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Abstract

Structured Data Folding with Transmutations (SDFT) provides a framework for producing
portable, secure messages enabling facile cryptography transitions indefinitely. As ciphers age and exhibit
fallibility, new ciphers are introduced resulting in a parade of cryptography transitions over time. SDFT
streamlines cipher transitions at the message level for both Data-At-Rest (DAR) and Data-In-Transit
(DIT), unifying these traditionally bifurcated sub-fields of applied cryptography. SDFT advances beyond
concepts of Message Level Security (MLS) by allowing every SDFT message to self-describe and self-
prescribe how the message within was produced from an application memory object. Cipher transitions
are introduced with various levels of urgency by each organization. Custom cryptography
implementations will incur high transition costs due to a shortage of qualified experts. Indifference or
ignorance can lead to catastrophic data breaches as adversaries resort to retrospective decryption attacks.
Even the best cryptography transitions may introduce new flaws into the application, leading to weaker
security than expected. This project researched and integrated several available Python Post-Quantum
Cryptography (PQC) modules into the existing SDFT Python library to handle the latest NIST PQC
standardized and candidate algorithms. The results show how the SDFT framework seamlessly integrates
the newest cryptographic algorithms, while maintaining backwards compatibility with legacy
cryptographic algorithms by introducing a simple, text-based sequence of commands embedded alongside
the message itself using a technique we call data folding. Cryptographic agility, or cryptoagility, at this
message level reveals a new feature in a single communication session, the capability to engage in
negotiation-less cryptographic communications, where each side can use their choice of cryptography to
encrypt their messages. The SDFT framework is a new technical approach to how cryptoagility can be
systematically provided at the lowest layers of data protection in a universal way and presents a strong
candidate for a standard in retail, commercial, and government applications of cryptographic algorithms
and technologies.
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1. Introduction

On August 13, 2024, NIST standardized three Post-Quantum Cryptography (PQC) algorithms [1]
which are resistant to the capabilities of cryptanalytically relevant quantum computers (CRQC).
Sufficiently powerful quantum computers capable of applying Shor’s or Grover’s algorithms to break
today’s best cryptographic algorithms are not yet known to exist but at the current rate of progress, it is
estimated to be a national threat by 2035 prompting the NSA to publish guidelines in the CNSA 2.0
publication [2] for all Defense and Intelligence systems to be PQC compliant by 2035. The White House
NSM-10 [3] directs a whole-of-government and whole-of-society strategy towards effectively protecting
against the CRQC threat. The U.S. Congress passed the Quantum Computing Cybersecurity Preparedness
Act [4] turning the PQC transition effort into law for all Federal systems. Efforts like the NCCoE MPQC
project [5] (National Cybersecurity Center of Excellence Migration to PQC) act as the ringing of the
village bell tower, alerting everyone in the vicinity of the implications of not being prepared for this
transition and providing helpful roadmaps and tools which can form the basis of a systematic action plan.
The transition to PQC is not the first time cryptography transitions have occurred in the field of applied
cryptography; in fact, transitions in cryptographic primitives have occurred consistently over time (i.e.
DES, 3DES, AES, RSA, etc.) [6].

The pace of cryptographic transitions is anticipated to accelerate with the continuous growth of
computational power and the increasing sophistication of cryptographic attack methods. These
advancements will gradually undermine even the most advanced cryptographic systems currently in use.
While the recently standardized Post-Quantum Cryptography (PQC) algorithms represent a significant
step forward, they may not be a permanent solution but part of an ongoing evolution in cryptographic
defenses. As new vulnerabilities emerge, further transitions will inevitably be required.

The prospect of Cryptanalytically Relevant Quantum Computers (CRQCs) sets a clear expiration
date for widely used asymmetric ciphers such as RSA and Elliptic Curve Cryptography (ECC). These
algorithms, which have served as the cornerstone of secure communications for decades, are on the verge
of obsolescence due to the looming threat of CRQC decryption capabilities. This transition could exceed
the scale and complexity of the Y2K challenge from a quarter-century ago, as RSA and ECC are
fundamental to nearly all digital interactions, including secure browsing, e-commerce, national security
communications, banking, and cryptocurrency transactions. NIST states that most systems we have today
are not cryptographically agile and that this transition can take up to a decade or two [7] [8] [9]. There are
several factors complicating this impending transition to PQC:

1. There are not enough applied cryptographers to make all the necessary changes to all the
important systems.

2. There will be many PQC algorithms replacing the two most widely used ciphers: ECC and RSA.
In August 2024, NIST standardized 3 PQC algorithms, with 4 more currently in the evaluation
queue targeting the end of 2025. Further, the NIST has another suite of 14 PQC candidates they
are examining beyond that time frame [10]. The transitions might be more frequent than one
might expect.



