

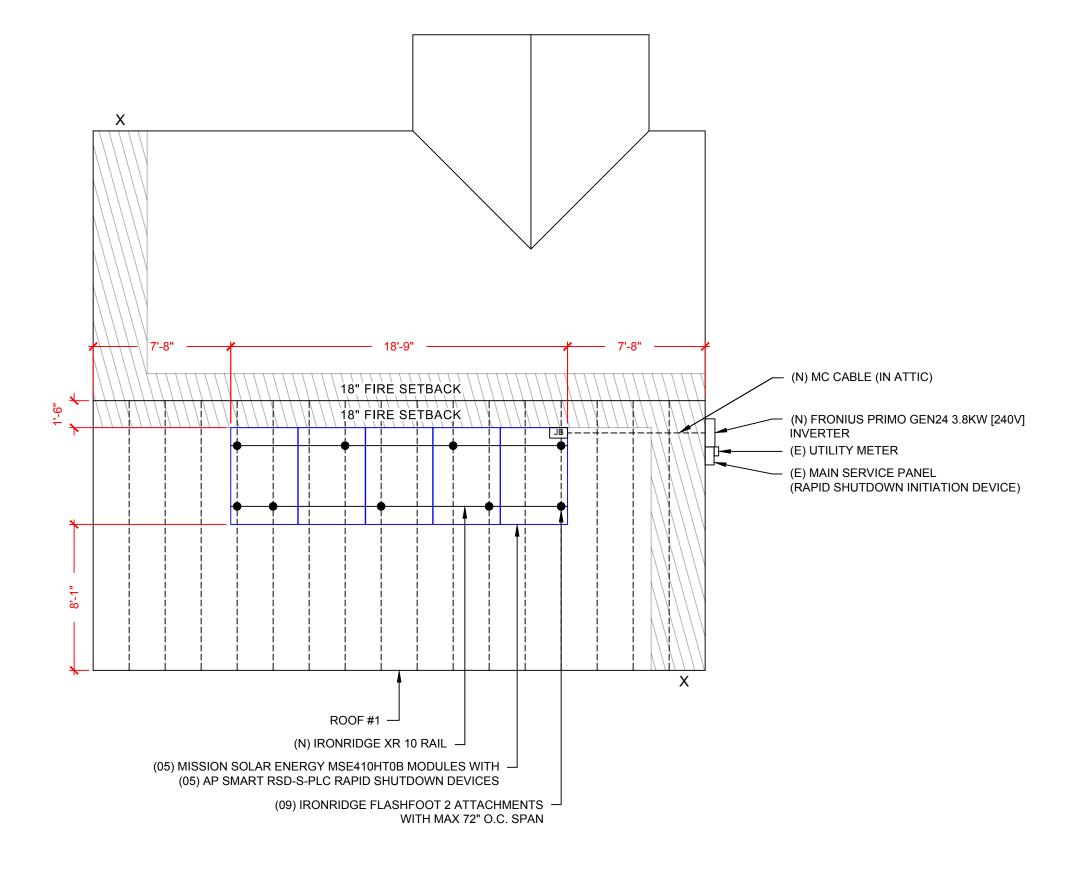

| ROOF DESCRIPTION |                                 |      |              |         |                  |  |  |
|------------------|---------------------------------|------|--------------|---------|------------------|--|--|
| ROOF             | ROOF ROOF AZIMUTH ROOF MATERIAL |      |              |         | TRUSS<br>SPACING |  |  |
| #1               | 18°                             | 150° | COMP SHINGLE | 2" X 4" | 24" O.C.         |  |  |

| PV ROOF COVERAGE          |                           |                             |                               |                             |  |  |  |  |
|---------------------------|---------------------------|-----------------------------|-------------------------------|-----------------------------|--|--|--|--|
| (E) PV<br>AREA<br>[SQ FT] | (N) PV<br>AREA<br>[SQ FT] | TOTAL<br>PV AREA<br>[SQ FT] | TOTAL<br>ROOF AREA<br>[SQ FT] | PERCENTAGE<br>COVERED BY PV |  |  |  |  |
| 0                         | 100.53                    | 100.53                      | 1089.05                       | 9%                          |  |  |  |  |

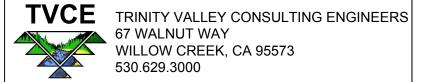
## **LEGEND**

JB - JUNCTION BOX

--- - RAFTER OR TRUSS


o ☐ - ROOF OBSTRUCTION

ROOF ATTACHMENT

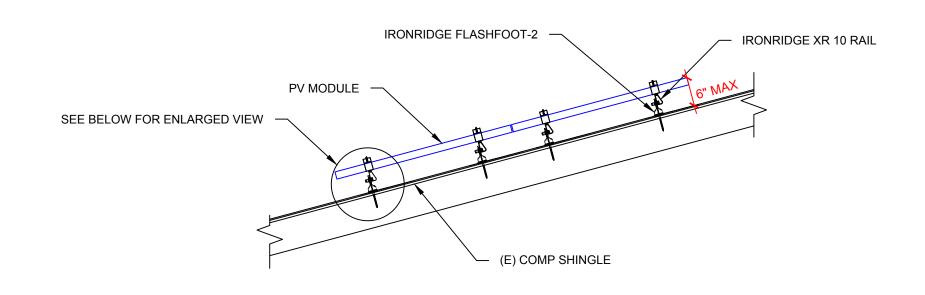

- 36" FIRE SETBACKS /

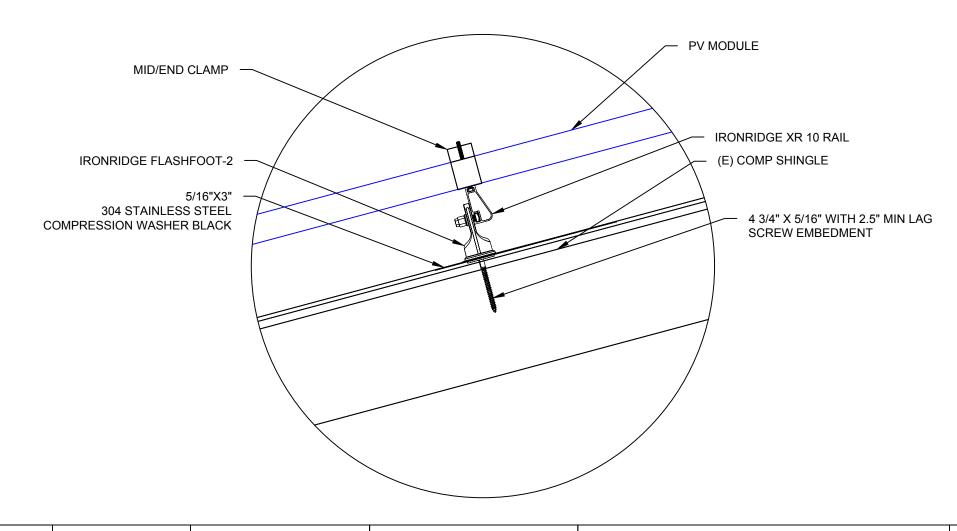
PATHWAYS

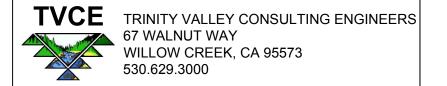
- ACCESS POINT









| SCALE: 3/16" = 1'-0"  | AHJ:  | HUMBOLDT COUNTY |
|-----------------------|-------|-----------------|
| SHEET SIZE: 11" x 17" | APN:  | 529-111-007     |
| TEMPLATE V2.0         | DATE: | 03/27/2025      |


