's structure and pass these business
logic rules, ensuring that system workflows
continue uninterrupted.

For instance, a tokenized credit card number
would still pass a Luhn check, preventing the
system from rejecting it or failing in
downstream processes.

Controlled replication was a critical
component in ensuring secure data
movement across systems while
maintaining compliance.

DataStealth endpoints intercepted
replication flows from the mainframe DB2
to downstream systems—such as an
Oracle database used for fraud
detection—to enforce data protection
policies in transit. This allowed the
organization to leverage de-identified data
for advanced analytics without exposing
sensitive data in cleartext, ensuring that
privacy and regulatory requirements were
upheld throughout the replication process.

Data protection policies were applied to
secure sensitive data throughout this
process, even if the data had already been
tokenized on the mainframe. This
additional layer of protection helps ensure
consistent enforcement of policies across
environments. DataStealth uses vaulted
tokenization, where the mapping between
each original value and its token is stored
in a secure, centralized vault. These
mappings are unique to each vault,
meaning tokens generated in one vault
cannot be resolved in another. This
separation is intentional; it enforces strict
data boundaries between environments or
security zones, reducing the risk of
unauthorized re-identification or
cross-environment data leakage.

Depending on the configuration and the
destination system, several actions could
be taken:

• Pass-through: If the target system
shared access to the same vault,
tokenized data could be passed
through directly.

• Controlled detokenization: If the
target system required access to the
original cleartext values such as for
processing, analytics, or integration
with legacy applications then
detokenization could be performed.
However, this was done under strict
controls, since exposing sensitive
data, even temporarily, increases the
risk of data leakage or misuse. Access
was typically governed by fine-grained
policies, audit logging, and
time-limited access to minimize the
exposure window and ensure
compliance with data protection
requirements.

• Re-tokenization: More securely, data
could be detokenized from the source
vault and then re-tokenized using a
different vault associated with the
target system. This preserved security
boundaries while maintaining
reversibility within each domain.

©2024 DataStealth Inc. All Rights Reserved.

datastealth.io

Holistic View of
Data Flows

At the core of the solution was a
complete understanding of how data
moves across systems.

This involved mapping all data sources
(mainframe databases, enrichment
feeds), all consumers (terminal users,
replicated databases), and the pathways
between them.

Vault management played a critical role
in the security architecture.

Vaults securely manage the
relationship between the original data
and their corresponding tokens.

Depending on the configuration, the
system utilized single or multiple vaults,
particularly when data crossed security
zones, allowing for detokenization
from one vault and re-tokenization
into another.

Tokens are generated and stored along
with their corresponding original values
in a secure vault. DataStealth supports
multiple mechanisms for token
generation, including the use of
sequencers to ensure uniqueness and

format control. Separately, a hash of the
original data, optionally combined with
salt, prefix, or suffix, is used to optimize
performance by enabling fast lookups of
previously tokenized values. The secure
mapping maintained in the vault allows for
authorized detokenization while ensuring
that sensitive data is stored securely and
access is tightly controlled.

This vaulted tokenization approach is
distinct from encryption, as tokens
contain no mathematical relationship to
the original data and no intrinsically
valuable information. As a result, it offers
strong security and is inherently resistant
to emerging threats such as quantum
computing.

Vault Management

Based on this map, consistent policies for
data discovery, classification, and
protection (tokenization or masking) were
applied universally.

Outcomes and Benefits

A key component of the solution was
in-place tokenization, which allows sensitive
data to be protected at rest and in use,
without changing its format or location. This
approach ensures that data remains usable
for business processes and analytics while
reducing the risk of exposure.
By tokenizing the data where it resides, the
organization avoided the complexity and
risk of moving or duplicating sensitive
information, aligning directly with the goal of
protecting data without disrupting
operational workflows.

