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1. Introduction

Insured property losses from natural catastrophic risk events,
such as earthquakes, hurricanes, storms, floods, tornados or
man-made catastrophes, are extremely large, when compared
with other types of property and casualty losses. In general,
catastrophe risks are of low-loss frequency and high-loss severity.
Traditionally, insurance companies hedge and transfer catastrophe
risk by purchasing reinsurance contracts. However, such a
reinsurance contract could be less cost-effective to the reinsurance
company and may pose a severe financial stress to the reinsurance
company due to the unpredictable nature of large catastrophic
losses. As a result, over the last twenty years it has become
increasing difficult to find a reinsurance company to cover the
catastrophic losses at a reasonable cost. In order to expand the
capacity of reinsurance industry, securitization of accumulated
catastrophic losses in financial markets has become a timely and
desirable alternative to the traditional reinsurance norm (D’Arcy
and France, 1992).

Catastrophe risk bonds (CAT bonds) are one of the most
important insurance-linked financial securities. The losses caused
by large catastrophes could lead to a significant amount of payment
for the capital market investors. The first successful CAT bond was
$85 million issued by Hanover Re in 1994 (Laster, 2001). Another
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CAT bond was issued by a nonfinancial firm, in 1999, which covered
the earthquake losses in Tokyo for the company Oriental Land
(Cummins, 2008). A $3.4 billion risk capital was issued through 18
transactions in 2009 and the catastrophe bond market was shown
to be an increasingly attractive and worthwhile supplement to the
sponsor risk transfer programs (Klein, 2010).

Although there have been a number of successful issuances of
the CAT bonds in recent years, few academic studies have been
conducted for the pricing of CAT bonds. Cox and Pedersen (2000)
evaluated catastrophe risk bonds using a representative agent
technique and developed a framework of pricing CAT bonds in
the incomplete market setting. Lee and Yu (2002) developed a
contingent claim model that incorporated stochastic interest rates
and generic loss processes with considerations of other factors,
such as moral hazard, basis risk, and default risk. Lee and Yu (2007)
presented a contingent-claim framework for valuing reinsurance
contract that can increase the value of a reinsurance contract
and reduce its default risk by issuing the CAT bonds. Egami and
Young (2008) developed a method for pricing structured CAT
bonds based on utility indifference pricing. Unger (2010) proposed
a formulation and discretization strategy for CAT bonds model by
utilizing a numerical PDE approach.

Apart from the above-mentioned studies, there also exist other
articles about the pricing of the CAT bonds. Baryshnikov et al.
(2001) developed an arbitrage-free solution to the pricing of
the CAT bonds under the condition of continuous trading, they
used compound doubly stochastic Poisson process to incorporate
various characteristics of the catastrophe process. Burnecki and
Kukla (2003) corrected and applied the results of Baryshnikov
et al. (2001) to calculate no-arbitrage prices of a zero-coupon
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and coupon CAT bonds, and derived a pricing formula under the
compound doubly stochastic Poisson model framework. Hérdle
and Cabrera (2010) applied the results of Burnecki and Kukla
(2003) to examine the calibration of real parametric CAT bonds
for earthquakes sponsored by the Mexican government. Also
under an arbitrage-free framework, Vaugirard (2003a,b) adopted
the jump-diffusion model of Merton (1976) to develop the first
valuation model of insurance-linked securities that deal with
catastrophic events and interest rate randomness. Fernandez-
Duran and Gergorio-Dominguez (2005) presented a methodology
for the pricing of CAT bonds by considering the fact that the
issuance of the CAT bond is done by the government and
its main interest is to have additional funds to relieve the
affected victims. Burnecki (2005) evaluated CAT bonds using a
compound nonhomogeneous Poisson model with left truncated
loss distribution. Jarrow (2010) developed a simple closed form
solution for valuing CAT bonds, while the formula is consistent
with any arbitrage-free model for the evolution of the LIBOR term
structure of interest rates.

As the occurrence of catastrophe is largely unpredictable,
valuing CAT bonds is very difficult. But a study of the pricing
bond model plays a key role in the prevention and mitigation
of natural disasters. Unfortunately, most prior studies did not
take into account diverse factors that affect bond prices. In this
paper, we consider a variety of factors that affect bond prices,
such as loss severity distribution, claim arrival intensity, threshold
level and interest rate uncertainty. Consequently, we derive a
simple pricing formula for CAT bonds in a stochastic interest rates
environment and show that the loss process follows a compound
nonhomogeneous Poisson process.

The remainder of the paper is organized as follows. Section 2
briefly describes a CAT bond. Section 3 derives the pricing model
of the CAT bonds. Section 4 conducts parameters calibration of
the pricing model, and Section 5 is devoted to numerical analysis.
Finally, Section 6 summarizes the paper and gives the conclusion.
For ease of exposition, most proofs are presented in Appendix.

2. Brief description of a CAT bond

The simple structure of a CAT bond is presented in Fig. 1. It
involves a sponsor (e.g. insurer, reinsurer, or government), who
seeks to transfer the risk to investors who accept the risk for higher
expected returns. The transfer of the risk to the capital market is
achieved by creating a special purpose vehicle (SPV) that provides
coverage to the sponsor and issues bonds to investors. The sponsor
pays a premium in exchange for a pre-specified coverage if a
catastrophic event of a certain magnitude takes place and investors
purchase a bond. The SPV collects the capital and invests the
proceeds in safe and short-term securities (e.g. Treasure bonds),
which are held in a trust account. The returns generated from this
trust account are usually swapped for floating returns based on the
London interbank offered rate (LIBOR) that are supplied by a highly
rated swap counterparty. The reason for the swap is to immunize
the sponsor and the investors from interest rate (mark-to-market)
risk and default risk (Cummins, 2008).

If the covered event (also called trigger event) does not happen
during the term of the CAT bond, investors receive their principal
plus a compensation for the catastrophic risk exposure. However,
if a catastrophic risk event occurs and triggers specified in the
bond contract during the risk-exposure period, then the SPV
compensates the sponsor according to the CAT bond contract. This
results in a partial or full principal to the investors (Loubergé et al.,
1999).