# KTHA ORLEANS

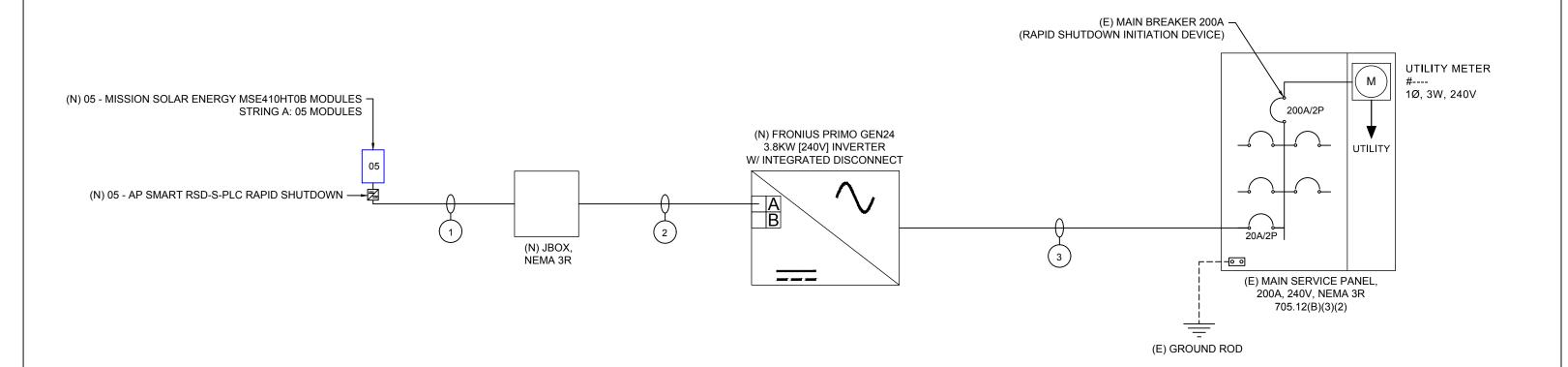
38030 STATE HIGHWAY-96 ORLEANS, CA 95556 PV-2
ROOF PLAN &
MODULES

|   | # OF SOLAR MODULES                   | 5     |         |
|---|--------------------------------------|-------|---------|
|   | # OF MICRO/OPTIMIZERS                | 5     |         |
| l | POINTS OF CONNECTION                 | 9     |         |
|   | # OF SPACES BETWEEN MODULES          | 4     |         |
|   | SOLAR MODULES WEIGHT                 | 42.00 | lbs     |
|   | MICRO/OPTIMIZER WEIGHT               | 0.82  | lbs     |
| ١ | TOTAL RAIL LENGTH                    | 56    | ft      |
| l | RAIL WEIGHT                          | 0.40  | lbs/LF  |
| ١ | WEIGHT PER ATTACHMENT                | 1     | lbs     |
|   | MODULE LENGTH                        | 67.80 | in      |
| I | MÓDULE WIDTH                         | 44.68 | in      |
| l | INTERMODULE SPACING                  | 0.25  | in      |
| İ | SOLAR + MICRO/OPTIMIZER WEIGHT       | 43    | lbs     |
| I | TOTAL SOLAR + MICRO/OPTIMIZER WEIGHT | 214   | lbs     |
| I | TÖTAL RAIL WEIGHT                    | 22    | lbs     |
| l | TOTAL ATTACHMENT WEIGHT              | 9     | lbs     |
| Ì | MOUNTING SYSTEM WEIGHT               | 31    | lbs     |
| ١ | TOTAL PANEL WEIGHT                   | 246   | lbs     |
|   | POINT LOAD CALCULATION               | 27.28 | lbs     |
| ŀ | SÖLAR MÖDÜLE AREA                    | 21.0  | ft2     |
|   | TOTAL SOALR MODULE AREA              | 105   | ft2     |
|   | TOTAL SPACING AREA                   | 1     | ft2     |
|   | TOTAL PANEL AREA                     | 106   | ft2     |
| l | DIŞTRIBUTED LQAD                     | 2.31  | lbs/ft2 |
| ٠ |                                      |       |         |








| SCALE: NTS            | AHJ:  | HUMBOLDT COUNTY |
|-----------------------|-------|-----------------|
| SHEET SIZE: 11" x 17" | APN:  | 529-111-007     |
| TEMPLATE V2.0         | DATE: | 03/27/2025      |

# KTHA ORLEANS

38030 STATE HIGHWAY-96 ORLEANS, CA 95556 PV-3
ATTACHMENT
DETAILS

| ID | UNGROUNDED<br>CONDUCTORS | NEUTRAL CONDUCTOR      | EQUIPMENT<br>GND CONDUCTOR | CONDUIT   |
|----|--------------------------|------------------------|----------------------------|-----------|
| 1  | (2) 10 AWG, PV WIRE, CU  | N/A                    | (1) 6 AWG, SOLID BARE, CU  | FREE AIR  |
| 2  | (2) 10 AWG, MC CABLE, CU | N/A                    | (1) 10 AWG, MC CABLE, CU   | N/A       |
| 3  | (2) 10 AWG, THWN-2, CU   | (1) 10 AWG, THWN-2, CU | (1) 10 AWG, THWN-2, CU     | 0.75" EMT |

\*CODE COMPLIANT WIRE/CONDUIT SUBSITUTIONS MAY BE MADE TO THE ABOVE TABLE.
\*SEE THE NEXT PAGE FOR ELECTRICAL CALCULATIONS AND ADDITIONAL ELECTRICAL NOTES.



THE MAIN BREAKER IN THE MAIN SERVICE PANEL WILL INITIATE RAPID SHUTDOWN AND MEET THE REQUIREMENTS OUTLINED IN CEC 690.12.

THE INTEGRATED DC DISCONENCT IN THE IVERTER MEET THE PV DISCONNECT REQUIREMENTS OUTLINED IN CEC 690.13. IT IS READILY ACCESSIBLE AND LOCKABLE.

