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Introduction

This paper provides baseline seasonality curves for four seasonal natural
catastrophe perils relevant to insurance-linked securities (ILS) and catas-
trophe bond pricing models: U.S. Convective Storm, U.S. Hurricane, Japan
Typhoon, and European Windstorm. The goal is to supply a simple start-
ing point for seasonality adjustments in early-stage modeling and pricing.

The approach uses periodic regression with Fourier functions in a Pois-
son or Negative Binomial Generalized Linear Model (GLM), selecting the
number of harmonics by the Akaike Information Criterion (AIC). Results
are preliminary and intended as an initial baseline.

1 Methodological Overview

For each peril we apply the same framework, with peril-specific datasets and
severity filters. The overall idea of using periodic functions is documented
and has been used, for example, in [1] where the seasonal cycle for mid-
Atlantic storm count (modeled as a Poisson process) is estimated with
Fourier harmonics.

Data preparation Historical records are filtered to retain severe events
(e.g., for U.S. Convective Storm: tornadoes above an EF threshold, thun-
derstorm wind above a speed threshold or percentile, and hail above a size
threshold or percentile). We aggregate across full calendar years to form
daily event counts by day-of-year and remove February 29 so the period
length is T = 365. Exposure per day is equal by construction (full years),
so no offset is required.

Let Yt denote the total number of severe events observed on calendar
day t ∈ {1, . . . , 365}, summed over all years (optionally: normalize within
year and average across years to reduce interannual variability).

Model selection and inference We first fit a Poisson GLM with a
periodic Fourier basis:

Yt ∼ Poisson(µt), logµt = β0 +

K∑
k=1

[
αk cos

(
2πkt

T

)
+ γk sin

(
2πkt

T

)]
,

with T = 365 and K ∈ {1, . . . , 6} chosen by the Akaike Information Cri-
terion (AIC). We cap K ≤ 6 to avoid spurious high-frequency wiggles in
sparse settings. The Fourier basis enforces periodicity and continuity at
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the year boundary. For a given K, the number of estimated regression
coefficients is p = 1 + 2K.

We assess overdispersion using the Pearson chi-square dispersion test
for Poisson GLMs. Compute

X2 =

365∑
t=1

(Yt − µ̂t)
2

µ̂t
, ϕ̂ =

X2

df
, df = 365− p,

and compare X2 to χ2
df . A large ϕ̂ with a small p-value indicates variance

(or mean) misspecification relative to Var(Yt) = µt. As a likelihood check,
we also compare Poisson and Negative Binomial by AIC.

If overdispersion is detected and a Negative Binomial model materially
reduces AIC (counting the dispersion parameter), we replace Poisson with
the NB2 GLM and reselect K within that family:

Yt ∼ NB(µt, α), Var(Yt) = µt + αµ2
t , α ≥ 0,

logµt = β0 +

K∑
k=1

[
αk cos

(
2πkt

T

)
+ γk sin

(
2πkt

T

)]
.

This NB2 specification is likelihood-equivalent to a Poisson–Gamma
mixture with multiplicative heterogeneity and typically downweights peak-
season bins relative to Poisson, improving fit when outbreak clustering in-
flates variance. When comparing AIC, we count α as an additional param-
eter (pNB = 1 + 2K + 1).

Seasonality extraction The pricing seasonality curve is the normalized
mean

pt =
µt∑365

u=1 µu

,

which integrates to one and can be reported daily or aggregated to weeks or
months. Using counts rather than frequencies is convenient for likelihood-
based fitting; both yield the same pt after normalization.

Assumptions and scope The target is the average seasonal distribu-
tion of severe activity, not day-level prediction. Key assumptions: (i) the
seasonal shape is approximately stationary over the analysis window; (ii)
reporting practices are sufficiently stable; and (iii) event dependence af-
fects variance more than the mean seasonal structure. These curves are
best interpreted as priors for seasonality in ILS pricing.
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2 Peril-Specific Results

2.1 U.S. Convective Storm (SCS)

2.1.1 Filters and Data

• Intensity filter: Tornado rating greater than EF2, hail size greater
than 2 inches, and wind speed greater than 75 mph. These thresholds
are based on the classifications of the National Weather Service [2]
and represent strong or severe convective events.

