
Why Point-in-Time Security
Audits Fail DeFi Protocols

How Lifecycle Security Solutions Help You Hit
Mainnet With Confidence

The Case for Complete
Lifecycle Security

Using Sherlock AI to surface meaningful security signal
earlier in multi-chain systems

Traditionally, crypto security followed a linear path: develop code, engage auditors, receive findings,
patch vulnerabilities (or sometimes re-write segments of code), re-audit if needed, deploy, and hope
for the best.

This point-in-time model treats security as a “scheduled event” is separate from how protocols are
designed, built, and monitored. This model is breaking down with an alarming increase in exploits
following extensive, point-in-time audits.

The industry has responded with more audits, bigger bounties, and expanded security budgets. Yet
losses continue to climb. Many teams try to compensate for weak internal security by leaning on
audits and bounties. These are valuable tools, but real security is enforced internally through posture,
process, and discipline. Part of that process is to embrace and implement a lifecycle approach
consisting of ongoing security auditing. Lifecycle security fundamentally rethinks when and how
security happens.

After over 150 exploits in 2024 totaling $1.48 billion, 2025 was even more devastating with total
crypto losses exceeding $3.4 billion. Access control failures accounted for 59% of losses in H1 2025
($1.83B), while the industry's largest single hack, Bybit's $1.5 billion breach, demonstrated that even
well-resourced platforms remain vulnerable."

Many targeted previously audited protocols, exposing a fundamental weakness in the current
paradigm, demonstrating that these audits are no longer sufficient in today's DeFi environment.

Certified Sherlock Content 2026

Traditionally, crypto security followed a linear path: develop code, engage auditors, receive findings, patch vulnerabilities, re-audit if needed, deploy, and hope for the best.

Traditional Crypto Security Path

Develop
Code

Engage
Auditors

Receive
Findings

Patch
Vulnerabilities

Repeat cycle if issues found

Re-audit
(if needed)

Deploy
To Production

Hope for
the best!

Today's protocols need security that evolves as they do: specifically, we recommend that your
security investment should scale as your TVL grows. The question isn't whether your audit was
thorough, it's whether your security keeps pace with how your protocol actually operates.

Risk doesn't wait for audits to occur. Code changes, integration shifts, and stress scenarios emerge in
real time. A security model built around these so-called point-in-time snapshots can't keep pace.

Point in time security is fundamentally inefficient because every code update forces protocol teams to
repeat the same high effort audit sourcing, interviews, and contract negotiation from scratch.

As a result, Point-in-time security approaches keep knowledge in “silos” with each auditor, causing
valuable information to become fragmented. Different vendors review design, pre-launch, and post-
launch—each re-learning the protocol from partial views.

Consider healthcare: you wouldn't see a different doctor for every symptom. You establish continuity
with a physician who understands your history, monitors changes, and recognizes patterns. Point-in-
time audits examine protocols in isolation, without context or ongoing responsibility. This fails
catastrophically when code, money, and coordination occupy the same space.

The Fragmentation Problem

Four Critical Failure Modes

Why Point-in-Time Security Fails

Assumption Drift 
Wormhole's $320M hack occurred in thoroughly reviewed code. The vulnerability emerged from
logic operating under real-world conditions that differed from audit assumptions. As protocols
evolve—adding features, adjusting parameters, integrating new contracts—initial audit
assumptions diverge from operational reality.

Scope Limitations 
Audits examine contracts in isolation but can't model every future integration or market condition.
Time constraints force breadth-versus-depth tradeoffs. Traditional audits catch implementation
bugs (reentrancy, access control) but miss economic vulnerabilities, composability risks, oracle
manipulation, and emergent behaviors.

P ost-Deployment Blind Spots 
After audits conclude, protocols operate without security oversight. New attack vectors emerge,
compromised integrations create cascading risks, and market conditions enable previously
theoretical attacks. Most projects have months or years of exposure between audits.

Post-Audit Code Changes

 Opyn: Updated code after OpenZeppelin audit, introduced an exploited bug

 Team Finance: Lost $14.5M despite audits from Hacken, Coinspect, CertiK

 Ronin: Failed to call initialization function during protocol update, $12M exploit

Audit reports become obsolete the moment code changes. Without continuous monitoring, these
changes create exploitable blind spots.

Certified Sherlock Content 2026

Certified Sherlock Content 2026

Some Examples Of When Point-In-Time Audits Weren't
Enough

Mango Markets (2022)

Audited by Neodyme in September, drained of $112M five weeks later through price oracle
manipulation. The audit reviewed the code as written, but couldn't account for adversarial market
conditions.

Balancer V2 (2025)

Lost $121M when attackers exploited tiny rounding errors in how the protocol calculated token
exchange rates. These mathematical edge cases only appeared under specific market conditions—
scenarios a snapshot audit couldn't test for

The numbers reveal where traditional audits fall short, and more importantly, why they miss what
matters:

Logic errors caused 50 exploits, followed by input validation failures (20), and price manipulation
(18). Point-in-time audits examine code correctness but can't anticipate how protocols will behave
under real-world conditions, market stress, or adversarial scenarios that only emerge after
deployment.

Flash loan attacks account for 83.3% of exploits. They succeed by manipulating protocol economics
and financial logic, not exploiting code bugs. Traditional audits focus on whether code functions as
written, completely missing vulnerabilities in how the system is designed to handle money. The code
works perfectly; the economic model doesn't.