DataStealth endpoints were configured to
read data from the mainframe DB2. Vaulted
tokenization was used to protect sensitive
data: the original values are replaced with
tokens stored directly in the database, with
no mathematical relationship to the original

Effective Mainframe
Data Protection
Sensitive data on legacy mainframe
systems was secured without
necessitating risky or complex
modifications to existing applications or
the underlying infrastructure.

This also eliminated the need to modify
COBOL-based applications, an older
programming language commonly used
in mainframe systems, or any other
mainframe application code, significantly
reducing costs, operational risk, and the
demand on scarce, specialized
development resources.

Reduced Risk of
Exposure
The solution minimized the exposure of
cleartext data during replication, access,
and transmission, significantly
strengthening the company's data
security.

Facilitated Modernization
Initiatives
DataStealth enabled secure data sharing
between legacy mainframes and modern
systems.

This capability acts as a crucial bridge for digital
transformation efforts, allowing the company to
innovate without compromising the security of
its sensitive data.

Consistent data protection policies were
applied across the hybrid environment,
encompassing both legacy and modern
infrastructure.

data. This approach ensures that
sensitive data is never exposed in clear
text, supports format preservation, and is
inherently quantum-resistant due to the
absence of any computational linkage
between the token and the real value.

An alternative approach was considered:
keeping the data in clear text on the
mainframe and applying protection
dynamically during access, replication, or
transmission; using methods like dynamic
masking or generating test or synthetic
data on the fly. While this option offered
flexibility and avoided changes to the
original data, it was not chosen due to
the added complexity, the risk that
protection might not always be applied,
and a stronger need to keep the data
securely protected at rest.

Format preservation during tokenization
was crucial.

This is vital for legacy systems like
mainframe DB2, where altering schemas or
data formats can be exceptionally risky or
entirely unsupported.

Many mainframe databases employ data
integrity checks, such as validation
constraints or Luhn checks for credit card
numbers, before committing updates.

©2025 DataStealth Inc. All Rights Reserved.

datastealth.io

DataStealth’s vaulted tokenization method
generates tokens that preserve the original
data's structure and pass these business
logic rules, ensuring that system workflows
continue uninterrupted.

For instance, a tokenized credit card number
would still pass a Luhn check, preventing the
system from rejecting it or failing in
downstream processes.

Controlled replication was a critical
component in ensuring secure data
movement across systems while
maintaining compliance.

DataStealth endpoints intercepted
replication flows from the mainframe DB2
to downstream systems—such as an
Oracle database used for fraud
detection—to enforce data protection
policies in transit. This allowed the
organization to leverage de-identified data
for advanced analytics without exposing
sensitive data in cleartext, ensuring that
privacy and regulatory requirements were
upheld throughout the replication process.

Data protection policies were applied to
secure sensitive data throughout this
process, even if the data had already been
tokenized on the mainframe. This
additional layer of protection helps ensure
consistent enforcement of policies across
environments. DataStealth uses vaulted
tokenization, where the mapping between
each original value and its token is stored
in a secure, centralized vault. These
mappings are unique to each vault,
meaning tokens generated in one vault
cannot be resolved in another. This
separation is intentional; it enforces strict
data boundaries between environments or
security zones, reducing the risk of
unauthorized re-identification or
cross-environment data leakage.

Depending on the configuration and the
destination system, several actions could
be taken:

• Pass-through: If the target system
shared access to the same vault,
tokenized data could be passed
through directly.

• Controlled detokenization: If the
target system required access to the
original cleartext values such as for
processing, analytics, or integration
with legacy applications then
detokenization could be performed.
However, this was done under strict
controls, since exposing sensitive
data, even temporarily, increases the
risk of data leakage or misuse. Access
was typically governed by fine-grained
policies, audit logging, and
time-limited access to minimize the
exposure window and ensure
compliance with data protection
requirements.

• Re-tokenization: More securely, data
could be detokenized from the source
vault and then re-tokenized using a
different vault associated with the
target system. This preserved security
boundaries while maintaining
reversibility within each domain.