THE DC MODULE CONNECTORS MEET THE ISOLATING DEVICE REQUIREMENTS OUTLINED IN CEC 690.15 AND 690.33.



| SCALE: NTS            | AHJ:  | HUMBOLDT COUNTY |
|-----------------------|-------|-----------------|
| SHEET SIZE: 11" x 17" | APN:  | 529-111-007     |
| TEMPLATE V2.0         | DATE: | 03/27/2025      |

| KTHA ORLEANS           |
|------------------------|
| 38030 STATE HIGHWAY-96 |
| ORLEANS, CA 95556      |

PV-4 SINGLE-LINE DIAGRAM

| ID | STARTING LOCATION | FINAL LOCATION        | UNGROUNDED<br>CONDUCTORS    | NEUTRAL<br>CONDUCTOR      | EQUIPMENT<br>GND CONDUCTOR   | CONTROL<br>WIRE | TERM.<br>TEMP. | # OF CCC | ASHARE 2% HIGH<br>TEMP. | CCC<br>ADJUSTMENT | AMBIENT TEMP<br>CORR. | 90°C RATING | DERATED AMP. | TERM.<br>TEMP. OC<br>RATING | PD CO  | ONDUIT   | CONDUIT<br>FILL | LENGTH | LOAD  | VOLTAGE | VOLTAGE<br>DROP |
|----|-------------------|-----------------------|-----------------------------|---------------------------|------------------------------|-----------------|----------------|----------|-------------------------|-------------------|-----------------------|-------------|--------------|-----------------------------|--------|----------|-----------------|--------|-------|---------|-----------------|
| 1  | STRING            | JUNCTION BOX          | (2) 10 AWG, PV WIRE,<br>CU  | N/A                       | (1) 6 AWG, SOLID<br>BARE, CU |                 | 75°C           | 2        | 18°C                    | N/A               | x N/A                 | x N/A       | = N/A        | 30.0A N                     | /A FR  | REE AIR  | N/A             | 15FT   | 13.1A | 156.9V  | 0.32%           |
| 2  | JUNCTION BOX      | INVERTER              | (2) 10 AWG, MC CABLE,<br>CU | N/A                       | (1) 10 AWG, MC CABLE,<br>CU  |                 | 75°C           | 2        | 18°C                    | 1                 | x 1                   | x 40.0A     | = 40.0A      | 35.0A N                     | /A     | N/A      | N/A             | 18FT   | 13.1A | 156.9V  | 0.39%           |
| 3  | INVERTER          | MAIN SERVICE<br>PANEL | (2) 10 AWG, THWN-2,<br>CU   | (1) 10 AWG, THWN-2,<br>CU | (1) 10 AWG, THWN-2,<br>CU    |                 | 75°C           | 2        | 18°C                    | 1                 | x 1                   | x 40.0A     | = 40.0A      | 35.0A 2                     | OA 0.7 | .75" EMT | 15.27%          | 5FT    | 16.0A | 240V    | 0.08%           |

## **INVERTER OUTPUT CALCULATIONS & 705.12 COMPLIANCE**

705.12(B)(3)(2)

| INVERTER<br>OUTPUT CIRCUIT<br>#1 | INVERTER OR ESS<br>PRIMO 3.8 | # OF<br>INVERTERS /<br>ESS<br>1 | CONTINUOUS<br>OUTPUT<br>15.83A | 125% SAFETY<br>FACTOR<br>125% | TOTAL<br>BACKFEED<br>19.79A   | MINIMUM<br>BREAKER<br>SIZE<br>20A |
|----------------------------------|------------------------------|---------------------------------|--------------------------------|-------------------------------|-------------------------------|-----------------------------------|
| PANEL                            | 705.12 COMPLIANCE            | BUSBAR                          | OCPD<br>PROTECTING<br>PANEL    | BUSBAR X<br>120%              | MAX<br>GENERATION<br>BACKFEED |                                   |

| MODULE                      | MSE410HT0B |
|-----------------------------|------------|
| # OF MODULES LARGEST STRING | 5          |
| ASHRAE MIN TEMP [°C]        | -3         |
| VOC [V]                     | 37.41      |
| TEMP COEF VOC [%/°C]        | -0.254     |
| TEMP ADJ VOC [V]            | 40.07      |

200.35

VOLTAGE OF LARGEST STRING [V]

**VOC CALCULATION PER CEC 690.7(A)(1)** 

## **ELECTRICAL NOTES (APPLICABILITY BASED ON SCOPE OF WORK)**

AS-BUILT CHANGES TO THE ABOVE WIRING ARE PERMISSIBLE AS LONG AS SUBSITUTIONS ARE CODE COMPLIANT. FOR EXAMPLE, APPROPRIATELY SIZED NM-B MAY BE USED FOR MICROINVERTER OUTPUT CIRCUITS IF INSTALLED IN ACCORDANCE WITH CEC ARTICLE 334, OR MC CABLE MAY BE USED FOR DC SOLAR STRINGS IF INSTALLED IN ACCORDANCE WITH CEC ARTICLE 330.

ALL OUTDOOR EQUIPMENT SHALL BE RAINTIGHT & HOLD A MINIMUM NEMA 3R RATING, INCLUDING ALL ROOF MOUNTED TRANSITION BOXES AND SWITCHES. CONDUCTORS EXPOSED TO WET CONDITIONS SHALL BE SUITABLE FOR USE IN WET CONDITIONS PER CEC 310.10(C).

ALL TERMINAL TEMPERATURES OF EQUIPMENT WILL BE VERIFIED TO BE RATED FOR 75°C, OR THE WIRE WILL NEED TO BE RESIZED USING THE 60°C TERMINAL TEMPERATURE RATINGS FOR 100A OR LESS.

ALL NM-B SHALL BE INSTALLED AND PROTECTED PER CEC 334, AND ALL SER CABLE SHALL BE INSTALLED AND PROTECTED PER

ALL ROOFTOP RACEWAYS AND CABLES EXPOSED TO DIRECT SUNLIGHT WILL BE INSTALLED >7/8" ABOVE THE ROOF.

ALL EQUIPMENT SHALL BE PROPERLY GROUNDED AND BONDED IN ACCORDANCE WITH NEC ARTICLE 250. A SUPPLEMENTAL GROUND ROD WILL BE DRIVEN IN ACCORDANCE WITH CEC 250.53(A)(3) IF THE EXISTING GROUND ROD HAS A RESISTANCE TO EARTH THAT IS GREATER THAN 25 OHMS.

IF ANY EXISTING LOAD CONDUCTORS ARE EXTENDED BY MORE THAN 6', AFCI PROTECTION WILL BE PROVIDED PER CEC

PER CEC 690.47(A) PV SYSTEMS THAT ARE NOT SOLIDLY GROUNDED, THE EQUIPMENT GROUNDING CONDUCTOR FOR THE OUTPUT OF THE PV SYSTEMS SHALL BE PERMITTED TO BE THE CONNECTION TO GROUND FOR GROUND-FAULT PROTECTION AND EQUIPMENT GROUNDING OF THE PV ARRAY.

THE ESS CIRCUIT BREAKER SHALL BE SECURED IN PLACE BY AN ADDITIONAL FASTENER PER CEC 408.36(D).

NO SINGLE BACK-UP LOAD WILL BE LARGER THAN THE MAXIMUM CONTINUOUS OUTPUT OF THE ESS PER CEC 710.15(A).