DRAFT December 13, 2024

3. Transitions to PQC may come in two distinct forms: Data-At-Rest (DAR) and Data-In-Transit
(DIT). These may take different forms for different systems. Whereas DIT encryption is
ephemeral and can be reset on a per-session basis, DAR presents a more complicated set of
predicaments due to long term storage, archiving, volume of encrypted data, key management,
backwards compatibility, and availability concerns. In short, issues related to DAR requires a
reimagining of how to approach the encryption of data for both DAR and DIT, especially in light
of “store now, decrypt later” type of attacks. An ideal solution is one where encryption can be
applied in a consistent manner for both modes of data.

Our research provides a path to performing a single transition to a framework which supports all
future cryptography transitions as a trivial process by viewing the issue as algorithm normalization and
management rather than manual algorithm transitions. We implemented a proof-of-concept Python library
module to deliver the NIST PQC algorithms in a new secure messaging protocol framework, called
Structured Data Folding with Transmutations (SDFT). SDFT eases the recurring cryptography transition
issues going forward in systems incorporating cryptography. SDFT integration will require one transition
to SDFT; thereon, all future cryptography transitions may be trivial.

2. Innovation: SDFT

eNcrypted Userdata Transit & Storage (NUTS) [11] is an integrated set of technologies
developed by NUTS Technologies Inc. (NUTSTECH) researching and building products for data privacy
and data management. Structured Data Folding with Transmutations (SDFT) is a specialty research
area of NUTSTECH and which enables the construction of secure encapsulations called nut capsules for
NUTS.

Traditionally, applied cryptography has been delivered with a craftsman’s approach: most
cryptographic systems are custom built by experts, and they are generally incompatible with one another
unless great effort is involved. Integrations typically require further custom modifications by experts.
There are standards for message protocols such as HTTPS and SSL/TLS, but there are no universal
standards for encrypted persistent data storage methods and formats, which anticipate future
cryptography transitions on a per-message basis. SDFT drills down cryptoagility down to the per-
message basis to offer maximum flexibility and granularity. Further, there are no known protocols which
can be used for both DAR and DIT in a consistent way.

The SDFT approach is a simple concept to understand once explained. Our initiative and
motivations behind developing SDFT were to advance our data-centric security research by allowing
higher abstractions of applying cryptography to complex secure data structures without being dragged
down by the myriad precise implementation details required in the application of cryptography. A project
like NUTS demanded better ways to package applied cryptography in an organized, modular, and scalable
way for both DAR and DIT.

SDFT was developed using a design thinking methodology [12] in answering the questions: “who
will be using the product?” and “how will this solution impact the user?” Programmers and applied
cryptographers will be using SDFT. SDFT’s impacts are to provide a consistent, repeatable, and scalable
method of applying cryptography on a broad scale, and to rapidly expand the base of developers to
perform cryptography transitions by lowering the developers’ experience baseline significantly without
compromising security and quality.

The features of SDFT are tightly integrated in a comprehensive framework following the
Transmutations Organizing Principles (TOP) [13] to provide streamlining in the application of
cryptography in producing ciphered data. The applied cryptographic field has some efforts at streamlining
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and structuring such as JWK (IETF Java Web Encryption data structures [14]) and others, but the
comprehensiveness and coverage of SDFT technology marks a drastic departure from previous efforts
by balancing freedom of choice of cryptography, ease of application of cryptography, and transitions to
new cryptography. Comprehensiveness [15] and Coverage [16] are the requirements by different authors
for the Next Generation of Security [17]. The proper application of cryptography involves a combination
of knowledge in applied cryptography, in-memory data object designs, and message protocols. The SDFT
framework incorporates all these distinct and highly technical specialties into a single cohesive toolset
thereby filling a growing technological gap that the industry is rapidly becoming aware of called crypto-
agility [18].

2.1.The Assembly Line

Henry Ford did not invent the automobile. Ford’s contribution to automobile production was the
assembly line with interchangeable parts, the clear segmentation of labor and parts assembly, and
eventually the flexibility of the assembly line to produce different variations of the automobile. Prior to
the automobile assembly line, car manufacturers hand-crafted each engine, frame and chassis, and
interchangeability was serendipitous. The state of applied cryptography today sits somewhere between
hand-craftmanship and narrow standardizations of algorithms for DAR and DIT, respectively: applied
cryptography does not have an assembly line for processing data with a series of cryptographic primitives
in a consistent and interchangeable way for both DAR and DIT. SDFT presents the equivalent of an
assembly line for applying cryptographic primitives to application data objects in a portable, independent,
flexible, and unifying manner.