Controlled Data
Access
Sensitive data accessed through legacy
terminal sessions was protected using
dynamic masking and selective
detokenization, governed by user roles,
attributes, and session context.

Because TN3270 protocols stream data
directly to user screens, DataStealth
operated inline to apply policies in
real-time, masking or detokenizing
fields as appropriate without modifying
mainframe code. Integration with IAM
systems (e.g., Active Directory) enabled
fine-grained, identity-based control,

ensuring users only saw data they were
authorized to access.

This approach minimized the risk of
unauthorized exposure while maintaining
usability and performance, even in legacy
environments.

Complete

Enhanced
Compliance Support
By protecting sensitive data within
legacy systems, DataStealth enabled the
organization to meet stringent
compliance requirements, including
those related to privacy and security.
The platform provided persistent data
protection without requiring changes to
existing infrastructure, allowing the
organization to maintain operational
efficiency while ensuring that sensitive
data remained secure. This was
especially critical for environments
subject to strict regulatory oversight.

A key component of the solution was
in-place tokenization, which allows sensitive
data to be protected at rest and in use,
without changing its format or location. This
approach ensures that data remains usable
for business processes and analytics while
reducing the risk of exposure.
By tokenizing the data where it resides, the
organization avoided the complexity and
risk of moving or duplicating sensitive
information, aligning directly with the goal of
protecting data without disrupting
operational workflows.

DataStealth endpoints were configured to
read data from the mainframe DB2. Vaulted
tokenization was used to protect sensitive
data: the original values are replaced with
tokens stored directly in the database, with
no mathematical relationship to the original

Effective Mainframe
Data Protection
Sensitive data on legacy mainframe
systems was secured without
necessitating risky or complex
modifications to existing applications or
the underlying infrastructure.

This also eliminated the need to modify
COBOL-based applications, an older
programming language commonly used
in mainframe systems, or any other
mainframe application code, significantly
reducing costs, operational risk, and the
demand on scarce, specialized
development resources.

Reduced Risk of
Exposure
The solution minimized the exposure of
cleartext data during replication, access,
and transmission, significantly
strengthening the company's data
security.

Facilitated Modernization
Initiatives
DataStealth enabled secure data sharing
between legacy mainframes and modern
systems.

This capability acts as a crucial bridge for digital
transformation efforts, allowing the company to
innovate without compromising the security of
its sensitive data.

Consistent data protection policies were
applied across the hybrid environment,
encompassing both legacy and modern
infrastructure.

data. This approach ensures that
sensitive data is never exposed in clear
text, supports format preservation, and is
inherently quantum-resistant due to the
absence of any computational linkage
between the token and the real value.

An alternative approach was considered:
keeping the data in clear text on the
mainframe and applying protection
dynamically during access, replication, or
transmission; using methods like dynamic
masking or generating test or synthetic
data on the fly. While this option offered
flexibility and avoided changes to the
original data, it was not chosen due to
the added complexity, the risk that
protection might not always be applied,
and a stronger need to keep the data
securely protected at rest.

Format preservation during tokenization
was crucial.

This is vital for legacy systems like
mainframe DB2, where altering schemas or
data formats can be exceptionally risky or
entirely unsupported.

Many mainframe databases employ data
integrity checks, such as validation
constraints or Luhn checks for credit card
numbers, before committing updates.

©2025 DataStealth Inc. All Rights Reserved.

datastealth.io

DataStealth’s vaulted tokenization method
generates tokens that preserve the original
data's structure and pass these business
logic rules, ensuring that system workflows
continue uninterrupted.

For instance, a tokenized credit card number
would still pass a Luhn check, preventing the
system from rejecting it or failing in
downstream processes.

Controlled replication was a critical
component in ensuring secure data
movement across systems while
maintaining compliance.