• Historical range: 2007–2024. The starting year reflects the change
in tornado classification methodology (implementation of the En-
hanced Fujita scale) in 2007, ensuring consistency across the dataset.

• Source: NCEI NOAA database.

2.1.2 Seasonality curve

The retained model is the Negative Binomial NB2 with periodic Fourier
functions. The dispersion test rejected the Poisson GLM and the improve-
ment ∆AIC between models is important.

Figure 1: Baseline seasonality curve for U.S. Convective Storm.

It is important to note that the number of Fourier harmonics is not the
same for the two models. As a consequence, the Negative Binomial GLM
seasonality curve is smoother and the slight bumps (in May and August)
are now traded for a more homogeneous peak.
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2.2 U.S. Hurricane

2.2.1 Filters and Data

• Intensity filter: Saffir–Simpson Category 2 or higher (Category 2–
5), based on internal decision to focus on damaging hurricane events.

• Geographical filter: Landfalls or close approaches within a 150 km
buffer around the U.S. coastline.

• Historical range: 1925–2024. Pre-1920 records are excluded due
to increased measurement uncertainty; the 100-year range is rounded
for practicality.

• Source: IBTrACS dataset [3], [4], [8], [9]

2.2.2 Seasonality curve

The retained model is the Poisson with periodic Fourier functions. The
dispersion test showed no evidence of overdispersion and no statistical im-
provement has been observed with the Negative Binomial NB2 GLM. The
retained number of harmonics is K = 2.

Figure 2: Baseline seasonality curve for U.S. Hurricane.
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2.3 Japan Typhoon

2.3.1 Filters and Data

• Intensity filter: JMA Intensity Scale of Typhoon or stronger (Ty-
phoon, Very Strong Typhoon, and Violent Typhoon).

• Geographical filter: Landfalls or close approaches within a 150 km
buffer around Japan.

• Historical range: 1951–2024, beginning with the availability of
JMA best-track data.

• Source: IBTrACS dataset [3], [4], [8], [9]

2.3.2 Seasonality curve

The retained model is the Poisson with periodic Fourier functions. The
dispersion test showed no evidence of overdispersion and no statistical im-
provement has been observed with the Negative Binomial NB2 GLM. The
retained number of harmonics is K = 2.

Figure 3: Baseline seasonality curve for Japan Typhoon.
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2.4 European Windstorm

2.4.1 Filters and Data

• Intensity filter: Wind gusts exceeding 25 m/s over a contiguous land
area greater than 150 km2. The 25 m/s threshold is a commonly used
severe wind benchmark, and the 150 km2 area threshold is supported
by prior research. [5][6]

• Historical range: 1940–2024, encompassing the entire available
dataset.

• Source: Climate Data Store [7]

2.4.2 Seasonality curve

The retained model is the Poisson with periodic Fourier functions. The
dispersion test showed no evidence of overdispersion and no statistical im-
provement has been observed with the Negative Binomial NB2 GLM. The
retained number of harmonics is K = 1.

Figure 4: Baseline seasonality curve for European Windstorm.
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3 Limitations and Next Steps

The baseline omits synoptic and climate covariates and does not model
outbreak dependence explicitly, so pointwise error metrics are modest by
design. This is acceptable for pricing seasonality, where smoothness and
stability are preferred to overfitting. Next steps include testing alternative
frameworks (e.g., GAMs, Bayesian harmonic regression), sensitivity to filter
choices, integration of interannual climate drivers such as ENSO/AMO/PDO,
and benchmarking against catastrophe model seasonal profiles.

Disclaimer

These seasonality curves are provided as a baseline reference. They are
intended for preliminary pricing adjustments and should be refined with
further data, testing, and peer review.
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