TVCE TRINITY VALLEY CONSULTING ENGINEERS 67 WALNUT WAY WILLOW CREEK, CA 95573 530.629.3000

| SCALE: NTS            | AHJ:  | HUMBOLDT COUNTY |
|-----------------------|-------|-----------------|
| SHEET SIZE: 11" x 17" | APN:  | 529-111-007     |
| TEMPLATE V2.0         | DATE: | 03/27/2025      |

# KTHA ORLEANS

38030 STATE HIGHWAY-96 ORLEANS, CA 95556

PV-4A **ELECTRICAL** CALCULATIONS 1

## PHOTOVOLTAIC AC DISCONNECT

MAXIMUM AC OPERATING CURRENT: 15.8A

NOMINAL OPERATING AC VOLTAGE: 240V

LOCATED AT PV DISCONNECT. CEC 690.56(B), 609.54, 705.20

2

## **A** WARNING

ELECTRIC SHOCK HAZARD

DO NOT TOUCH TERMINALS

TERMINALS ON BOTH LINE AND
LOAD SIDES MAY BE ENERGIZED

IN THE OPEN POSITION

LOCATED AT PV DISCONNECT CEC 690.13(B)

3

# RAPID SHUTDOWN SWITCH FOR SOLAR PV SYSTEM

LOCATED AT MAIN SERVICE PANEL. CEC 690.56(C)(2)

4

# SOLAR PV SYSTEM EQUIPPED WITH RAPID SHUTDOWN TURN RAPID SHUTDOWN SWITCH TO THE "OFF" POSITION TO

"OFF" POSITION TO HUT DOWN PV SYSTEM AND REDUCE SHOCK HAZARD IN THE ARRAY

LOCATED AT MAIN SERVICE PANEL. CEC 690.56(C)

5

# WARNING: PHOTOVOLTAIC POWER SOURCE

LOCATED AT DC SOLAR CIRCUIT; CEC 690.31(D)(2)

6

## PHOTOVOLTAIC SYSTEM DC DISCONNECT

OPERATING VOLTAGE

OPERATING CURENT

MAX SYSTEM VOLTAGE

SHORT CIRCUIT CURRENT

156.9V

200.3V

13.9A

LOCATED AT PV DISCONNECT. CEC 690.56(B), 609.54, 705.20

TVCE

TRINITY VALLEY CONSULTING ENGINEERS 67 WALNUT WAY WILLOW CREEK, CA 95573 530.629.3000

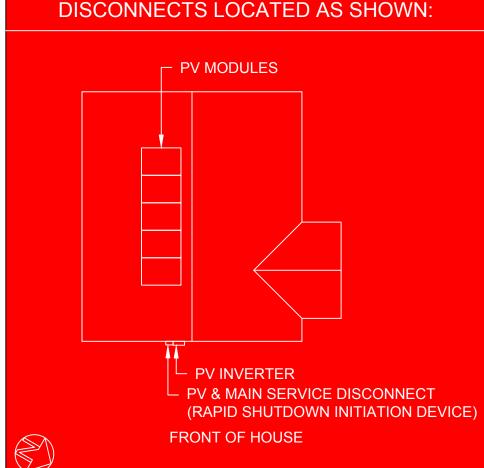
## WARNING

7

INVERTER OUTPUT CONNECTION DO NOT RELOCATE THIS OVERCURRENT DEVICE

LOCATED AT POINT OF INTERCONNECTION. CEC 705.12(B)(3)(2)

-THE LABELS/PLACARD SHALL BE PERMANENTLY AFFIXED TO THE EQUIPMENT OR WIRING METHOD.


-ALL WARNING & HAZARD LABELS SHALL BE INSTALLED PER CEC 110.21(B).

-IF THERE IS EXISTING PV OR ESS, LABELS FOR EXISTING PV SYSTEMS WILL BE TRANSFERRED OR REPLACED ON NEW EQUIPMENT.

LOCATED AT MAIN SERVICE PANEL. CEC 690.56(B), 690.4(D), 705.10



MULTIPLE SOURCES OF POWER WITH DISCONNECTS LOCATED AS SHOWN:



# KTHA ORLEANS

38030 STATE HIGHWAY-96 ORLEANS, CA 95556 PV-5 LABELS & PLACARD

 SCALE:
 NTS
 AHJ:
 HUMBOLDT COUNTY

 SHEET SIZE:
 11" x 17"
 APN:
 529-111-007

 TEMPLATE V2.0
 DATE:
 03/27/2025

## MSE PERC 108HC





Class leading power output

-0 to +3%



## FRAME-TO-FRAME WARRANTY

Degradation guaranteed not to exceed 2% in year 1 and .55% annually from years 2 to 25 with 84.8% capacity guaranteed in year 25. For more information, visit www.missionsolar.com/warranty

## CERTIFICATIONS









questions or concerns about certification of our products in your area, please contact Mission Solar



C-MKTG-0033 VERSION: 4 VERSION DATE: 07/08/2024

## Class Leading 400-410W

# [UNITS: MM/IN] - - 35.0 **1.4** 161.5 6.4 949.0 1723.0 1093.0 43.0 REAR VIEW FRONT VIEW SIDE VIEW

BASIC DIMENSIONS

### System Voltage 1.000 1.000 1.000 TEMPERATURE COEFFICIENTS Normal Operating Cell Temperature (NOCT) -0.343%/°C Temperature Coefficient of Pmax -0.254%/°C Temperature Coefficient of Voc Temperature Coefficient of Isc OPERATING CONDITIONS Maximum System Voltage **CURRENT-VOLTAGE CURVE** -40°F to 185°F (-40°C to +85°C) Operating Temperature Range MSE410HT0B: 410W, 108 HALF-CUT CELL SOLAR MODULE Maximum Series Fuse Rating 25A Current-voltage characteristics with dependence on irradiance and module temperature Fire Safety Classification Type 1

Front & Back Load Up to 5,400 Pa front and 5,400 Pa (UL Standard) back load. Tested to UL 61730 Hail Safety Impact Velocity 50mm at 23 m/s Fire Class' Rating is designated for the fully-installed PV system, which includes, but is not limited to, the module, the type of mounting used, pitch and roof composition.

MSE PERC 108HC

13 75

37.09

12.92

30.96

25A

20.7

0/+3

13.82

37.27

13.00

31 16

25A

13 90

13.07

31.38

25A

**ELECTRICAL SPECIFICATION** 

PRODUCT TYPE MSExxxHT0B (xxx = Pmax)

Power Output

Tolerance

Module Efficiency

Short Circuit Current

Open Circuit Voltage

Rated Voltage

Fuse Rating

| ME               | CHANICAL DATA                                    |
|------------------|--------------------------------------------------|
| Solar Cells      | P-PERC 182mm x 182mm                             |
| Cell Orientation | 108 half-cut cells                               |
| Module Dimension | 1723mm x 1135mm x 35mm                           |
| Weight           | 42 lbs. (19kg)                                   |
| Front Glass      | 3.2mm tempered, low-iron, anti-reflective        |
| Frame            | 35mm anodized interlocking                       |
| Encapsulant      | Ethylene vinyl acetate (EVA)                     |
| Junction Box     | Protection class IP68 with 3 bypass-diodes       |
| Cable            | 1.2m, Wire 4mm² (12AWG)                          |
| Connector        | MC4 Staubli PV-KBT4/6II-UR<br>and PV-KST4/6II-UR |

| S                 | HIPPING          | INFOF        | RMATIO          | 7               |  |
|-------------------|------------------|--------------|-----------------|-----------------|--|
| Container Feet    | Ship To          | Pallets      | Modules         | 410W Bin        |  |
| 53'               | Most States      | 26           | 806             | 330.46 kW       |  |
| Double S          | tack: (Horizonta | l Orientatio | n): 31 panels ¡ | oer pallet      |  |
|                   | PALLET           | [31 MOD      | ULES]           |                 |  |
| Weight 1,610 lbs. | Height<br>51 in  | \ (1         | Width<br>47 in  | Length<br>70 in |  |

Mission Solar Energy reserves the right to make specification changes without notice. C-MKTG-0033 VERSION: 4 VERSION DATE: 07/08/2024

**CERTIFICATIONS AND TESTS** 

61730

61215, 61730, 61701

IEC

UL

Mission Solar Energy

8303 S. New Braunfels Ave., San Antonio, Texas 78235 www.missionsolar.com | info@missionsolar.com

www.missionsolar.com | info@missionsolar.com

# American Solar Built for the Long Haul

Mission Solar Energy is headquartered in San Antonio, Texas where we manufacture our modules. We produce American, high-quality solar modules ensuring the highest-in-class power output and best-in-class reliability. This product is tailored for residential and commercial applications. Every Mission Solar Energy solar module is certified and surpasses industry standard regulations, providing excellent performance over the long term.

