FD CleanStart

VEX and the Shift From
VVulnerability Presence to
Exploitability

Shifting from CVE volume to exploitability context and verifiable risk.

© 2026 CleanStart. All rights reserved v2026.01.16

Why this
Matters

The Core
Problem:
Treating
Vulnerability
Presence as
Risk

ﬁD CleanStart

Modern software teams are overwhelmed by vulnerabilities.
Container images routinely surface hundreds of CVEs, many of
which cannot be exploited in the context of the application.
Security teams chase alerts. Developers triage findings they did
not introduce. Remediation cycles slow releases without
materially reducing risk.

This problem has intensified with the adoption of SBOMs. As
visibility improves, vulnerability counts rise sharply. Teams see
more issues, but gain little clarity on which ones actually matter.

Industry data consistently shows that most reported
vulnerabilities do not represent real risk. Large-scale analyses
indicate that less than 10 percent of detected CVEs are typically
exploitable in a given runtime context , while teams spend the
majority of their effort triaging the remainder. As SBOM adoption
expands visibility, this imbalance worsens.

This is not a failure of scanners or SBOMs. It is an architectural
failure in how vulnerability information is interpreted and
communicated.

Vulnerability scanners do one thing well. They detect the
presence of known vulnerable components. SBOMs do one thing
well. They enumerate what is included in an artifact.

Neither is designed to determine exploitability.

In practice, however, organizations treat scanner output as a risk
signal. Every detected CVE becomes an alert. Every alert demands
triage. Every triage requires human judgment to determine
whether the vulnerability is reachable, exploitable, or relevant in
the deployed context.

This creates structural failure.

Alert volume without prioritization

Most vulnerabilities detected in container images are not
exploitable. They may exist in unused libraries, disabled code
paths, or components that are never invoked at runtime.

Scanners surface them uniformly. A critical CVE in an unreachable
library appears indistinguishable from a critical CVE in an
exposed service. Teams are forced to treat both as equally urgent
until proven otherwise.

The
Architectural
Mistake

Exploitability
as an
Architectural
Property

Manual context does not scale

Security teams often determine exploitability correctly, but
manually. That context Ilives in tickets, emails, internal
documentation, or tribal knowledge.

It does not travel with the artifact. As images are rebuilt,
promoted, or shared with customers, the same vulnerabilities are
re-evaluated repeatedly. The decision is correct each time, but
never durable.

SBOMs amplify noise without interpretation

SBOMs increase transparency, but without exploitability context
they also increase noise. Consumers receive long lists of
vulnerabilities with no indication of relevance. Approval
processes slow. Trust in security signals erodes.

The underlying mistake is architectural.

Vulnerability management systems treat component presence as
the primary signal. Security decisions require exploitability
context, but that context exists outside the artifact lifecycle.

Scanners identify what exists. Humans decide what matters. The
decision is never preserved.

As environments scale, this model collapses.

To scale vulnerability management, exploitability must become a
first-class property of the software artifact , not an after-the-
factinterpretation.

This requires two conditions.

Context must be machine-
readable

Human explanations do not scale across

builds, deployments, or supply chains.

Exploitability decisions must be expressed
in a standardized, machine-readable form
that tools can consume consistently.

FD CleanStart

Context must travel with the

artifact
Exploitability decisions must be attached

to the image or package itself. When an

artifact moves through environments or
to downstream consumers, its

vulnerability context must move with it.

VEX as the
Missing
Architectural
Layer

FD CleanStart

A Vulnerability Exploitability eXchange (VEX) document allows
producers to communicate exploitability context for known
vulnerabilities in a standardized way.

Rather than suppressing vulnerabilities, VEX adds meaning to
them.

At a high level, VEX allows producers to state whether a
vulnerability is:

e Not Affected

e Affected

e Fixed

e Under Investigation

Each status is accompanied by a justification explaining why the
vulnerability is or is not exploitable in the specific context of the
product.

@ SBOMs answer what is included.

@ Scanners answer what vulnerabilities are known.

@ VEX answers which vulnerabilities matter, and why.

Together, they form a complete security signal.

Traditional Model VEX-Enabled Model

HIGH NOISE
~)
B B+0
SBOM SBOM + VEX
CIS
_ Y,
N
5 B £ B &% OO
CVE List
CVE List
N2
o R ok ®
Manual Triage Scanner

Contextual Findings
Manual Triage

CleanStart’s CleanStart implements VEX as part of the container build and
o blication process, not as a downstream workflow.

Architectural >

Implementation

of VEX

ﬁD CleanStart 4

Operational
Impact

KD CleanStart

Context is preserved as an artifact, not recreated as a process.

Continuous maintenance of exploitability status

As vulnerabilities are fixed, reclassified, or newly discovered,
CleanStart updates VEX information accordingly. Teams do not
re-triage historical decisions. Exploitability remains current
without manual intervention.

Compatibility with existing tooling

CleanStart VEX documents follow open standards and integrate
with common scanners and platforms, including Trivy, Grype, and
Docker Scout. Consumers ingest VEX data directly into existing
workflows without changing tooling.

Treating exploitability as an architectural property changes how
teams operate.

e Security teams focus on real risk instead of alert volume

®* Developers stop re-triaging the same vulnerabilities across
builds

e Platform teams reduce policy friction and exception handling

e Customers receive clearer, defensible security signals
e Auditors see standardized, artifact-linked risk rationale

Vulnerability management becomes repeatable and defensible
instead of reactive.

Relationship
to SBOM
Requirements

Key takeaway

VEX does not reduce transparency. It makes transparency usable.

As SBOM adoption becomes mandatory across regulated
industries, VEX provides the interpretive layer that allows
vulnerability data to be consumed responsibly. Suppliers are able
not only to disclose vulnerabilities, but to explain their relevance.

This is increasingly expected in mature supply chain security
programs.

Vulnerability scanners detect what exists.
Security decisions require knowing what is exploitable.

Without a standardized way to attach exploitability context to
software artifacts, vulnerability management does not scale. VEX
transforms vulnerability data from noise into signal by making
context architectural.

References and Further Reading

e N)
Vulnerability Exploitability Minimum Elements for a VEX
eXchange (VEX)
. VRN J
4 N)
. . SPDX Vulnerability Exploitability
CycloneDX VEX Specification Information
o NG J
4 N\ N\
NIST Secure Software Development CISA and NIST Guidance on SBOMs and
Framework (SSDF) Vulnerability Disclosure
\ L J

ﬁD CleanStart

https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf
https://www.ntia.gov/page/minimum-elements-vex
https://cyclonedx.org/specification/vex/
https://www.cisa.gov/resources-tools/resources/minimum-requirements-vulnerability-exploitability-exchange-vex
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://www.cisa.gov/sbom