2.2.Parametric Permutations, Dirty Functions, and Data Scoping

Applied cryptographic primitives, especially ciphers, are ‘dirty’ functions requiring a complex set
of parameters to control its behavior and its output. One might consider such particular and peculiar set of
complex parameters required as a sort of ‘baggage’ for each combination of cryptographic function call
and output message produced from it. For example, AES, the standard symmetric cipher, has 3 popular
key sizes (128, 192, or 256 bits), 10 modes of operation, and a host of other controlling parameters such
as IV, block character, block size, etc. [19] [20] [21] [22] These parameters for AES must be stored and
set somewhere for each application implementing AES cryptography. The enormous number of
permutations of the parameter set make it exceedingly tricky to set an industry standard of parametric
settings [18]. Due to this ‘baggage’, AES implementations are commonly plagued by incompatibilities
between vendor systems.

SDFT’s approach allows for all parameter variants of AES (or any other cipher offered in the
SDFT library) providing flexibility and compatibility. To make any two SDFT messages compatible with
one another SDFT proposes a set of well-defined commands called transmutation commands, or
transmutations (TMX) [13], which are sequenced and embedded alongside the output message by
‘folding’ the two data pieces together. The TMX command sequence creates a Transmutation Audit
Record (TAR) to precisely specify the AES symmetric cipher transmutation and selected parameters to
create an encrypted output message. TARs do not contain the encrypting/decrypting key parameter lest it
compromises the encrypted message itself. The output message contains other message related parameters
such as block size, blocking character and IV, what SDFT calls data scoping [13].

Data scoping, or variable scoping for datasets, is a systematic method of embedding message-
level parameters directly within the output message. Data scoping is similar to how modern programming
languages allow functional variable scoping, but it has some significant implications for application
programmers: their applications no longer need to keep track of message level parameters related to
ciphers thereby significantly reducing the onus on the developer and the application. Another implication
is that every SDFT message may embed its own TAR—enabling one half of a dynamic, secure protocol
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without prior negotiations is almost in hand at this point, which allows the receiving side to not know a
priori exactly how the message was processed.

2.3.The Reversibility of Transmutation Commands and Dynamic Protocols

Transmutation commands (TMX commands) are characterized in part by their reversible
properties. A symmetric cipher such as AES-256 may perform two operations: encrypt and decrypt. One
is the reverse of the other assuming the right key and parameters are provided. SDFT defines two modes
of operation, Figure 1: forward and reverse. These mode terms were chosen broadly to apply to more than
symmetric ciphers so that TMX commands can be defined for data fransformation functions as well as
cryptographic functions.

Data Transmuted Data

A4

Transmutation

(Forward Mode)

\ 4

Attributes Attributes

Data Transmuted Data

A

Transmutation

(Reverse Mode)

Attributes < < Attributes

Figure I The two modes of a transmutation command

The reverse of AES-256 encrypt is an AES-256 decrypt. This logic can be applied systematically
to most cryptographic primitives except for one-way functions, such as hashes and digital signatures, in
which case we define their reverse modes as a verification operation. Rather than describe the nuances of
how to analyze different cryptographic primitives to be normalized as a TMX command, we can explore
what a TAR represents. A TAR containing a TMX command indicating AES-256 is sufficient to create an
SDFT message that is encrypted with AES-256 and folded along with its encrypted, data-scoped,
message. The recipient first unfolds the SDFT message at least once to separate the TAR from its output
message, and then processes the TAR in reverse on the output message (while also providing the correct
decrypting key) to produce the original cleartext message.

Sequences of TMX commands are called Transmutation Audit Records (TAR, not to be confused
with the Unix tape archive ‘tar' command). TARs can operate forwardly, whereby each TMX command
in a sequence operates in its forward mode, called a forward traversal of a TAR. Consequently, TARs can
operate in a reverse manner whereby the sequence is reversed and each TMX command operates in its
reverse mode called a reverse traversal of a TAR. Thereby each message has the ability to fully fold
(ravel) and unfold (unravel) itself.

A TAR, Fig. 2, operates on a Single Data Structure called NSstr, and within it is at least one
object to operate on. The structure's object serves as both input and output (similar to the car chassis
moving on an assembly line) for each of the TMX commands in the TAR. For each TMX command that
operates on the object, the object is first input to the TMX command, and then the same object is replaced

6



DRAFT December 13, 2024

by the output of the TMX command which just processed the object. Thereby, the single data structure's
object is continually transmuted by each TMX command during the forward traversal of the TAR.

tar label01

transmutation command 1
transmutation command 2
labeln

transmutation command n

Figure 2: Structure of a Transmutation Audit Record (TAR)

Each TMX command can have input attributes besides the input object and can produce output
attributes alongside the output object. These attributes can vary from encoding types to cryptographic
keys to salt values; for example, in AES there are key sizes, mode of operation, and a host of other
controlling parameters such as IV, block character, block size, etc. Incidentally, the output attributes in
Figure 1 are the very same input attributes for an AES TMX, developers are not typically trained to view
it this way.