## America's Module Company®



## **Fair Trade Practices**

- Free of forced labor at all stages of the supply chain
- Not subject to AD/CVD tariffs or investigations
- Polysilicon manufactured with sustainable hydroelectric power



## **Certified Reliability**

- Tested to UL 61730 & IEC Standards
- PID resistant
- · Resistance to salt mist corrosion



## Advanced Technology

- M10 half-cut cell with 10 busbars
- Passivated Emitter Rear Contact
- Engineered for residential and commercial

## **Extreme Weather Resilience**

- Up to 5,400 Pa snow and wind load
- Third-party hail tests exceed 55 mm at 33.9 m/s

## **BAA Compliant for Government Projects**

- Buy American Act
- American Recovery & Reinvestment Act



www.missionsolar.com | info@missionsolar.com

TRINITY VALLEY CONSULTING ENGINEERS 67 WALNUT WAY WILLOW CREEK, CA 95573 530.629.3000

| SCALE: NTS            | AHJ:  | HUMBOLDT COUNTY |
|-----------------------|-------|-----------------|
| SHEET SIZE: 11" x 17" | APN:  | 529-111-007     |
| TEMPLATE V2.0         | DATE: | 03/27/2025      |

# **KTHA ORLEANS**

38030 STATE HIGHWAY-96 ORLEANS, CA 95556

PV-6 **EQUIPMENT DATASHEET** 



# Designed to empower.



Fronius Primo GEN24

Product advantages

- 01 Integrated shade management
- O2 Backup power right from the start
- 03 Built-in longevity
- 04 Flexibility for greater potential
- 05 Sustainably future-proof

## Technical data

| 3.8/                    | 5.0/6.0 kW                                                    |       |                     |                     |                     | Primo (             | GEN24               | 208-240             | )                   |                     |                    |
|-------------------------|---------------------------------------------------------------|-------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|
| ,,                      | 0.07 0.0 100                                                  |       | 1 -                 | 3.8                 |                     |                     | 5.0                 |                     |                     | 6.0                 |                    |
|                         | Number of MPP trackers                                        |       |                     | 2                   |                     |                     | 2                   |                     |                     | 2                   |                    |
|                         | DC input voltage range<br>(Udc min - Udc max)                 | V     |                     |                     |                     |                     | 65 - 600            | )                   |                     |                     |                    |
|                         |                                                               |       | 208 V <sub>ac</sub> | 220 V <sub>ac</sub> | 240 V <sub>ac</sub> | 208 V <sub>ac</sub> |                     | 240 V <sub>ac</sub> | 208 V <sub>ac</sub> | 220 V <sub>ac</sub> | 240 Vac            |
|                         | Nominal input voltage (U <sub>dc,r</sub> )                    | V     | 360                 | 380                 | 400                 | 360                 | 380                 | 400                 | 360                 | 380                 | 400                |
|                         | Feed-in start voltage (U <sub>dc start</sub> )                | V     |                     | 80                  |                     |                     | 80                  |                     |                     | 80                  |                    |
| ata                     | Usable MPP voltage range                                      | V     |                     | 65-530              |                     |                     | 65-530              | i.                  |                     | 65-350              | 1                  |
| Input data              | MPP voltage range (at rated power)                            | V     |                     | 200-480             | )                   |                     | 200-48              | 0                   |                     | 200-480             | 0                  |
| nd                      |                                                               |       | MPPT                | r1 1                | 1PPT2               | MPPT                | r1 1                | MPPT2               | MPPT                | F1 1                | MPPT2              |
| In                      | Max. usable input current (I <sub>dc max</sub> )              | А     | 22                  |                     | 12                  | 22                  |                     | 12                  | 22                  |                     | 12                 |
|                         | Max. short circuit current per MPPT $(I_{\text{50 pV}})^{-1}$ | А     | 36                  |                     | 19                  | 36                  |                     | 19                  | 36                  |                     | 19                 |
|                         | Number of DC connections                                      |       | 2                   |                     | 2                   | 2                   |                     | 2                   | 2                   |                     | 2                  |
|                         |                                                               |       | MPPT1               | MPPT2               | Total               | MPPT1               | MPPT2               | Total               | MPPT1               | MPPT2               | Total              |
|                         | Max. usable DC power                                          | W     | 3,940               | 3,940               | 3,940               | 5,150               | 5,150               | 5,150               | 6,190               | 6,190               | 6,190              |
|                         | Max. PV generator output                                      | Wpeak | 5,700               | 5,700               | 5,700               | 7,500               | 6,800               | 7,500               | 8,000               | 6,800               | 9,000              |
|                         |                                                               |       | 208 V <sub>ac</sub> | 220 V <sub>ac</sub> | 240 V <sub>ac</sub> | 208 V <sub>ac</sub> | 220 V <sub>ac</sub> | 240 V <sub>ac</sub> | 208 V <sub>ac</sub> | 220 V <sub>ac</sub> | 240 Vac            |
|                         | AC rated power (Pac,r)                                        | W     | 3,800               | 3,800               | 3,800               | 5,000               | 5,000               | 5,000               | 5,740               | 6,000               | 6,000              |
| B                       | Apparent power                                                | VA    | 3,800               | 3,800               | 3,800               | 5,000               | 5,000               | 5,000               | 5,740               | 6,000               | 6,000              |
| Output data             | Max. Output power                                             | VA    | 3,800               | 3,800               | 3,800               | 5,000               | 5,000               | 5,000               | 5,740               | 6,000               | 6,000              |
| Ě                       | Nom. AC output current                                        | A     | 18.13               | 17.3                | 15.8                | 24                  | 22.7                | 20.8                | 27.6                | 27.3                | 25                 |
| tp                      | Mains connection (U <sub>ac,r</sub> )                         | V     |                     |                     | 1~NPE 20            | 08 V / 220          | 0 V / 240           | V (+ 10 %           | 6/-12%              | 5)                  |                    |
| ō                       | Frequency<br>(frequency range fmin - fmax)                    | Hz    |                     |                     | 5                   | 0 Hz / 60           | Hz (45 I            | Hz – 66 H           | z)                  |                     |                    |
|                         | Distortion factor                                             | %     |                     |                     |                     |                     | < 3.5               |                     |                     |                     |                    |
|                         | Power factor (cos φac,r)                                      |       |                     |                     |                     | 0.8                 | - 1 ind. /          | сар.                |                     |                     |                    |
| ta .                    |                                                               |       | 120 V <sub>ac</sub> | 220 V <sub>ac</sub> | 240 V <sub>ac</sub> | 120 V <sub>ac</sub> | 220 V <sub>ac</sub> | 240 V <sub>ac</sub> | 120 V <sub>ac</sub> | 220 V <sub>ac</sub> | 240 V <sub>a</sub> |
| ut dat<br>Point         | Nom. Output power PV Point                                    | VA    | 1,560               | 2,860               | 3,120               | 1,560               | 2,860               | 3,120               | 1,560               | 2,860               | 3,120              |
| Output data<br>PV Point | Nominal AC voltage PV Point                                   | V     |                     |                     |                     | L~NPE 12            | 20 V / 22           | 0 V / 240           | V                   |                     |                    |
| 9                       | Switching time                                                | sec.  |                     |                     |                     |                     | < 23                |                     |                     |                     |                    |

