ﬁ) CleanStart

CIS Hardening as an
Architectural Property

Embedding CIS-aligned hardening into the software foundation by
design.

© 2026 CleanStart. All rights reserved v2026.01.16

Why this
Matters

The Core
Problem: CIS as
Configuration
Does Not Scale

<)
Configuration

explosion
< .

<) CleanStart

CIS Benchmarks are widely recognized as the industry standard
for secure configuration. Auditors trust them. Cloud providers

reference them. Enterprises rely on them to demonstrate
baseline security hygiene across containers, orchestration
platforms, and host systems.

Yet most organizations struggle to maintain CIS compliance in

containerized environments. Security audits uncover
configuration gaps. Hardening reviews delay releases. Teams

cycle through repeated remediation and revalidation.
Compliance becomes a recurring operational burden rather than
a stable security baseline.

This challenge is well documented. A 2024 Kubernetes

benchmark analysis of over 330,000 workloads found that
configuration errors affecting security and reliability remain
widespread, even in mature container environments. Despite

increased adoption and tooling, configuration correctness
continues to be difficult to sustain at scale.

This is not because CIS guidance is unclear or excessive. It is
because CIS hardening is still treated as a configuration task,

applied manually to systems designed to change continuously.
At scale, that approach cannot hold.

CIS Benchmarks define what secure 1ooks like, but they do not
prescribe how security should be enforced. In practice,

organizations attempt to implement CIS controls through
manual or semi-automated configuration across multiple layers

of the container stack. This creates three structural failure modes

@ Configuration explosion @ Documentation burden

@ Configuration drift

e Baseimages

e Applicationimages

e Containerruntimes

e Orchestration platforms

e Host operating systems

CIS recommendations apply across all of them. Each layer
introduces its own configurationsurface, defaults, and

exceptions.

As environments grow, the number of places where CIS controls
must be applied grows faster than teams can manage.

For context, the scope of CIS guidance is substantial. The CIS
Docker Benchmark defines 25+ recommendations covering

image configuration, runtime behavior, daemon settings, and
host hardening. The CIS Kubernetes Benchmark expands this

further with 100+ checks across control plane components,
worker nodes, RBAC, network policies, and pod security settings.
Each check represents a configuration that must be applied

correctly and then protected from drift over time.

Configuration Drift

N

Kubernetes

Rework
& ™) & Remediation
App Config

—>
cIs Security| >
Controls : : Gaps

— Container Runtime L y Findings
v ﬁ Manual Fixes

—>
—>

Host OS

\H Release Delays

When CIS hardening is applied as configuration, controls drift across layers and must
be repeatedly revalidated.

A single missed permission, enabled service, or runtime flag is
enough to break compliance.

' N\ Implementing CIS controls is only half the work. Proving
Documentation they remain in place is often harder.
burden Security teams are expected to document:

\ / e \Which CIS recommendations are implemented

® How they are configured
e \When they were applied
® Evidence thatthey have not drifted

<) CleanStart 2

-

-

B

Configuration drift

iy

The
Architectural

Mistake

Q) CleanStart

This documentation is typically assembled manually through
configuration dumps, screenshots, and spreadsheets. Auditors

then repeat the same verification independently. The process is
slow, fragile, and expensive.

Even when CIS compliance is achieved at a point in time, it rarely
persists.

® New containerimages are built without all controls applied

® Base images change upstream defaults

® Orchestrator updates alter security behavior

® Development shortcuts bypass hardened settings

What passed an audit last quarter fails the next one. CIS becomes
a cleanup exercise rather than a durable control.

The commmon thread across these faillures is architectural.

CIS hardening is being applied after software artifacts are
created , to environments designed to change rapidly. This

creates a permanent enforcement gap between security intent
and operational reality.

Configuration-based hardening assumes:
® Controls will be applied consistently
® Settings will persist across changes

® Drift can be detected and corrected fast enough

In containerized systems, these assumptions break down.

Where CIS
Controls
Actually Belong
in the Container
Stack

ﬁ:l CleanStart

CIS hardening as architecture, not
configuration

The required shift is to treat CIS controls as invariants , not
mutable settings.

Instead of asking:

- Did we configure this container correctly?

- Did this runtime flag get applied?
- Did anything drift?

The system should guarantee:

« Certaininsecure states are impossible

« Certain permissions never exist
. Certain services are never present

This moves CIS hardening upstream into artifact construction,
where gquarantees can be enforced once and inherited

everywhere.

CIS controls span multiple layers, but not all layers are equally
suited for enforcement.

Image layer

Container images are the most stable enforcement point. Once
built, they are immutable. Hardening applied here travels with the

artifact, cannot drift at runtime, and applies consistently across
environments.

Controls related to users, permissions, filesystem layout,
package minimization, and attack surface belong here.