Obviously, defining the default-trigger event plays an impor-
tant role in structuring CAT bonds. This catastrophic event should
be measurable and easily understood. In general, there are three

types of triggering variables: indemnity triggers, index triggers and
hybrid triggers. If the trigger event is based on the level of actual
monetary losses suffered by the sponsor, then it is called an indem-
nity trigger. This triggering type is subject to the highest degree of
the moral hazard. This phenomenon appears when the sponsor no
longer tries to limit its potential losses as the risk is transferred to
the investors. Therefore, moral hazard occurs due to loss control
efforts by the sponsor (Lee and Yu, 2002). Although suffering from
moral hazard risk, indemnity triggers eliminate basis risk by of-
fering indemnity against modeled perils (Harrington and Niehaus,
1999).

There are three broad types of indices that can be used as
CAT bond triggers: industry loss indices, modeled loss indices, and
parametric indices. With industry loss indices, the payoff on the
bond is triggered when estimated industry-wide losses from a
catastrophic event exceed a specified threshold level. A modeled-
loss index is calculated using the model provided by one of
the major catastrophe-modeling firms-Applied Insurance Research
Worldwide, EQECAT, or Risk Management solutions. Lastly, with
a parametric trigger, the bond payoff is triggered by specified
physical measures of the catastrophic events such as wind speed
or the location and magnitude of an earthquake (Cummins, 2008).
Index triggers help the sponsor in avoiding detailed information
disclosure to the competitors, so that they can minimize the
problem of the moral hazard. However, index triggers are subject
to basis risk as the sponsor’s losses may differ from industry losses.
Here, the basis risk differs from the mismatch between the index
and the sponsor’s losses. Therefore, hybrid triggers can be resolved
between the moral hazard and the basis risk. For example, under
both index- and parametric-based triggers, the sponsor is limited
to no capability in over-statistic the losses (Cummins et al., 2004;
Damnjanovic et al., 2010).

3. Valuation framework
3.1. Modeling assumptions

Let (£2, ¥, #) denote a probability space, where §2 is the set
of states of the world, & is a o-algebra of subsets of §2, and »
is a probability measure on ¥ . Continuous trading interval [0, T]
for a fixed T > 0. An increasing filtration £ C F£,t € [0, T].
Let {V; : t € [0, T]} denote the CAT bond price process for all
T € [0, T], which is modeled by many factors: type of region,
kind of loss event, sort of insured property, and interest rates
uncertainty, etc. Let {L; : t € [0, T]} denote the aggregate loss
process; {N; : t € [0, T]} is a (non)homogeneous Poisson process
with an intensity parameter A¢; {X; : j > 1} is a sequence of
independent and identically distributed (i.i.d.) random variables. In
addition, let {r; : t € [0, T]} denote the spot interest rate process
(or the force of interest). {W, : t € [0, T]} is a standard Brownian
motion and accounts for the uncertainty of interest rates.

3.2. Valuation theory

In an arbitrage-free opportunities financial market, the value of
the contingent claim {C7 : T > t} at time t can be expressed as

Vi = EX(D(¢t, T)Cr | F2), (1)

where EfQ denotes expectation under an equivalent martingale
measure (often called the risk-neutral pricing measure), given
Fi. D(t, T) = exp(— ftT r(s)ds) is a stochastic discount factor.
This expression is very general, and it can be stated that in the
absence of an arbitrage opportunities financial market, there exists
a stochastic process D(t, T) that prices the contingent claim Cr.
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Fig. 1. Structure of CAT bonds.

3.3. Interest rate process

In this paper, the spot interest rate is assumed to follow the
mean-reverting square-root process (Cox et al., 1985), which can
be expressed as:

dry = k(0 — r)dt + o /ridW, )

where k > 0 is the mean-reverting force measurement, 6 > 0
is the long-run mean of the interest rate, ¢ > 0 is the volatility
parameter for the interest rate, and {W, : t € [0, T]} is a standard
Wiener process initialized at zero. And 2k > o2 guarantees that
zero is an inaccessible boundary for spot interest rates. This setting
can avoid possible negative interest rates r; in Vasicek’s model
(Vasicek, 1977).

In the Cox-Ingersoll-Ross model (CIR model, for more details,
please refer to Cox et al., 1985), the dynamics of bond prices are
given by the stochastic differential equation:

dV(t, T) = re[1 — AB(¢, T)IV(t, T)dt

—B(t, T)V(t, T)o /redW; (3)
where
(T-t) _
B(t.T) = 2(e¥ 1)

(v +k+ a0 —1) +2y’ (4)
y =+ (k+ 1)% + 202

and A, is a constant which determines the market price of risk.
Then, the market price of risk can be expressed as:

ue(V) —reV(t, T)
o (V)
Rl — B DIVET) —rV(ET) A
- —B(t, T)o /1¢ T

For derivative pricing, it is a standard practice to use the device
of arisk-neutral pricing measure. First we define a new process W;*
by

A =

(3)

t t
Wi =W, —/ gds = W, —i—/ Agds
0 0

t
A
W, + / AT g 6)
0 o

where g; is the kernel in the transformation. The so-called “market
price of risk”, As is defined to be the negative of the Girsanov
kernel, g (for more details, please refer to Duffie, 2001).

By Girsanov’s theorem (@Ksendal, 2003), we get the following
results:

(1) (W} : 0 < t < T}is a standard Brownian motion under
the risk-neutral measure Q change for P|r, defined by the

Radon-Nikodym derivative:

NG 1 [ A2

M; =exp{— T—ﬁdws—f " Sdst
2
0 o 0o O

2

1 [T A
if E [exp {5/ r;ds}] < ool
0 o

()
oﬁ(“ﬁ) =k —1) —a, (8)

(7)

o
where « is a process.
By rearranging (8), we derive
a = k(0 — 1) — Ara/Ts
= kO — (k+ A)re

A0
= (k+ 210 — (k+ 1)1 — (k+ A,
(k420 — (k+ A)re — (k+ )<k+xr>

ko
= (k+ X)) (k-i—A —rt>. (9)

We now determine the interest rate process under the risk-
neutral pricing measure Q, which can be expressed as:

dre = kK*(0* — rp)dt + o /redW;, (10)
where k*, 0%, and W;* are respectively defined as

k* =k+ Ar,
. _ ko
k+ 2, (11)

A
AW} = dW, + e gy
o

k* > 0is the mean-reverting force measurement, 6* > 0 is the
long-run mean of the interest rate, ¢ > 0 is the volatility parame-
ter for the interest rates. The term A, is a constant market risk pa-
rameter, W/ is a standard Wiener process under risk-neutralized
measure Q, and 2k*0* > 2. This is a common transformation, and
for the related reference, please refer to Shirakawa (2002), Lee and
Yu (2002), Duan and Yu (2005), Hérdahl and Vestin (2005), etc.