TARs make it possible to determine which TMX commands require cryptographic keys, how
many of them, what type, and in which sequence they are needed. Moreover, TARs give us a basis to
provide two convenience features: key stack form validation and the automatic generation of
cryptographic keys, if any are missing. We will delve into API key management in a later section, it is
different from the conventional KMS key management: SDFT API key management is the management
of cryptographic keys within a complex cryptographic function call.

Lastly, the NSstr structure also contains the TAR, which produced the included object.

Reversible computing means different things to different people. It is a recognized phrase referring to
the largest set of concepts related to computing in which backward execution is used [23]. A restricted
form of Reversible Computing is constrained to work on a single data structure and where state transitions
can be sequenced and fully reproduced [24]. The reversible characteristic of a TMX command allows a
TAR to be reversible as well. This results in a message folded by a TAR and further unfolded by the same
TAR in a reverse traversal, Fig. 3. Full reversibility of a TAR can only be maintained as long as there is
no data loss during TMX processing in the object and its attributes.

tar test_a24 tar test_a24
press encode base 64
TAR Reversal

serialize json f dign pkcs1_pss 2048
encode strbin utf_8 ﬁ scipher chacha20 256
scipher chacha20 256 encode strbin utf_8
dign pkcsl_pss 2048 serialize json f
encode base 64 press

Figure 3: TAR reversal illustration

A library of normalized, reversible TMX commands covering serialization, encodings,
compressions (lossless), symmetric ciphers, asymmetric ciphers, digital signatures, locks, and digests
(hashes and keyed hashes) can provide the raw ingredients to allow almost any combination of operations
to produce a bitstream message that is protected or unprotected. Formed into TARs, particularly useful
and well-thought-out sequences may be saved, shared, and injected into any NSstr structure for message
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processing. Since the SDFT message eventually encapsulates the TAR, which created it along with the
processed message, the recipient need not know a priori the precise sequence of operations needed to
recover the encoded message.

A TAR is a narrow implementation of reversible computing [25] confined to data transformation
functions within a limited memory space operating on a single piece of data. Developers composing a
TAR need only construct the forward mode and the reverse is implied and automatic. This reduces the
work of creating a message encryption/decryption process by 50%. Anyone experienced in constructing
both sides of a cryptographic message system has experienced finding bugs in creating mirror operations
on the writer/reader functions. TAR reversibility allows for an automatic dynamic construction of the
reader (reverse mode) based on the construction of the writer (forward mode), a significant technological
advancement in message protocols.

TARs are text-based command sequences, so they can be dynamically changed without custom
programming at runtime; a change of cryptography (transmutation command) no longer requires re-
compiling code and can be introduced in real-time saving much work and time. TARs can be changed on
a per SDFT message basis leading to a true dynamic, secure, negotiation-less protocol. Sensitive
messages can apply more secure TARs at will, such as using multiple AES-256 commands in sequence
with separate keys for each call, or with a future symmetric-512 cipher. If the SDFT library is sufficiently
updated with the latest transmutation commands (i.e. cipher variants), the readers of SDFT messages do
not need to know the method of message creation a priori.

Since TARs can be inspected prior to processing, any system using SDFT messages can automatically
negotiate on which TARs to use thus generalizing the solution of negotiated protocols in a universal way.
A set of pre-defined, pre-selected and approved TARs can be shared between communication partners to
expedite such negotiations automatically. Systems employing dynamic protocols are more compatible
with one another with each operating at their preferred TAR choices or one party insisting on a desired
TAR. Examining a TAR before processing can look for errant or illegal TAR constructs to prevent
abnormal behavior, enhance security and resiliency.

2.4. Data Transformations

Data transformation functions are applied to various application in-memory objects to prepare the
data for cryptographic processing. Until now, no library offers data transformation functions in a
conveniently organized manner that is also normalized alongside cryptographic functions to work
seamlessly as transmutation commands. Our approach creates the equivalent of an ‘assembly line’ for
generating encrypted messages from application objects, greatly simplifying the process of applying
cryptography with all the inherent benefits of an assembly line.

SDFT includes a normalized set of transmutations for such functions as serializers, encoders and
compressions. Thus, a TAR has the capability of describing how to process an in-memory object into an
encrypted message folded along with the TAR that created it from start to finish with a reversibility built-
in so that writing an SDFT message means it can be read just as easily. The use of lossy compressions can
adversely affect the reversibility of a TAR but lossy compressions can be treated as a special type of one-
way function with a null operation in reverse mode.