DataStealth endpoints intercepted
replication flows from the mainframe DB2
to downstream systems—such as an
Oracle database used for fraud
detection—to enforce data protection
policies in transit. This allowed the
organization to leverage de-identified data
for advanced analytics without exposing
sensitive data in cleartext, ensuring that
privacy and regulatory requirements were
upheld throughout the replication process.

Data protection policies were applied to
secure sensitive data throughout this
process, even if the data had already been
tokenized on the mainframe. This
additional layer of protection helps ensure
consistent enforcement of policies across
environments. DataStealth uses vaulted
tokenization, where the mapping between
each original value and its token is stored
in a secure, centralized vault. These
mappings are unique to each vault,
meaning tokens generated in one vault
cannot be resolved in another. This
separation is intentional; it enforces strict
data boundaries between environments or
security zones, reducing the risk of
unauthorized re-identification or
cross-environment data leakage.

Depending on the configuration and the
destination system, several actions could
be taken:

• Pass-through: If the target system
shared access to the same vault,
tokenized data could be passed
through directly.

• Controlled detokenization: If the
target system required access to the
original cleartext values such as for
processing, analytics, or integration
with legacy applications then
detokenization could be performed.
However, this was done under strict
controls, since exposing sensitive
data, even temporarily, increases the
risk of data leakage or misuse. Access
was typically governed by fine-grained
policies, audit logging, and
time-limited access to minimize the
exposure window and ensure
compliance with data protection
requirements.

• Re-tokenization: More securely, data
could be detokenized from the source
vault and then re-tokenized using a
different vault associated with the
target system. This preserved security
boundaries while maintaining
reversibility within each domain.

Controlled Data
Access
Sensitive data accessed through legacy
terminal sessions was protected using
dynamic masking and selective
detokenization, governed by user roles,
attributes, and session context.

Because TN3270 protocols stream data
directly to user screens, DataStealth
operated inline to apply policies in
real-time, masking or detokenizing
fields as appropriate without modifying
mainframe code. Integration with IAM
systems (e.g., Active Directory) enabled
fine-grained, identity-based control,

ensuring users only saw data they were
authorized to access.

This approach minimized the risk of
unauthorized exposure while maintaining
usability and performance, even in legacy
environments.

Enhanced
Compliance Support
By protecting sensitive data within
legacy systems, DataStealth enabled the
organization to meet stringent
compliance requirements, including
those related to privacy and security.
The platform provided persistent data
protection without requiring changes to
existing infrastructure, allowing the
organization to maintain operational
efficiency while ensuring that sensitive
data remained secure. This was
especially critical for environments
subject to strict regulatory oversight.

©2025 DataStealth Inc. All Rights Reserved.

datastealth.io

About DataStealth

DataStealth (https://datastealth.io) is a
patented Data Security Platform (DSP)
and PCI Level 1 Service Provider focused
on helping enterprises discover, classify
and protect their sensitive data across
any environment. Recognized as a
leading DSP, we empower enterprises
with innovative technologies to ensure
compliance with regulatory and industry
standards while delivering formidable
protection against evolving threats.

Our DSP integrates data discovery,
classification, and protection via vaulted
tokenization and dynamic data masking
in one platform solution. Unlike tools that
only surface shadow data or flag risk,
DataStealth sits directly in the flow of
traffic, enforcing policy and eliminating
exposure before threats materialize. We
make sensitive data inaccessible to
attackers by replacing it with secure,
vault-referenced tokens that are
quantum-resistant by design.

Deployment requires no code changes,
no agents, or a need to rearchitect
legacy systems. DataStealth operates
transparently at the network layer,
enabling seamless protection across
hybrid, cloud, SaaS, and even mainframe
environments.

Whether you're securing a global
enterprise or reducing PCI scope across
business units, DataStealth is
purpose-built to scale with you, delivering
enterprise-grade data protection with
zero disruption

Learn more at https://datastealth.io

https://www.datastealth.io/
https://www.datastealth.io/