3.4. Aggregate claims process

The aggregate claims have a compound distribution with two
main components: one characterizing the frequency (or incidence)

1 This is called “Novikov's condition”, which is sufficient to guarantee that the
process {M;}.<r is a martingale (with respect to F; and P). See @Ksendal (2003,
159-168).
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of catastrophic events and another describing the severity (or
size or amount) of gain or loss resulting from the occurrence of
a catastrophic event (Klugman et al., 2008; Tse, 2009). In this
paper, we follow the approach of Aase (1999) and assume that
the process of accumulated insured property losses follows a
compound Poisson process. There are some assumptions about the
aggregate loss process:

(1) There exists a Poisson point process N; (t € [0, T]) describing
the flow of potentially catastrophic events of a given type in
the region specified in the bond contract. The intensity of this
Poisson point process is assumed to be a predictable bounded
process A.. We denote the instants of these potentially
catastrophiceventsas0 <t; <--.- <t <-.-- <T.

(2) tis the time of the threshold event when the aggregate claims
L; exceed the threshold level D, i.e., t = inf{t : L; > D}.

(3) The insured losses incurred by each event in the flow {t}j=1, .
are independent and identically distributed random variables
{Xj}j=1,... with the distribution function F (x) = P{X; < x}.

Therefore, a left-continuous and predictable aggregate loss
process is defined as:

N
L=Y %=X (12)
j=1

[j<‘L’

where N; and X; are assumed to be independent processes.

3.5. Pricing model for the CAT bonds

The catastrophe loss process has jumps, so the markets are
incomplete, and there is no unique pricing measure. That is, the
methodology of replicating portfolios is not applicable. In this
paper, we follow Merton (1976) and assume that the overall
economy is only marginally influenced by localized catastrophe
such as earthquakes, hurricanes, floods, etc., and the catastrophe
losses pertain to idiosyncratic shocks to the capital markets. So the
catastrophic risk associated with jumps can be diversified away,
i.e., the catastrophic shocks will represent “nonsystematic” and
have a zero risk premium. For a detailed discussion of this point,
please refer to Cummins and Geman (1995), Cox and Pedersen
(2000), Lee and Yu (2002) and Vaugirard (2003a,b). Furthermore,
we follow Cox and Pedersen (2000), and assume that the aggregate
loss process still retains their original distributional characteristics
after changing from the physical probability measure P to the risk-
neutral measure Q ; under the risk-neutral pricing measure Q those
events that depend only on financial variables are independent
of those events that depend on catastrophic risk variables (for a
detailed discussion of this point, please refer to Cox and Pedersen,
2000).

First, we consider a zero-coupon CAT bond with the payoffs
(Pcar(T)) of a certain amount PV = Z at maturity time T. The
structure of payoffs is given by

Z ifl; <D

PCAT(T) = {pz if It > D, (13)

where D is the threshold value in the CAT bond provisions; Ly is
the aggregate claims at maturity T; p denotes the fraction of the
principal needed to be paid to bondholder in the case where the
aggregate claims are above the trigger at time T.

The other is the payment of the principal (face value) at
maturity time T and coupon payments C which stop immediately
attime T when t < T.Thatis to say, if L, > D (r < T), then its
principal is protected and only the interest will be forfeited. The
structure of payoffs is given by

Z+C ifl; <D

Per(T) = {Z if Iy > D, (14)

where D is the threshold value in the CAT bond provisions; Ly is the
aggregate claims at maturity T.

To summarize, we obtain the following results.

The zero-coupon CAT bond prices at time t associated with
the threshold D, the catastrophic flow N¢, and a loss distribution
function F(x), paying principal Z at time t to maturity T under the
risk-neutralized pricing measure Q, is given by

T
Ve = E% (e " Peyr(T) |72

= Ber(t, T)Z |:P +(1-p

> A (T = )"
x Ze-w—”i( o= 1) F*”(D):| (15)
p—rd n!
where
F"(D) =Pr(X; + X, +--- + X, < D) (16)

denote the n-th convolution of F, and

Bew(t, T) = A(t, T)e B¢,

2k*0*

2y e +T-0/2 } o2
(k* 4+ y)(eT=0 — 1) + 2y ’
2(e7T0 — 1)
(v + k) (erTD —1) 42y’

y =/ (k*)2 + 202

Proof. See Appendix A.

The principal protected coupon CAT bond price associated with
the threshold D, the catastrophic flow N;, and a loss distribution
function F(x), paying the principal Z at time to maturity T and
coupon payments Cs; with a fixed spread ¢ over LIBOR which cease
at threshold time T when t’ < T under the risk-neutralized pricing
measure Q, is given by

A, T) = [

B(t,T) =

T
V, = EQ (e—fr rstPéAT(T)W})

— Bar(t, T) [z +C Z eW“(A‘(Tn!_t))nF*“(D)} (18)

n=0
where

F*'(D) =Pr(Xi + Xz + -+~ + X, < D) (19)
denote the n-th convolution of F, and

Bew(t, T) = A(t, T)e B¢,

2k*0*

2y e +T-0/2 } o?
(k* +y)(erT= — 1) 42y
2(e7T0 — 1)
(v + k)T = 1) + 2y

y =+ (k)% +202. O

At T) = [
(20)

B(t,T) =

Proof. See AppendixB. O

3.6. A mixed approximation method

Under the assumption that the insured losses incurred by each
catastrophic event are independent and identically distributed
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random variables X; > 0 with the distribution function F(x) =
P{X; < x} and claims arrival following a nonhomogeneous Poisson
process with the intensity A, the exact distribution F(x, t) of the
aggregate loss L, = ZJN;] X; in the interval [0, t] is given by

F(x,t) = x>0

3 expliatt 2 prngy
= ool ’ (21)

= exp{—XA¢t}, x=0

where F*"(x) denotes the n-fold convolution F with itself, which
is extremely difficult to compute because of its high-order
convolutions, and only a few closed-form solutions are known.