The components and layers of SDFT are straightforward to describe, the approach is logical, and
each technique is well-known and practiced, however, once put together in the novel way described, some
unexpected ancillary characteristics reveal themselves, leading to surprising and useful features.
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2.5. Key Management in the API

Applying cryptography usually requires the management of cryptographic keys. Key
management, sometimes called public key infrastructure (PKI), requires at a minimum secure key storage,
key generation, key identification, and key distribution. Most publicly available programmatic
cryptographic functions do not automatically generate the keys necessary to operate the ciphering
algorithm it performs. The functions are generally written to accept properly formed keys as parameters.

Key generation is a non-trivial task for a programmer; the right methods and proper key
specifications must be applied in the generation of keys otherwise the full security of the cipher will not
be realized. Further, key management in the scope of feeding a sequence of keys for a sequence of
cryptographic operations is not a simple task and must be done with care. SDFT innovations in API
oriented key generation and management streamlines this process for all programmers.

For example, if a developer calls a cipher, say AES-128, to encrypt a piece of data with the
appropriate parameters without specifying the encrypting key, why does the function not generate a
proper key, perform the operation, and return the encrypted data along with the newly generated key? It is
a simple concept but generally unavailable in common cryptographic libraries thus resulting in further
burdens on the programmer. In SDFT, if an AES transmutation is operated on without any input key, then
a proper one is generated and used in the operation. For a TAR that uses six TMX commands that each
require a key, six properly formed keys are generated, used and returned in a proper sequence along with
the output message.

In SDFT, key generation, key structure validation, key sequencing for functions that perform
multiple cryptographic operations on an input data, are all automated and made convenient for the
developer. The SDFT key management features make it convenient and easy to make use of many keys
and cryptographic operations without getting bogged down in keeping track of the minute but important
details.

To further simplify its applicability for developers, SDFT proposes standardized cryptographic
key structures which act as keys or keyholes: the key structure without a key value is marked as a keyhole
and vice versa, therefore ‘inserting’ a key into a keyhole is simply placing a key value and marking as
such. The SDFT key structure automatically stamps an identifier for each key generated; another simple
yet seldom performed feature by any key creation functions in cryptographic libraries.

Why is this important? The application of cryptography requires many simple steps in a specific
sequence on a piece of data. The accumulation of many simple steps tends to burden the programmer and
may result in steering the programmer to take shortcuts, or make mistakes leading to unsecure data
handling, or make bad application design choices. SDFT, using TARs, compactly combines simple steps
that are necessary to accomplish a series of complex operations, making it easy for the programmer.

We have yet to find any widely available library with the ability to process multiple
cryptographic functions requiring multiple keys in a precise sequence all performed on a single input data.
Any such instances of complex series of cryptographic operations are usually customized programs
requiring a high level of skill and experience. The API Key management built into SDFT helps reduce
developer errors in applying cryptographic operations properly and consistently with less knowledge and
experience required.

2.6. Structured Cryptography
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The initial SDFT US patent US10503933 [13] fully specifies innovations including sequencing of
TMX commands, reversibility of TARs, data scoping, encapsulation of TARs with the output, variable
locks, key management in the API, and automatic key derivations; these and other advanced innovations
in SDFT lower the knowledge level required of application developers to code more securely and keep
data safe.

The normalization of data transformation functions and cryptographic functions allows the
formation of TMX commands. These commands are compact and complete enough to fully describe the
conversion of an arbitrary data structure in an application memory to a transmittable or storable format.
Further, the SDFT internal structures allow for the assembly line-like processing of Transmutation Audit
Records (TAR) in both forward and reverse modes.

Efforts such as JSON Web Key (JWK) [14] structures specify the particular cipher applied to a
payload but are limited to a unitary cipher operation. Extensive examinations and arguments by the
USPTO are available in the patent jacket documenting the innovative nature of SDFT and its significant
differences from prior art and research.

The use of SDFT primitives allows for the systematic application of well-known cryptography
programming techniques in a repeatable fashion by any developer. As such, TMX commands form the
building blocks of more sophisticated applications of cryptography on data due to its abstractions and
handling of all the details. Interpreted languages such as Perl and Python, which were designed to
automate memory management and be more forgiving in type checking, have led to enormous
productivity for an entire generation of application and script programmers. Similarly, by providing
automation and structure to a field where in most cases it is an art form chiseled by craftsmen, SDFT
shows how to build a framework around applied cryptography to address the most common issues by
ordinary developers using structured cryptography.