The Fronius GEN24 can be upgraded to a Fronius GEN24 Plus hybrid inverter in the future through the UP.storage software upgrade. This upgrade activates battery functionality, enabling the possibility of a Full Backup power solution. However, external grid switching devices are required for this functionality. The technical specifications for battery operation and Full Backup operation are detailed below:

|                              | Full Backup power and battery function only available with GEN24 Plus |      |                     | Primo GEN24 208-240 Plus |                     |                        |                     |       |  |  |
|------------------------------|-----------------------------------------------------------------------|------|---------------------|--------------------------|---------------------|------------------------|---------------------|-------|--|--|
| · Ont                        | y avaitable with GEN24 Plus                                           | 3.8  |                     | 5.                       | 0                   | 6.0                    |                     |       |  |  |
| ıp²                          |                                                                       |      | 220 V <sub>ac</sub> | 240 V <sub>ac</sub>      | 220 V <sub>ac</sub> | 240 Vac                | 220 V <sub>ac</sub> | 240 V |  |  |
| tput<br>ata<br>ackup         | Nom. Output power Full Backup                                         | VA   | 3,800               | 3,800                    | 5,000               | 5,000                  | 6,000               | 6,000 |  |  |
| Output<br>data<br>Full Backu | Mains connection Full Backup                                          | ٧    |                     |                          | 1~NPE 22            | 0 V / 240 V            |                     |       |  |  |
|                              | Switching time                                                        | sec. |                     |                          | <                   | 35                     |                     |       |  |  |
|                              | Number of DC inputs                                                   | -    |                     |                          | 18                  | 1                      |                     |       |  |  |
| y ion                        | Max. Input current (Idc max)                                          | А    | 22                  |                          |                     |                        |                     |       |  |  |
| ter                          | DC input voltage range (Udc min - Udc max) <sup>3</sup>               | ٧    | 150-455             |                          |                     |                        |                     |       |  |  |
| Battery<br>connection        | Connection technology DC battery                                      |      | 1x                  | DC+ and 1x [             |                     | pe terminals 1<br>12-8 | for solid: copp     | per   |  |  |
|                              | Max. Charging power with AC coupling 4                                | W    | 3,80                | 00                       | 5.0                 | 00                     | 6.00                | 00    |  |  |

- <sup>1</sup> I<sub>Inc</sub> (STC) of the strings multiplied by 1.25 must be less or equal than ISC PV according to NEC 2023. This value needs to be divided by the amount of strings connected to the MPPT.
- <sup>2</sup> For Full Backup, additional external components are required for grid separation.
- $^{\bf 3}$  AC power derating of the inverter occurs with a DC battery input voltage of 419.7 V and higher.
- <sup>4</sup> Depending on the connected battery.

| <b>TVCE</b> | TRINITY VALLEY CONSULTING ENGINEERS     |  |
|-------------|-----------------------------------------|--|
|             | 67 WALNUT WAY<br>WILLOW CREEK, CA 95573 |  |
|             | 530.629.3000                            |  |

| SCALE: NTS            | AHJ:  | HUMBOLDT COUNTY |
|-----------------------|-------|-----------------|
| SHEET SIZE: 11" x 17" | APN:  | 529-111-007     |
| TEMPLATE V2.0         | DATE: | 03/27/2025      |

| KTHA | ORL | <b>EANS</b> |
|------|-----|-------------|
|      |     |             |

38030 STATE HIGHWAY-96 ORLEANS, CA 95556 PV-7
EQUIPMENT
DATASHEET



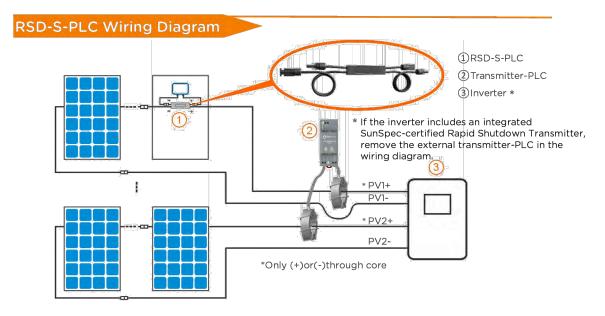
# Raising the bar in innovative DC MLPE solar power systems



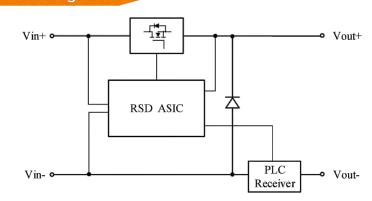
# **RSD-S-PLC**

- Meets NEC 2017 & 2020 (690.12)
   requirements
- Executes rapid shutdown of system when Transmitter-PLC signal is absent
- Meets SunSpec requirements

## RSD-S-PLC Technical Data


| Model                                   | RSD-S-PLC                                                                         |
|-----------------------------------------|-----------------------------------------------------------------------------------|
| Input Data (DC)                         |                                                                                   |
| Input Operating Voltage Range           | 8-80V                                                                             |
| Maximum Cont. Input Current (Imax)      | 15A                                                                               |
| Output Data (DC)                        |                                                                                   |
| Output Operating Voltage Range          | 8-80V                                                                             |
| Maximum System Voltage                  | 1000V/1500V                                                                       |
| Mechanical Data                         |                                                                                   |
| Operating Ambient Temperature Range     | -40 °F to +185 °F (-40 °C to + 85 °C)                                             |
| Dimensions (without cable & connectors) | 5" x 1.2" x 0.6"(129 mm x 30 mm x 16 mm)                                          |
| Cable Length                            | Input 250mm/Output 1200mm                                                         |
| Cable Cross Section Size                | TUV:4mm²/UL:12AWG                                                                 |
| Connector                               | MC4 or Customize                                                                  |
| Enclosure Rating                        | NEMA Type 6P/IP68                                                                 |
| Over Temperature Protection             | Yes                                                                               |
| Features & Compliance                   |                                                                                   |
| Communication                           | PLC                                                                               |
| Safety Compliance                       | NEC 2017 & 2020 (690.12); UL1741; CSA C22.2 No<br>330-17; IEC/EN62109-1; 2PFG2305 |
| EMC Compliance                          | FCC Part15; ICES-003;IEC/EN61000-6-1/-2/-3/-4                                     |

© All Rights Reserved


REV 2.2 2021-3-27



The RSD-S-PLC meets SunSpec requirements, maintaining normal function by continually receiving a heartbeat signal from the APsmart Transmitter. The RSD executes rapid system shutdown when the Transmitter signal is absent. Users can manually execute rapid shutdown using Transmitter breaker switch.