Due to numerical difficulties, there are plenty of approximation
methods of the exact cumulative distribution function F(x, t),
such as the Fast Fourier Transform, inversion method, recursive
method, simulation method, approximation method, etc. In this
paper, we employ an approximation method to evaluate the
aggregate claims distribution. Therefore, we need to determine a
good approximation for the aggregate claims distribution.

In actuarial science, the most well-known ones are the normal
approximation and its improvements (the normal power (N — P,)
approximation and the Edgeworth approximation), the gamma
approximation and the Esscher approximation. In general, the
basic principle of the approximation is the density f;(I) (or
distribution function P(L < 1)) approximated by a function that
uses the mean p, variance O'L , skewness «3; = L 3L (where i3 is

the third moment about the mean Hi, 0 is the standard deviation)
and even the excess kurtosis k4, = L i (where [i4 is the forth

moment about the mean y;, oy is the standard deviation). Here, fi;
denotes the jth central moment of L (Panjer and Willmot, 1992).

Chaubey et al. (1998) proposed a new approximation to the
aggregate loss distribution based on the inverse-Gaussian (IG)
distribution, and they used an IG-gamma mixture to approximate
the true distribution accurately. Reijnen et al. (2005) compare five
approximations (N —P,, Edgeworth expansions, Gamma, IG and IG-
gamma) of the Stop-loss premium by assuming different models
for L; and different underlying distributions. In their method, they
proposed a rule of thumb: if k3x € [0, 5] and x4, € [0, 1.5] (where,
k3x and k4 denote the skewness of the claim size X and the kurtosis
of aggregate claims L, respectively), then it can use the gamma-IG
approximation to evaluate aggregate loss distribution; otherwise,
if ksx € (5,15) or k4 € (1.5, 50), then the IG approximation is
more accurate.

We propose a mixed approximation method to evaluate the
aggregate claims distribution based on the value of the skewness
k3x of the claim size X and the kurtosis «y4; of the aggregate claims
L. If k3x and kg4 are consistent with the rule of thumb during the
period of numerical calculation, we choose the IG-gamma method
or the IG method to approximate the aggregate claims distribution.

Next we give an overview of the probability density functions
of the approximations that we will use in this study.

3.6.1. The gamma approximation

This approximation is the most famous approximation in this
field (Seal, 1977), with the probability density function (p.d.f.)
given by

B (L= x0)* " exp(—=B (I — Xo))
')

fL(l) %fgamma(l) = P (22)

Xo = py — 22, T'(-) denotes a usual

2
where o = (a)z, B = e

gamma function.

2
k3Lor’

3.6.2. The inverse Gaussian approximation
This approximation is quite new, and it is introduced by
Chaubey et al. (1998), with the p.d.f. given by

o (@ —pd— Xo))2>
I ~ l = Y R 23
A~ fie) = s EXP( 2B = x0) >
wherea = ()%, B= -, x == gk

K3L0L k3L

3.6.3. The gamma-IG approximation

The IG-gamma approximation is a combination of the IG
approximation and the gamma approximation (Chaubey et al.,
1998), with the p.d.f. given by

(D %fgammaflc(l) = a)fgamma(l) + (1 — w)fic(D, (24)
feap— 212 2, —6k
where @ = M6 — S0 — 106 0ka o and Kk

K4gamma —K4IG

3
denote the corresponding skewness and kurtosis of L, respectively.

4. Parameter calibration of the pricing model

In order to estimate and calibrate the parameters of the pricing
model, we have to fit both the distribution function of the insured
losses F and the claim arrival process N; governing the flow of
natural catastrophic events.

4.1. Data description

We take for our study the Property Claim Services (PCS) data
covering losses resulting from natural catastrophic events in the
US that occurred between 1985 and 201023 and adjust for
inflation using the Consumer Price Index (CPI) provided by the US
Department of Labor. That is, the losses are converted to 2010
dollars using the CPI. The Insurance Service Office’s (ISO’s) PCS
unit is a US industry authority on insured property losses from
catastrophes in the United States, Puerto Rico, and the US Virgin
Islands. It tracks and estimates catastrophic property losses in the
US on national, region, and state bases as well as for entire property
and casualty industry. The PCS has maintained an insurance claim
database and provides catastrophe indices (PCS indices) since
1949. Most catastrophe derivatives use a PCS index as a reference
index. Moreover, loss transactions of a catastrophe-linked security
are often based on a PCS index. Losses to investors/underwriters
are calculated using a PCS as a proxy (Lin and Wang, 2009).
Therefore, it is reasonable to use the PCS index losses from the
entire property and casualty industry in the US as an estimation
of the severity and frequency distributions for the pricing of the
CAT bonds described in the previous section.

The adjusted PCS loss for catastrophic events during 1985-2010
is depicted in Fig. 2. Fig. 3 shows that the number of qualified
catastrophic events in the US from 1985 to 2010. The twenty
most costly insured CAT losses are shown in Table 1. In reality
not all insurance losses over a certain time interval are recorded
accurately. In the framework of catastrophe losses, PCS only
records catastrophic events whose losses are over a predetermined
threshold. The catastrophe loss threshold was changed from $1
million to $5 million in 1983, and increased again to $25 million
in 1997.

2 http://www.iso.com/Products/Property-Claim-Services/Property-Claim-
Services-PCS-info-on-losses-from-catastrophes.html.

3 Note: a set of 770 catastrophe loss data and 780 catastrophe events in US from
1985 to 2010.

4 ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.txt.
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Table 1

The twenty most costly catastrophes in the United States.

Source: Property claims services, INC. (ISO), insurance information institute.