Off-chain attacks resulted in 80.5% of total stolen funds, with compromised accounts responsible for
55.6% of incidents. Private key compromises, social engineering, and infrastructure vulnerabilities
emerge entirely after deployment and fall outside the scope of pre-launch code audits.

The pattern is clear: point-in-time audits catch implementation bugs (reentrancy, access control
flaws) but systematically miss design vulnerabilities, economic exploits, and post-deployment
threats. Traditional security models aren't keeping pace with the threats protocols face once live.

The Evidence

Where Point-in-time security
falls short

Certified Sherlock Content 2026

lifecycle security is

the solution
Sherlock Complete Lifecycle Security is the first unified model that connects security in development,
auditing, and post-launch protection.

Lifecycle Security fundamentally changes how protocols approach risk. Instead of treating security as
a series of isolated events, it creates a system where every review, every fix, and every insight
compounds over time.

Lifecycle Security connects the three core phases:

Expert security consulting and AI-powered security reviews during development.

Intensive human review pre-launch with collaborative audits and public audit contests.

Active protection post-launch with bounties, coverage, periodic AI reviews, and monitoring.

Our lifecycle model leverages context and data generated in one phase to supercharge the next
phase. Sherlock builds each audit team from top security experts in our network, matching
specialists to your architecture so you get deeper coverage, faster review, and findings that other
teams miss.

The Three-Phase Lifecycle Model

Security
Consultation

Sherlock
AI

Collaborative
Audit

Audit
Contrast

Bug Bounty Coverage

D E V E L O P M E N T

1

A u d i t

2

P O S T - L A U N C H

3

https://sherlock.xyz/solutions/collaborative-audits
https://sherlock.xyz/solutions/audit-contests

Certified Sherlock Content 2026

The Compounding Context Advantage

For the first time, context can be shared throughout all stages of a team’s security strategy.

Development findings inform pre-launch focus. Audit results shape post-launch monitoring.
Production incidents feed back into next version design. Security partners maintain aligned
incentives. Instead of separate projects where each vendor re-learns the protocol, you get continuous
security where institutional knowledge compounds.

Sherlock takes this another step further by ensuring that the same top auditors are involved in each
stage of a protocol’s lifecycle all the way from AI implementation and development to post-launch
monitoring.

Measuring Effectiveness

Issues surface earlier — Critical vulnerabilities caught during development, not pre-launch

Reviews accelerate — Auditors spend less time learning, more finding sophisticated
vulnerabilities

Fewer post-launch unknowns — Monitoring catches identifiable issues, not entirely novel vectors

Predictable costs — No last-minute scope expansions from discovering fundamental flaws

If you're repeating work or rediscovering past risks, your lifecycle isn't connected. If audits start from
zero, you're paying the fragmentation tax.

Full lifecycle adoption is the strongest signal you can send to users and investors.

Measuring Effectiveness of
the lifecycle

CONFIRMED HIGH

SEVERITY FINDING

Certified Sherlock Content 2026

WHy lifecycle security is only
viable now
These stages aren’t new. They’ve been part of blockchain engineering since the very beginning. The
core problem is that the Web3 security industry has treated these individual lifecycle stages as
separate problems. Development security has one set of vendors. Audits and contests have another.
Post-launch protection has a third set of vendors and solutions. Each service has historically operated
on its own island, with its own processes, with missed context traveling from one lifecycle stage to the
next.

One critical breakthroughs has made lifecycle security feasible:

AI Security Reviews
AI can perform security reviews in 2 hours instead of 2 weeks and scales near-infinitely. AI security
reviews are <1% of the price and duration of human audits. While AI security reviews still are
imperfect and aren’t as reliable as top human auditors, we’ve seen over and over again that AI
auditing is able to find valuable and impressive bugs in sophisticated codebases. A protocol team can
have their code reviewed at 100x the frequency by AI during a development cycle, breaking the
point-in-time constraints of the past.

Traditional workflow

with ai auditing

D E V E L O P M E N T A U D I T R E M E D I A T I O N L A U N C H

No active security
monitoring Longer audit period Lenghty Fix Phase Delayed Launch

B U I L D f o c u s e d a u d i t
q u i c k

r e m e d i a t i o n l a u n c h

Continuous AI
security Monitoring Shorter Audit Period Fast Fix Phase On-Time Launch

Certified Sherlock Content 2026

Closing: Giving Teams Leverage
Throughout the Lifecycle
The data is unambiguous: point-in-time audits cannot protect protocols in today's DeFi environment.
With $1.48B lost in 2024 despite widespread adoption of traditional audits, the industry needs
fundamental change.

Lifecycle security addresses the four critical failure modes: assumption drift through continuous
monitoring, post-audit changes via AI scanning, scope limitations with combined AI + human +
contest approaches, and post-deployment blind spots through bounties and ongoing protection.

Sherlock's Complete Lifecycle Security has secured over $100 billion in TVL across top protocols, with
detection rates that systematically identify issues traditional audits miss. In Web3, where the
application is the balance sheet, security must be continuous.

The choice is straightforward: continue with periodic snapshots that miss post-deployment threats, or
adopt lifecycle security that protects your protocol as it evolves.

Your protocol changes daily. Your security should too.

sherlock.xyz/contactTry Sherlock AI On Your Protocol

“I’ve tried many different AI audit tools, and none come even
close to Sherlock AI. It combines best-in-class AI models
with easy-to-use UX and GitHub integration. Other tools are
either good at PR runs or manual runs. Sherlock AI is by far
the best combination of both.”

— Jeroen Offerijns, CTO, Centrifuge

Secure your protocol

with sherlock

S h e r l o c k . x y z