## Working Schematic Diagram



| ORDERING INFORMATION |                                                |  |  |
|----------------------|------------------------------------------------|--|--|
| 415002               | 1500V UL/1000V TUV, 1.2m cable, MC4            |  |  |
| 415001               | 1000V UL/TUV, 1.2m cable, Customized connector |  |  |



## **APsmart**

600 Ericksen Ave NE, Suite 200 Seattle, WA 98110 | +1-737-218-8486 | +1-866-374-8538 | support@APsmartGlobal.com | APsmartGlobal.com

REV 2.2 2021-3-27

| TVCE | TRINITY VALLEY CONSULTING ENGINEERS     |  |  |
|------|-----------------------------------------|--|--|
|      | 67 WALNUT WAY<br>WILLOW CREEK, CA 95573 |  |  |
|      | 530.629.3000                            |  |  |

| SCALE: NTS            | AHJ:  | HUMBOLDT COUNTY |
|-----------------------|-------|-----------------|
| SHEET SIZE: 11" x 17" | APN:  | 529-111-007     |
| TEMPLATE V2.0         | DATE: | 03/27/2025      |

# **KTHA ORLEANS**

38030 STATE HIGHWAY-96 ORLEANS, CA 95556 PV-8
EQUIPMENT
DATASHEET



## FlashFoot2

## The Strongest Attachment in Solar

IronRidge FlashFoot2 raises the bar in solar roof protection. The unique water seal design is both elevated and encapsulated, delivering redundant layers of protection against water intrusion. In addition, the twist-on Cap perfectly aligns the rail attachment with the lag bolt to maximize mechanical strength.

## Twist-On Cap

FlashFoot2's unique Cap design encapsulates the lag bolt and locks into place with a simple twist. The Cap helps FlashFoot2 deliver superior structural strength, by aligning the rail and lag bolt in a concentric

## **Three-Tier Water Seal**

diverts water away, while a stack of rugged components raises the seal an entire inch. The seal is then fully-encapuslated by the Cap. FlashFoot2 is the first solar attachment to pass the TAS-100 Wind-Driven Rain Test.

Water-Shedding Design

away from the water seal.

An elevated platform diverts water

## Single Socket Size

A custom-design lag bolt allows you to install FlashFoot2 with the same 7/16" socket size used on other Flush Mount System components

FlashFoot2's seal architecture utilizes three layers of protection. An elevated platform

## **Installation Features**

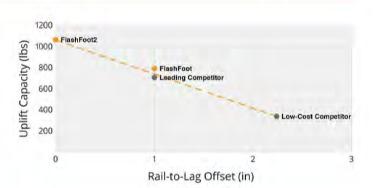


## (A) Alignment Markers

Quickly align the flashing with chalk lines to find pilot holes.

## (B) Rounded Corners

Makes it easier to handle and insert under the roof shingles.


## (C) Reinforcement Ribs

Help to stiffen the flashing and prevent any bending or crinkling during installation.

## **Benefits of Concentric Loading**

Traditional solar attachments have a horizontal offset between the rail and lag bolt, which introduces leverage on the lag bolt and decreases uplift capacity.

FlashFoot2 is the only product to align the rail and lag bolt. This concentric loading design results in a stronger attachment for the system.



## **Testing & Certification**

## Structural Certification

Designed and Certified for Compliance with the International Building Code & ASCE/SEI-7.

## **Water Seal Ratings**

Water Sealing Tested to UL 441 Section 27 "Rain Test" and TAS 100-95 "Wind Driven Rain Test" by Intertek. Ratings applicable for composition shingle roofs having slopes between 2:12 and 12:12.

## UL 2703

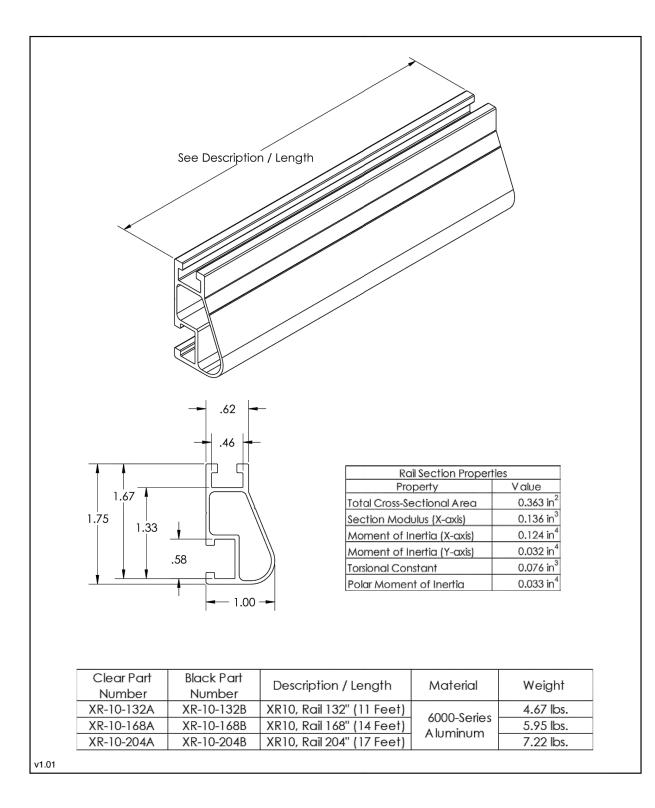
Conforms to UL 2703 Mechanical and Bonding Requirements. See Flush Mount Install Manual for full ratings.

© 2016 IronRidge, Inc. All rights reserved. Visit www.ironridge.com or call 1-808-227-9523 for more information. Version 1.0



TRINITY VALLEY CONSULTING ENGINEERS 67 WALNUT WAY WILLOW CREEK, CA 95573 530.629.3000

| SCALE: NTS            | AHJ:  | HUMBOLDT COUNTY |
|-----------------------|-------|-----------------|
| SHEET SIZE: 11" x 17" | APN:  | 529-111-007     |
| TEMPLATE V2.0         | DATE: | 03/27/2025      |


# KTHA ORLEANS

38030 STATE HIGHWAY-96 ORLEANS, CA 95556

PV-9 **EQUIPMENT** DATASHEET



## XR10® Rail



## XR Rail<sup>®</sup> Family

The XR Rail<sup>®</sup> Family offers the strength of a curved rail in three targeted sizes. Each size supports specific design loads, while minimizing material costs. Depending on your location, there is an XR Rail<sup>®</sup> to match.



## **XR10**

XR10 is a sleek, low-profile mounting rail, designed for regions with light or no snow. It achieves spans up to 6 feet, while remaining light and economical.

- 6' spanning capability
- Moderate load capability
- Clear & black anodized finishInternal splices available



## XR100

XR100 is a residential and commercial mounting rail. It supports a range of wind and snow conditions, while also maximizing spans up to 10 feet.