Event Date PCS loss ($ billions) 2010 dollars ($ billions)
Hurricane Katrina 25/08/05  41.10 45.89
Hurricane Andrew 24/08/92  15.50 24.09
Terrorist attacks in the US 11/09/01 18.78 23.12
Northridge earthquake and Winter Storm  17/01/94  13.30 19.57
Hurricane Ike 12/09/08  12.50 12.66
Hurricane Ivan and Jeanne 15/09/04  10.77 12.43
Hurricane Wilma 24/10/05  10.30 11.50
Hurricane Charley 13/08/04 7.48 8.63
Hurricane Hugo 17/09/89 4.20 7.38
Hurricane Rita 20/09/05 5.62 6.28
Hurricane Frances 03/09/04 4,59 5.30
Hurricane Georges 21/09/98 2.95 3.95
Wind and Thunderstorm Event 02/05/03 3.21 3.80
Tropical Storm Allison 05/06/01 2.50 3.08
Hurricane Opal 04/10/95 2.10 3.00
Wildland Fire Oakland Hills 20/10/91 1.70 272
Wind and Thunderstorm Event 06/04/01 2.20 271
Winter Storm 11/03/93 1.75 2.64
Hurricane Floyd 14/09/99 1.96 2.57
Wind and Thunderstorm Event 04/10/10 2.50 2.50

Note: Losses were adjusted to 2010 exposure and price level using the US consumer price index.

Adjusted PCS catastrophe claims
(2010, billion dollors)

0
1985 1990 1995 2000 2005 2010

Time(years)

Fig. 2. The PCS catastrophe loss data in the United States from 1985 to 2010.
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Fig. 3. Number of natural CATs in the United States from 1985 to 2010.

Because of confidentiality, the data cannot be explicitly

provided. However, some features can be outlined as follows:

(1) the maximum value of the data is 90 times of the mean;

(2) thereis 12.60% of the observations categorized as outliers if the
1.5 % IQR rule is used;

(3) the skewness and kurtosis for the data are 13.01 and 208.28;
and

(4) 35.58% of the data is smaller than 1/500 of the maximum value,
92.34% of the data is smaller than 1/50 of the maximum value.

All points above suggest that the data is heavy-tailed.

4.2. Loss-severity distribution

In the actuarial literature, heavy-tailed data are commonly
modeled by theoretical heavy-tailed distribution such as Log-
normal, Weibull or Burr distributions, etc. So the following heavy-
tailed distributions are often considered (within the domain i ;).

(1) Log-normal distribution, with the probability density function
(p.d.f.) given by

f ) 1 ( (Inx — u)2>
X ;0) = ————=exp| ————— |,
S X027 202
x>0,0 >0,ueN. (25)
(2) Pareto distribution, with the p.d.f,,
af”
fx(X;Ol;ﬁ)=xa+l, x> B,a>0,8>0. (26)

(3) Inverse Gaussian distribution, with the p.d.f.,

A Ax — p)?
Ty A) = - >
Sy s 1) =\ 5= exp ( e
x>0,u>01>0. (27)
(4) Gamma distribution, with the p.d.f,,
“ oy _ 1 o—1
fX(X7a7 ﬁ) - IB“F(O()X exp( X/ﬂ),

x>0,a0>0,8>0. (28)
(5) Weibull distribution, with the p.d.f,,

a—1 o
fx& a; B) = 2 <i> exp (— (i) ) ,
B\B B

x>0,0>0,8>0. (29)
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(6) Generalized Extreme Value (GEV) Distribution, with the p.d.f,,

1 X— U %
fx(x;u;a;/c)=oexp(—(l+k( > )) )

1

_ —1-%
x(l—i—k(x “)) , k+#£0;
o2
)
= —exp|——exp(—} ),
o o o

k=0 (30)

where « is the shape parameter, o > 0 is the scale parameter, and
w is the location parameter of the distribution.

4.2.1. Non-parametric tests

Once the distribution is selected, we need to obtain parameter
estimates. In general, parameters are found mainly by moment (for
the Pareto distribution only) and maximum likelihood estimation.

As the choice of the distribution can influence the bond prices,
we need to find a most suitable distribution function which fits the
observed claims well. The next step is to evaluate the goodness-of-
fit and the performance of the model selection criteria.

The goodness-of-fit problem is as follows: given a random sam-
ple xq, X2, . . ., Xy, to test Hp; the sample comes from a population
with a distribution function F (x). A class of classical measures of fit
is empirical distribution function (EDF) statistics. They are based
on a comparison between the theoretical distribution F (x) and the
empirical distribution function F, (X).

In general, when F(x) is continuous and completely specified,
EDF statistics give more powerful tests of Hy than the x? test
(Stephens, 1974). Moreover, the x? goodness-of-fit test is of
low power for small sample sizes (Levi and Partrat, 1991). Since
empirical samples generally contain a rather small amount of
extreme observations in our dataset of the catastrophe losses, it
is questionable whether the x? test would reveal a severe misfit of
the tail. In this paper, we select the Kolmogorov-Smirnov (KS) test
and the Anderson-Darling (AD) test to test of the appropriateness
of the model selection. The K-S test has the advantage of making
no assumption about the distribution data. Technically, it is non-
parametric and distribution free. The AD test is a modification of
the KS test and gives more weight to the tails than the KS test.
In general, the theoretical distribution F(x) with the smallest KS
and AD values is determined to be the best fit to the empirical
distribution F,(X) (Anderson and Darling, 1952; Law and Kelton,
2000; Wen and Yang, 2009).

Model selection refers to the problem of using the data to
select one model from the list of competing models. In essence,
it involves the use of a model selection criteria to find the best
fitting model to the data (Wasserman, 2000). In order to assess
the performance of the above parametric distributions, we apply
corrected Akaike’s Information Criteria and Bayesian information
criteria to rank these models, with the best approximating model
being the one with the lowest AICc value and BIC value.

Kolmogorov-Smirnov statistic. Let X = (X1, X3, ...,X,) be a ran-
dom sample from some distribution with cumulative function
(CDF) F(X). The empirical CDF is denoted by F,(x) = n~! x
[number of observations < x]. The KS statistic (D) is based on the
largest vertical distance between F(x) and F, (x) for all values of x,
ie.,

Dy = sup{|Fy(x) — F(x)|}. (31)

The statistic D,, can be computed by calculating (Law and
Kelton, 2000)

i=1.2,..., n
(32)
i
D, = max {F(X@) — }
=1,2,..., n n
where X; is the ith order statistic, and letting
D, = max{D;", D, }. (33)

If the test statistic, D, is greater than the corresponding critical
value C,, we reject that the data follow the predetermined
distribution.