Runtime and orchestration layers

Runtime and orchestration controls remain necessary, but they
are inherently variable. They depend on cluster configuration,

platform defaults, and ongoing operational changes.

Relying on these layers alone to enforce CIS guarantees ensures
continuous monitoring, remediation, and audit friction.

Architectural implication

CIS hardening that depends primarily on runtime configuration
will always require ongoing enforcement. CIS hardening
embedded into images becomes self-enforcing

Hardened Base Image

Embedded CIS Controls e S R

. : : COMPLIANCE
e Users & Permissions Build Time

e Attack Surface

e Secure Defaults)

REPORT

Runtime & Orchestrator

When CIS controls are embedded into container images, they cannot drift and continuously
provide traceable compliance evidence.

C]eanStart’s CleanStart implements CIS hardening as an architectural
Architectu ra'l property of container images, not as a set of post-build checks.
Implementat L : . .

; P £ CIS User and permission hardening as invariants

10N O

Hardening CleanStart containers run as non-root users by default, with

controlled user and group permissions and restricted Linux

capabilities. These constraints are baked into the image itself,
satisfying CIS Docker Benchmark requirements around privilege
restriction and user configuration.

Because these properties are immutable, they cannot be
bypassed at runtime.

Attack surface minimization by construction

CleanStart’s distroless approach removes unnecessary packages,
services, and shells entirely. CIS recommendations related to

package minimization and service reduction are satisfied
structurally rather than through cleanup scripts or runtime

enforcement.

The absence of components becomes the control.

ﬁ) CleanStart 5

Continuous
Compliance
Without Drift

FD CleanStart

Secure defaults as immutable baselines

Network configuration, resource limits, security contexts, and
runtime parameters follow CIS recommendations by default.

Organizations do not configure compliance. They inherit it from
the image.

This eliminates per-deployment hardening work and reduces
variance across environments.

Secrets and sensitive data handling

CleanStart containers are designed to prevent credential
exposure through filesystem layout, permission models, and

runtime expectations, aligning with CIS guidance around
information disclosure and secure secrets handling.

Architectural hardening changes the compliance model.

Evidence as a build artifact

CleanStart generates CIS compliance reports automatically for
each container image, documenting which recommendations are

implemented, how controls are enforced, and evidence of
compliance. Documentation 1s produced as part of the build
process, not assembled manually.

Automated validation
CleanStart containers consistently pass automated CIS checks
using standard tools such as Docker Bench for Security and

kube-bench. Valhdation becomes confirmation rather than
investigation.

Version-tracked compliance
As CIS Benchmarks evolve, CleanStart maintains alignment with
current versions while preserving documentation for images

built against prior benchmarks. Compliance remains auditable
over time, not just at deployment.

Alignment With
Broader
Compliance
Frameworks

Operational
Implications

ﬁ:l CleanStart

Because CIS Benchmarks are widely recognized, architectural
CIS hardening accelerates compliance across multiple
frameworks:

» SOC 2 security configuration and access controls
- PCIDSS secure system configuration requirements
HIPAA technical safeguards and access restrictions

* FedRAMP secure configuration baselines

CIS becomes a shared control foundation rather than a separate
compliance effort.

Treating CIS hardening as architecture changes how teams
operate.

Security teams stop manually configuring containers and
focus on policy and risk

- Platform teams remove fragile enforcement logic from
pipelines

- Developers ship without repeated hardening cycles

Auditors validate evidence rather than reconstruct
configurations

Development and production without
compromise

CIS hardening often breaks down because development and
production environments have different needs. Developers
require debuggability and flexibility. Production systems require
strict hardening and minimal attack surface.

When CIS controls are applied manually, teams are forced into a
tradeoff between usability and compliance. An architectural
approach separates these concerns cleanly. Development
images can support additional tooling where appropriate, while
production images enforce strict CIS baselines by default. Both
remain traceable, auditable, and aligned to the same security
model.

The
Competitive
Impact of
Architectural
Hardening

Key Takeaway

References

.

CIS Docker Benchmark

.
S
Docker Bench for
Security
S

) CleanStart

Organizations that treat CIS hardening as architecture operate
differently from those that treat it as configuration. Hardening no

longer gates releases. Audits no longer trigger remediation
cycles. Compliance no longer slows delivery.

Teams that eliminate manual hardening ship faster, respond to
audits more quickly, and enter regulated markets with less
friction. The difference is not intent or effort. It is architectural
choice.

CIS Benchmarks fail at scale when treated as configuration.
They succeed when enforced as architectural constraints.

When hardening is built into container images, compliance stops
being something teams repeatedly achieve and becomes

something systems inherently guarantee.

That is the difference between configuring security and
designing it.

£ s ",
on o
Kubernetes .]W ,
Benchmark evelopmen
Framework
9) e)
a ™
kube-bench
= E.
8