For example, key encapsulations such as encrypting the encrypting symmetric key with a public-
private key, are ubiquitous in applied cryptography such as in PGP. Using a structured cryptography
approach, the key encapsulation can be expressed as a SDFT call using a TAR with an asymmetric cipher
transmutation on a SDFT key data structure. PGP cannot easily accommodate new ciphers without
serious ramifications to all PGP-compliant applications and pre-existing PGP encrypted data whereas
SDFT’s structured cryptography presents a generalized key encapsulation solution capable of injecting
PQC transmutations in a seamless way to provide security from quantum computing in the future.

Figure 4 illustrates a series of tasks to perform on a Python data object ‘data’ to be transformed
into a string that can be written onto disk. This example uses mostly data transformation functions and
one simple CRC16 hashing function on the dictionary variable ‘data’ (Application Data Object). The
‘Normal Python code’ shows a straightforward sequence of python commands for a writing section and a
reading section comprising 18 lines. The ‘SDFT code using TAR’ sections show the TAR commands that
perform the equivalent tasks and the associated SDFT calls using the TAR definition ‘test_a70’.
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Make data JSON compatible by converting all bytes to strings
Perform JSON serialization on data

Convert JSON string into bytes string

Calculate CRC 16 hash on data

Wrap data and digest into a structure

Write data to file

Tasks to be performed on Data Object
to write a message to disk

data = dict(string = 'oops', bytes = b'234', deeper = ['str2', b'2'])

Application Data Object

### Perform manual data folding (ravel)
import base64, json, binascii
data['bytes'] = base64.b64encode(data['bytes']).decode()
data['deeper'][1] = base64.bbdencode(data['deeper'][1]).decode()
data = json.dumps(data, sort_keys=False)
data = data.encode('utf_8')
digest = binascii.crc_hqgx(data,0).to_bytes(2, byteorder = 'big')
wrap = dict(data=data.decode(), digest=base64.b64encode(digest).decode())
with open("mydata.json", "w") as f:

json.dump(wrap, f)

### Perform manual data unfolding
import base64, json
with open("mydata.json", "r") as f:

wrap = json.load(f)
digest = binascii.crc_hgx(wrap['data'].encode(),0).to_bytes(2, byteorder = 'big')
if digest 1= base64.b64decode(wrap('digest']):

print('error: crc codes do not match')

data = json.loads(wrap['data'])
data['deeper'][1] = base64.b64decode(data['deeper'][1])
data['bytes'] = base64.b64decode(data['bytes'])

Figure 4

Normal Python code

tar test_a70

press

serialize json f
encode strbin utf_8
digest hash crc 16
encode base 64

TAR commands

### Perform ravel via SDFT (data folding)
import NSsdf

ns = NSsdf.NSstring(data)

retobj = ns.ravel(tarName="test_a70")
ns.writeJSONfile("mydata.json")

### Perform unravel via SDFT (data unfolding)

import NSutil, NSsdf

ns = NSsdf.NSstring(NSutil.readJSONfile("mydata.json"))
retobj = ns.unravel()

data = ns.getObij()

SDFT code using TAR

A quick comparison shows that the SDFT python code is only 8 lines, a reduction of 56% in
written code. Note that the ‘SDFT code using TAR’ will work for any valid TAR thereby reusability of
code is instantaneous and consistent. The TAR ‘test a70’ is a human friendly, readable command
sequence, and the TAR is written in one direction, forward, for creating or folding the data. The unfolding
TAR is created automatically and dynamically from the folding TAR thereby reducing the programmer’s

workload by at least 50%.

Symmetric ciphers, asymmetric ciphers and any other cryptographic primitives are available as
TMX commands in Figure 5 along with the current choices of operations. ‘scipher’ performs any of the
three available symmetric ciphers: aes, chacha20, or salsa20. Also in Figure 5 are two sample TARs
showing symmetric cipher and digital signature TMX commands usage. The SDFT code from Figure 1
can operate on these TARs ‘test a20’ or ‘test a24’ without modifying the Python code whereas

significant changes are needed in the ‘Normal Python code’.
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Transmutation Operations tar test_a20
serialize JSON, XML, COM, CORBA, SOAP press
serialize json f
compress zlib, gzip, bz2, Izma encode strbin utf_8
encode base64, base85, utf_8, quopri, binary, over 90 variations of codecs scipher chacha20 256
encode base 64
acipher pkesl_oaep, pkesl_vl 5
scipher aes, chacha20, salsa20

tar test_a24
derive pbkdf2, hkdf, scrypt press
serialize json f

digest hash: crc, md5, shal, sha2, shae3, shake128, shake256, keccak encode strbin utf_8
hmac: mds, shal, sha2 scipher chacha20 256
cmac: aes scipher aes 256 mode=eax

compress zlib
dign pkcsl_pss 2048
encode base 64

dign pkes1_vl1_5, pkesl_pss, dss,

Figure 5 Transmutation commands, operations, and sample TARs

Figure 6 illustrates the processing cycle of SDFT data folding and unfoldings in an application.
The ‘retrieve’ and ‘store’ operations can be interpreted as read/write and receive/send types of operations
for DAR and DIT respectively.