- · 10' spanning capability
- Heavy load capabilityClear & black anodized finish
- Internal splices available



## XR1000

XR1000 is a heavyweight among solar mounting rails. It's built to handle extreme climates and spans up to 12 feet for commercial applications.

- 12' spanning capability
- Extreme load capability
- Clear anodized finish
- Internal splices available

## **Rail Selection**

The table below was prepared in compliance with applicable engineering codes and standards.\* Values are based on the following criteria: ASCE 7-16, Gable Roof Flush Mount, Roof Zones 1 & 2e, Exposure B, Roof Slope of 8 to 20 degrees and Mean Building Height of 30 ft. Visit IronRidge.com for detailed certification letters.

| Lo         | ad         | Rail Span |       |       |    |        |     |  |
|------------|------------|-----------|-------|-------|----|--------|-----|--|
| Snow (PSF) | Wind (MPH) | 4'        | 5' 4" | 6'    | 8' | 10'    | 12' |  |
|            | 90         |           |       |       |    |        |     |  |
| None       | 120        |           |       |       |    |        |     |  |
| None       | 140        | XR10      |       | XR100 |    | XR1000 |     |  |
|            | 160        |           |       |       |    |        |     |  |
|            | 90         |           |       |       |    |        |     |  |
| 00         | 120        |           |       |       |    |        |     |  |
| 20         | 140        |           |       |       |    |        |     |  |
|            | 160        |           |       |       |    |        |     |  |
| 30         | 90         |           |       |       |    |        |     |  |
|            | 160        |           |       |       |    |        |     |  |
| 40         | 90         |           |       |       |    |        |     |  |
|            | 160        |           |       |       |    |        |     |  |
| 80         | 160        |           |       |       |    |        |     |  |
| 120        | 160        |           |       |       |    |        |     |  |

<sup>\*</sup>Table is meant to be a simplified span chart for conveying general rail capabilities. Use approved certification letters for actual design guidance

© 2023 IronRidge, Inc. All rights reserved. Visit www.ironridge.com or call 1-800-227-9523 for more information. Version 1.22



TRINITY VALLEY CONSULTING ENGINEERS 67 WALNUT WAY WILLOW CREEK, CA 95573 530.629.3000

| SCALE: NTS            | AHJ:  | HUMBOLDT COUNTY |
|-----------------------|-------|-----------------|
| SHEET SIZE: 11" x 17" | APN:  | 529-111-007     |
| TEMPLATE V2.0         | DATE: | 03/27/2025      |

# KTHA ORLEANS

38030 STATE HIGHWAY-96 ORLEANS, CA 95556 PV-10 EQUIPMENT DATASHEET

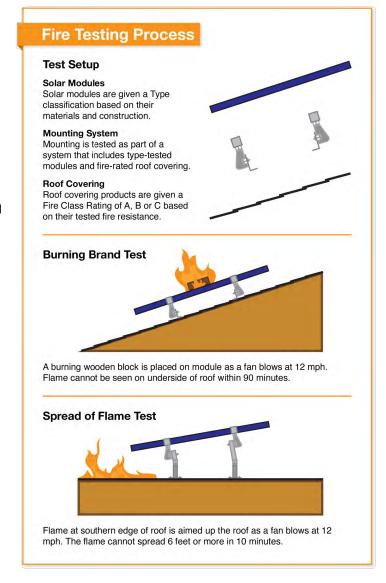


## Class A Fire Rating

## Background

All roofing products are tested and classified for their ability to resist fire.

Recently, these fire resistance standards were expanded to include solar equipment as part of the roof system. Specifically, this requires the modules, mounting hardware and roof covering to be tested together as a system to ensure they achieve the same fire rating as the original roof covering.


These new requirements are being adopted throughout the country in 2016.

## **IronRidge Certification**

IronRidge was the first company to receive a Class A Fire Rating—the highest possible rating—from Intertek Group plc., a Nationally Recognized Testing Laboratory.

IronRidge Flush Mount and Tilt Mount Systems were tested on sloped and flat roofs in accordance with the new UL 1703 & UL 2703 test standards. The testing evaluated the system's ability to resist flame spread, burning material and structural damage to the roof.

Refer to the table below to determine the requirements for achieving a Class A Fire Rating on your next project.



| Roof Slope    | Module         | Fire Rating*             |  |
|---------------|----------------|--------------------------|--|
| Any Slope     | Type 1, 2, & 3 | Class A                  |  |
| ≤ 9.5 Degrees | Type 1, 2, & 3 | Class A                  |  |
|               | Any Slope      | Any Slope Type 1, 2, & 3 |  |

## **Frequently Asked Questions**

## What is a "module type"?

The new UL1703 standard introduces the concept of a PV module type, based on 4 construction parameters and 2 fire performance parameters. The purpose of this classification is to certify mounting systems without needing to test it with every module.

## What roofing materials are covered?

All fire rated roofing materials are covered within this certification including composition shingle, clay and cement tile, metal, and membrane roofs.

## What if I have a Class C roof, but the jurisdiction now requires Class A or B?

Generally, older roofs will typically be "grandfathered in", and will not require re-roofing. However, if 50% or more of the roofing material is replaced for the solar installation the code requirement will be enforced.

## Where is the new fire rating requirement code listed?

2012 IBC: 1509.7.2 Fire classification. Rooftop mounted photovoltaic systems shall have the same fire classification as the roof assembly required by Section

## Where is a Class A Fire Rating required?

The general requirement for roofing systems in the IBC refers to a Class C fire rating. Class A or B is required for areas such as Wildland Urban Interface areas (WUI) and for very high fire severity areas. Many of these areas are found throughout the western United States. California has the most Class A and B roof fire rating requirements, due to wild fire concerns.

## Are standard mid clamps covered?

Mid clamps and end clamps are considered part of the PV "system", and are covered in the certification.

## What attachments and flashings are deemed compatible with Class A?

Attachments and their respective flashings are not constituents of the rating at this time. All code-compliant flashing methods are acceptable from a fire rating standpoint.

## What mounting height is acceptable?

UL fire testing was performed with a gap of 5", which is considered worst case in the standard. Therefore, the rating is applicable to any module to roof gap.

## Am I required to install skirting to meet the fire code?

No, IronRidge achieved a Class A fire rating without any additional racking components.

## What determines Fire Classification?

Fire Classification refers to a fire-resistance rating system for roof covering materials based on their ability to withstand fire exposure.

Class A - effective against severe fire exposure Class B - effective against moderate fire exposure

Class C - effective against light fire exposure

## What if the roof covering is not Class A rated?

The IronRidge Class A rating will not diminish the fire rating of the roof, whether Class A, B, or C.

## What tilts is the tilt mount system fire rated for?

The tilt mount system is rated for 1 degrees and up and any roof to module gap, or mounting height.

## More Resources



**TEMPLATE V2.0** 

## **Installation Manuals**

Visit our website for manuals that include UL 2703 Listing and Fire Rating Classification. Go to IronRidge.com



ORLEANS, CA 95556

## **Engineering Certification Letters**

We offer complete engineering resources and pre-stamped certification letters. Go to IronRidge.com



DATE: 03/27/2025