Anderson-Darling (AD) statistic. The AD test is a form of minimum
distance estimate, which assesses whether a sample comes from a
predetermined distribution. The AD goodness of fit test is designed
to detect the difference in the tails between the fitted distribution
and the data. The AD statistic (A%) is defined as (Anderson and
Darling, 1952; Stephens, 1974):

A= =30 1) x INFOG) + 01— FGy iy )] — 1. (34
i=1

If the test statistic, A%, is greater than the corresponding
critical value C,, we reject that the data follow the predetermined
distribution.

Corrected Akaike’s information criteria (AICc). Akaike (1973) found a
simple relationship between the likelihood (L) and the number of
parameters in the examined model (K):

AIC = —21In(L) + 2K (35)

(where In is the natural logarithm) to estimate the expected
distance of a given model from truth. However, for small sample
sizes (roughly approximated as being when % < 40 (where n is
the sample size) in the most complex model), AIC might not be
accurate. Then a second order bias correction for AIC was derived

by Sugiura (1978) and Hurvich and Tsai (1989):
2K(K+ 1)

n—-K-1’

As sample size (n) increases, AICc converges to AIC.

AlCc = AIC + (36)

Bayesian information criteria (BIC). Another widely used informa-
tion criteria is the BIC, which is derived within a Bayesian frame-
work as an estimate of the Bayes factor for two competing models
(Schwarz, 1978), formulated as

BIC = —21In(L) + K In(n) (37)

where In is the natural logarithm, n is the sample size, L is the value
of the likelihood, K is the number of parameters in the examined
model.

4.2.2. Empirical results

First, we calculated the parameters of loss distribution by mo-
ment (for the Pareto distribution only) and maximum likelihood
estimation. The results of the parameter estimation are shown
in Table 2. We apply the Kolmogorov-Smirnov test and Ander-
son-Darling statistic test to show that the Pareto distribution does
not pass all tests at the 5% level, as shown in Table 3. Table 4 shows
that the GEV distribution with parameters k = 0.35431,0 =
6.5307 and . = 7.7158 yields the best results, and the lognor-
mal distribution with parameters © = 2.3179,0 = 0.89666 is
the next best fit. So we will choose the GEV and the lognormal dis-
tribution for further analysis.
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Table 2
Parameter estimates for the annual catastrophe loss amounts.

Distributions Gen. Extreme Value Inv. Gaussian Gamma Lognormal Pareto Weibull
Parameters k = 0.35431 n = 14.96 o = 1.0174 o = 0.89666 o = 0.56579 o = 1.302
o = 6.5307 A =15.221 B =14.704 n=23179 B =1734 B =14.135
n=7.7158
Table 3
Test statistics for different distributions.
Distribution Gen. Extreme Value Lognormal Inv. Gaussian Weibull Gamma Pareto
Test values (critical values for @« = 0.05)
D, (0.25907) 0.08784 0.09377 0.09401 0.10883 0.1306 0.29802
AD (2.5018) 0.2296 0.24384 0.38287 0.5989 0.62191 4.6711

Note: the critical values in parentheses can be easily found in the literature, as e.g. D’Agostino and Stephens (1986).

Table 4
The performance for different distributions.

Distribution

Criteria Gen. Extreme Value Lognormal Weibull Gamma Pareto Inv. Gaussian
AlCc —165.8349 —163.3982 —154.6801 —142.3942 —97.2340 —15.6406
BIC —163.1516 —161.8051 —153.0870 —140.8011 —95.6409 —14.0474

Note: The optimum values are in boldface.

4.3. Claim arrival process

A pure Poisson process has been widely used to describe the
arrival rate of catastrophic events and is applied for pricing of
catastrophe risk derivatives (Cummins and Geman, 1995; Lee
and Yu, 2002, 2007; Burnecki and Kukla, 2003; Cox et al., 2004;
Jaimungal and Wang, 2006; Lin and Wang, 2009; Hardle and
Cabrera, 2010, etc.). In this paper, we assume that the number of
claims observed till time t is a nonhomogeneous Poisson process
(NHPP), denoted by N;, with the intensity A; of the counting
process varies with time t. In Fig. 3 we can see that the time series
of the annual number of claims exhibit a cyclic and periodic trends.
This suggests that calibrating a nonhomogeneous Poisson process
with a cosine rate function would give an adapted model.

)»} = a—l—bsinz(t—l—c)—l—kc

Tt

a+bsin2(t+c)+dexp{cos (%)} (38)

wherea > 0,d > 0,w > 0, and A, is the intensity function
discussed in Vere-Jones (1982). Obviously, A. is a cyclic function
with period w, the problem of estimating A, at a given t € [0, c0)
can be reduced to the problem of estimating A, at a given t €
[0, w).

Applying the Nonlinear Least Squares procedure we estimate
the parameters of the intensity function to the accumulated annual
number of PCS losses. We conclude that a = 27.4746,b =
2.1304,c = —0.3185,d = 1.1938, and w = 4.7938. Burnecki
et al. (2011a,b) propose an intensity function of the form Af =
a+b-2m-sin{2m7 (t —c)}. In the same way, using the Nonlinear Least
Squares procedure we conclude that a = 27.7986,b = 2.2628,
and c = —0.0247. We also consider homogeneous Poisson process
with an annual intensity A} = 30.

In order to compare these three Poisson intensities precisely,
it is necessary to measure the errors based on the comparison of
actual data with the values predicted by the Poisson intensities. In
this paper, the performance of the Poisson intensities is evaluated
using five goodness-of-fit measures: the mean absolute error
(MAE), the root mean square error (RMSE), Theil's coefficient

(U), Nash-Sutcliffe coefficient of efficiency (E) and the index of
agreement (d) as shown in Egs. (39)-(43).