TAR + Data

unravel
(unfold data)

compose/retrieve
keystack

Structured Data

compose/retrieve FoIding with ravel
keys/keystack Transmutations (fold data)
(SDFT)
retrieve store
folded data folded data
store
keys/keystack

Figure 6 The SDFT processing cycle of data folding and unfolding

2.7.Backward & Forward: Time Compatibility of Data & Transitions in
Cryptography

Since SDFT views messages as data that can be in-transit or at-rest with the only variable being
the time ¢ of reading, there are three significant implications of SDFT messages saved onto persistent
stores for a length of time.
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First, SDFT messages with TARs prescribing older, defunct ciphers can still be read by the
current SDFT library and properly processed given the correct cryptographic keys. Application
programming is littered with obsolete file formats and even more so when it involves encrypted file
formats: there is no guarantee that a current application can always read an obsolete file format.
Maintaining older applications for backwards compatibility is expensive, time consuming and inefficient.
SDFT isolates the backwards compatibility at the message level relieving the application of such
responsibilities; therefore, a current SDFT library automatically gives read ability for old and current
SDFT messages.

Second, storing encrypted data via SDFT messages allows for continuous transitions to new
cryptography indefinitely or forward compatibility. Reading older SDFT messages and writing them back
out allows SDFT to replace the older TAR with the latest TAR with updated ciphers to transition it to the
latest cryptography automatically. The only maintenance is the proper updates and upgrades to the SDFT
library to integrate any new cryptography as transmutation commands. This feature can allow the
computing industry to keep up with current cryptography standards on their secured data on a per
message (file or document or transient messages) level thereby providing the flexibility to implement new
cryptography standards in a systematic, prioritized, and/or incremental way. Institutions can integrate
SDFT today using RSA and AES transmutations and be prepared for a seamless transition to PQC
transmutation commands when needed in the near future on their schedule.

Third, many systems require encrypted data in persistent stores to undergo massive one-time
transitions in an expensive and interruptive fashion. Massive transitions are prone to be time consuming,
disruptive, expensive, and error prone. SDFT innovates by allowing its dynamic forward compatibility
feature to drive an incremental process to transition encrypted data in persistent stores in a systematic,
incremental, continuous, and flexible process.

SDFT’s backwards and forward compatibility, or time compatibility, adds a powerful solution
that can anticipate future cryptography transitions indefinitely and one which is well-aligned with the
NCCoE Migration to PQC effort.

2.8. Integrating PQC DSA into the SDFT Python Library

Utilizing the existing SDFT Python module as a starting point, the project analyzed the candidate
PQC algorithms from Round 3 and applied the TOP normalization process for new ciphers to modularize
the PQC algorithms into TMX commands.

The PQC DSA candidates (and eventual standards) presented functional I/O similar to existing
‘dign’ transmutations (digital signature) Figures 7 & 8.

Transmutation operation= keylen= hashtyp= | digestlen= | saltlen= keytyp
dign presl VIS | 11024] 2048]3072] any [160-512] f——o RSA
pkcsl pss digestLen

Figure 7 RSA based digital signature algorithms (dign TMX)

Transmutation | operation= | keylen= hashtyp= digestlen=_| mode= keytyp
[1024|2048|3072] DSA
dign dss sha1l/2 (5) [160-512] [fips-186-3| deterministic-rfc6979]
256 (curve-256) ECC

Figure 8 DSA/ECC based digns
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After mapping out the various parameters, we arrive at these new dign transmutation commands
for the PQC algorithms, Figure 9,

transmutation | operation keytyp # key types | variant | hashtyp trait library
44
o pgcrypto
ml_dsa dilithium 3 65 any -
87 quantcrypt
512 pqcrypto
fn_dsa falcon 2 any -
1024 [quanterypt | pgcrypto]
fast
sha2
small
128
fast
shake
dign small
fast
sha2 pqcrypto
small
slh_dsa sphincsp 3 192
fast
shake
small
fast
sha2
small
256
fast
shake [quantcrypt | pgcrypto]
small

Figure 9 PQC DSA normalized as TMX dign

In August, the NIST published CRYSTALS-DILITHIUM and SPHINCS+ as FIPS-204 (ML-
DSA) [26] and FIPS-205 (SLH-DSA) [27] PQC DSA standards respectively. Falcon is slated to be
standardized next.