1 N
MAE = szi — Py (39)
i=1
RMSE = (40)
U= (41)
1 N 1 N
¥ 2007+ 5 2 (P)?
i=1 i=1
N
Z(Oi - Pl)
E=10-" (42)
>°(0; — 0)?
i=1
N
Z(Oi —P)?
d=10-— =1
> (IPi — O] + |0; — 0])2
i=1
MSE
= 1.0-N— (43)
PE

where the overbar denotes the mean for the entire time period
of the evaluation, the PE denotes the “potential error”, O; is the
observed value at time i, P; is the predicted value at time i and N
is the total number of observations. The MAE, RMSE statistics have
as the lower limit, the value of zero, which is the optimum value
for them as it for U. Instead, higher values of the E and d indicate
better agreement between the model and observations (Nash and
Sutcliffe, 1970; Willmott, 1981, 1984; Legates and McCabe, 1999).

Table 5 gives a summary of five measurements. Obviously, A} is
superior to the two other intensity functions due to its larger E and
d, and smaller MAE, RMSE and U.



Z.-G. Ma, C.-Q. Ma / Insurance: Mathematics and Economics 52 (2013) 243-254 251

Table 5
Summary of the statistical tests for the Poisson intensity.
Poisson intensity Performance
MAE RMSE U E D
Al 5.2379 5.83674 0.0963 0.0455 0.02879
A2 5.4615 5.9743 0.0986 2.1538E—014 3.4436E—008
A} 5.4615 5.9743 0.1638 0 0

Note: the optimum value are in boldface.

Table 6
The kurtosis range of the aggregate claims L.

Distribution Intensity (t € [}1, 2.5]) Kurtosis range

Gen. Extreme Value (GEV) A} [0.6346, 6.0943]
A2 [0.4943, 4.8447]
b [0.6208, 6.2084]
Lognormal A [0.3398, 3.2627]
A2 [0.2646, 2.5937]
b [0.3324, 3.3238]

5. Numerical analysis

In this section, we value the prices of CAT bond with face value
Z = 1USD and coupon C = 0.1 USD for time t = 0 using
the mixed approximation method. We will discuss various influ-
ences of the choice of the pricing model parameters. We consider
the GEV distribution with parameters k = 0.35431, 0 = 6.5307
and p = 7.7158, and the lognormal distribution with parameters
uw = 2.3179, 0 = 0.89666. We also consider homogeneous Pois-
son process with an annual intensity A2 = 30(HPP) and nonho-
mogeneous Poisson process with the intensity )»sl = 27.4746 +

2.1304 sin” (s —0.3185) +1.1938 exp{cos( ;535 ) }(NHPP1) and the

intensity Asz = 27.7986 + 2.2628 - 2m - sin{27 (s 4+ 0.0247)}
(NHHP2). For comparison purposes, we also consider an annual
continuously-compound discount rate and r = In(1+rp) is a con-
stant.

First, we assume the maturity time T € [%, 2.5] years and
threshold level D € [374, 4488] ten million USD (quarterly-
3xannual average loss). Furthermore, we assume the term
structure parameters within the ranges be used regularly in
previous literature. The initial short-term interest rate ry and the
long-run interest rate 6 are both assumed to be 6% per annum.
The mean-reverting force « is set to be 0.2 and the volatility of the
interest rate o is 10%. The market risk parameter A is —0.01. p is set
to be 0.5 when the aggregate claims L; exceed the threshold level
D(or,t <T)

Under the GEV distribution and the lognormal distribution,
kg = 3.7382 and k%, = 1.9320 denote the skewness of the
claim size X respectively. The kurtosis of the aggregate claims L
in the time t € [3—1, 2.5] are shown in Table 6. This obviously
satisfies the rule of thumb. However, the kurtosis also increases as
the time increases, we cannot use a single approximation method
to evaluate aggregate claims distribution. Therefore, we use the
gamma-IG approximation and the IG approximation to evaluate
the compound distribution.

Now, we calculate the zero-coupon and coupon CAT bond prices
using the approximating solution. Figs. 4 and 5 illustrate the zero-
coupon and coupon CAT bond prices with respect to the threshold
level and time to maturity under the GEV, NHPP1 and stochastic
interest rates assumptions. Note that the CAT bond prices decrease
as the time to maturity increases, and increase as the threshold
level increases.

Fig. 6 shows that the price difference between stochastic
interest rates and constant interest rate under the assumptions of
the GEV loss distribution and the NHPP1. We observe that constant
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Fig. 4. The zero-coupon CAT bond prices under the GEV, the NHPP1 and stochastic
interest rates assumptions.

o
w
o
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Fig. 5. The principal-protected CAT bond prices under the GEV, the NHPP1 and
stochastic interest rates assumptions.

interest rate overestimates the bond prices change substantially
from 0.25 to 2.5 years. The significant price differences indicate
that the uncertainty of interest rates is an important factor and
should be taken into account when pricing the CAT bonds.

In Fig. 7, we illustrate how the bond prices are affected by loss
severity distribution. We can clearly observe that the difference
between the zero-coupon CAT bond prices calculated in the
GEV and the lognormal loss distribution conditions under the
assumptions of the NHPP1 and stochastic interest rates. We also
can observe that the differences of the bond prices vary from
—3.43% to 7.97%. This difference is especially marked in the tail, so
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Fig. 6. The difference between zero-coupon CAT bond prices in stochastic interest
rates and constant interest rate under the GEV and the NHPP1 assumptions.
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Fig. 7. The difference between zero-coupon CAT bond prices in the GEV and the
lognormal distribution under the NHPP1 and stochastic interest rates assumptions.

the heavy-tailed distribution is much more suitable for catastrophe
loss.

Figs. 8 and 9 show how the choice of the fitted claims arrival
intensity influences the zero-coupon CAT bond prices. Fig. 8
illustrates the difference between the zero-coupon CAT bond
prices calculated in the NHPP1 and NHPP2 conditions under
the assumptions of the GEV loss distribution and stochastic
interest rates. We clearly observe that the differences of the bond
price significantly changes from —13.59% to 6.11%. Finally, Fig. 9
illustrates the differences between the zero-coupon CAT bond
prices calculated in the NHPP1 and HPP conditions under the
assumptions of the GEV loss distribution and stochastic interest
rates. We can also observe that the differences of the bond prices
vary from —0.36% to 0.25%.

6. Conclusions

This paper develops a simple contingent claim model to price
catastrophe risk bonds under the risk-neutral pricing measure.
Furthermore, we examine the calibration of the pricing model
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Fig. 8. The difference between zero-coupon CAT bond prices in the NHPP1 and the
NHPP2 under the GEV and stochastic interest rates assumptions.
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Fig. 9. The difference between zero-coupon CAT bond prices in the NHPP1 and the
HPP under the GEV and stochastic interest rates assumptions.

using PCS loss index and the annual number of natural catastrophic
events in the US that occurred between 1985 and 2010.

Because the compound distribution is difficult to calculate, we
adopt a mixed approximation method to approximate aggregate
claims distribution. Based on the values of the skewness k3 of the
claim size X and the kurtosis «4; aggregate claims L, we choose
the gamma-IG or IG approximation method to get a more accurate
approximation solution. Numerical experiments show that the
mixed approximation method described in this paper is effective
and feasible.

The numerical experiments show that interest rate uncertainty,
loss severity, threshold level and claim arrival intensity have
important implications for the CAT bonds pricing model. By
comparing stochastic interest rates and constant interest rate, we
observe that the constant interest derives up the bond prices
substantially in the time T € [%, 2.5]. As the threshold level
increases, the bond price also significantly increases. However, as
the time increases, the bond price flat decreases. This is because
even though more coupons are received as the time increases,
the probability of catastrophe risk also increases, i.e., partial
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coupons are offset by the catastrophic risk exposure. The numerical
results further validate that the choices of the distribution and the
intensity have a great impact on the bond prices.
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Appendix A

Proof. In order to derive formula (15), we first show some
assumptions and main conclusions developed in the paper by Cox
and Pedersen (2000).

Let (2, ¥, ) define a probability space, where 2 = 2! x £2?
is the set of states of the world, ¥ is a o-algebra of subsets of £2,
an increasing filtration % = %! x 2 € F,k = 0,1,...,T,
and 2 (w) = P;(w!)P,(w?) is a probability measure on ¥, w =
(w!, w?) with w! € 21 as a generic state of the world describing
the state of the financial market variables, w?> € 22 is a generic
state of the world describing the state of the catastrophic risk
variables. The financial market variables and the catastrophic risk
variables are assumed to be modeled respectively on the filtered
probability space (21, 1, #,) and (222, £2, $,).

In order to discuss random variables in their full model that
depend only on financial variables or catastrophic risk variables,
they define two new filtrations: 4! := F,! x {®, 2} fort € [0, T]
and A% := {®, 2} x F2 for ¢ € [0, T]. They prove that the two o-
algebra A} and A% are independent under the probability measure
P

P(ay Nay) = Pay)P(az)

where a1 € Af, 2y € A2 and oy = Ay x £22 for some A; € F;'
and oy = ' x A, for some A; € F2.

A random variable X on (£2, &, &) is said to depend only on
financial risk variables if it is measurable with respect to #;'.
Alternatively, a random variable X on (£2, #, &) is said to depend
only on catastrophic risk variables if it is measurable with respect
to F7.

A stochastic process Y is said to evolve through dependence
only on financial risk variables if Y is adapted to 55'{1. Alternatively,
a stochastic process Y is said to evolve through dependence only
on financial risk variables if Y is adapted to F2.

They also prove that under the assumption that aggregate
consumption depends only on the financial variables, for any
random variable X that depends only on catastrophic risk variables,
EC(X) = EP(X), that is, the aggregate loss process still retains
their original distributional distributions after changing from the
physical probability measure P to the risk-neutral measure Q. And
o-algebra A} and A% are independent under Q (For a detailed
proof, please refer to Cox and Pedersen, 2000).

From their conclusions, we can obtain that under the risk-
neutral pricing measure Q those events that depend only on
financial variables are independent of those events that depend on
catastrophic risk variables.

Therefore, we can derive that the price of a CAT bond paying Z
at maturity at time ¢ is

Ve = E? (Ze‘f‘T “"SPcmT)m)
= £% (eI 5|5 O @Pep(T) | 7)
= Bew(t, T)E" (ZPcar(T)| F0)
= Ber(t, T)E?(Z1{Ly < D} + pZ1{Ly > D}| %)

= Bewr(t, T)(ZP(Ly < D) + pZP(Ly > D))
= Bewr(t, T)Z(F(D) +p x (1 — F(D)))

> AsT)"
= Ber(t, T)Z [p +a-pY e*ST(Sm)F"w)} (44)

n=0
where

F'D) =PrX1+Xo+---+ X, <D) (45)
denote the n-th convolution of F, and the spot interest rate follows

the square-root process of Cox et al. (1985), we have

Ber(t, T) = A(t, T)e BE&Dr
wrer
2ye("*+y>% o2
(k* 4+ y)(erT-D — 1) + 2y
z(eV(T—t) _ 1)
(v + k) T0 —1) + 2y’

y =+ (k)% +202. O

At,T) = {
(46)

B(t,T) =

Appendix B

Proof. Itis easy to verify that the price of a coupon CAT bond with
coupon payments G, to the threshold event 7’ is

T
Ve = B (ze WP (1) 7
— EO (e- i fsdsm) EQ(Plyy(T) | F7)

= Bar(t, T)E" (P (T)| F)
= Ber(t, T)((Z + O)P(Ly < D) +ZP(Ly > D))
= Bar(t, T)((Z + O)P(Ly < D) +Z(1—P(Ly < D)))

= BC[R(t, T)(Z + CP(LT = D))

= (AsD)"
= Ber(t, T) [z +cy e‘*STSF"(D):| (47)
o n!
where
F'(D) =Pr(X; +X; + -+ Xy < D) (48)

denote the n-th convolution of F, and the spot interest rate follows
the square-root process of Cox et al. (1985), we have

Bew(t, T) = A(t, T)e B¢,

T—t 2k*0*
zye(k*+}/)% o2

4+ )@ T — 1) + 2y

2(e7T=D — 1)
B(t,T) = ,
«D (y + k) (™0 — 1) + 2y

y =+ (k"2 +20%. O

A, T) = {
(49)
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