Note that the TMX command is a dign and the operation type varies. ‘keytyp’ indicates the type
of key that the particular ‘operation’ requires. Listed are also variant options suggested by NIST for
varying security levels. ‘trait’ is a parameter to specify a further variation of the PQC algorithm. Finally,
there is a choice of two Python modules offering test implementations of the PQC DSA algorithms. We
did eventually added a third Python module called ‘libogs’ [28] [29] described later in this report.

These 16 PQC DSA algorithms (variants) are the released standards and one candidate algorithm
so far to replace the ECC and RSA based DSAs. There are many choices providing varying performance
and resource requirements for each algorithm. More information on each can be found in the FIPS
documents and candidate algorithms write-ups on the NIST PQC website [30].

Accommodating the PQC DSA fit very well into the current dign TMX I/O parameters and it was
relatively straightforward to integrate them into the SDFT library. Tests were created to automatically run
including key generation, signature, and authentication unit tests on various data sets, each library and
every variant. A typical run result in Figure 10,
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C:\GitNUTS\Nuts\NUTapi\beta>test_SDFT.py -t 8
SDFT loadTARs from Internal
TARS loaded 63 tars.
Loaded NSutil from C:\GitNUTS\Nuts\NUTapi\beta\NSutil.py
Loaded NSsdf from C:\GitNUTS\Nuts\NUTapi\beta\NSsdf.py
START NSsdf tests 2024-10-16 08:17:18.876721
Running testGlobalsLoading
testGlobalsLoading If you see duplicate Loading messages it failed.
Testing PQC digns test# 8
Tar being tested: test_a23
['press',
'serialize json f',
‘encode strbin utf_8',
'scipher chacha20 256',
'dign dss 1024 hashtyp=sha2 digestlen=256",
‘encode base 64']
Running tar cmd [|dign ml_dsa variant=u4 ]

tar teSt_a23 Running tar cmd [|dign
Running tar cmd [|dign
pre?s B ) Running tar cmd [|dign
serialize json f Running tar cmd [|dign
ST Running tar cmd [|dign fn_
encode st r'b'l n ut'F_S Running tar cmd [|dign _ variant=128
. Running tar cmd [|dign _ variant=128
SC1 phe r ChachaZO 256 Running tar cmd [|dign variant=192
- - _ Running tar cmd [|dign variant=192
d-l gn m-l —dsa vari ant_44 T Running tar cmd [|dign variant=256

Running tar cmd [|dign variant=256 hashtyp=shake trait=fast ]
enCOde base 64 Running tar cmd [|dign variant=256 hashtyp=shake trait=fast library=quantcrypt |
Running tar cmd [|dign variant=128 hashtyp=sha2 trait=small ]
Running tar cmd [|dign variant=128 hashtyp=shake trait=small ]
Running tar cmd [|dign variant=192 hashtyp=sha2 trait=small ]
Running tar cmd [|dign variant=192 hashtyp=shake trait=small ]
Running tar cmd [|dign variant=256 hashtyj a2 trait=small ]
Running tar cmd [|dign variant=256 hashtyp=shake trait=small library=pqcrypto ]
Running tar cmd [|dign _ variant=256 hashtyp=shake trait=small library=quantcrypt|]
SUCCESS 600 testDignPQC test_a23
SUCCESS testLooper
SUCCESS on all 600 tests.

STOP NSsdf tests 202u4-10-16 08:24:39.1068U3
otal proce 1 ine 8.140 e

Figure 10 PQC DSA test run log using test TAR.

In Figure 10, the TAR named ‘test a23’ serializes an input data structure into JSON, encodes it
into a binary string, perform a ChaCha20 symmetric encryption on the binary string, creates a digital
signature using a PQC DSA variant algorithm, and then encodes the resulting output data structure into
base64. The output of an SDFT ‘ravel’ (fold) call is an NSstr data structure where a copy of the TAR is
folded alongside the digital signature, and the encrypted data string. The NSstr structure is serializable as
JSON for storage on a disk or transmission across the wire.

In effect, the SDFT NSstr message is a self-describing, self-prescribing message due to having
folded the TAR instructions which created it. Obviously, no keys are folded within it since that would be
defeating the purpose of securing the message. A stack of keys is returned as part of the ravel call which
in this case will include a 256 bit symmetric key for ChaCha20 and then a ML-DSA-44 PQC DSA key.
Whether or not these keys are generated depends on whether the initial ‘ravel’ call was done with an input
key stack containing either one of the keys or both or none. The SDFT ravel call is designed to assess
whether any of the required keys need to be generated, whether keys provided have the right form and
part (in regards to asymmetric keys, the call determines whether the correct key part has been presented),
and to sequence the keys within the key stack in the order they are needed by the TAR sequence.

In the testing, TAR test a23 is an array of text strings where only the 6™ line, “dign ml_dsa
variant=44”, is replaced by the PQC DSA variant desired within the testing loop (indicated by the green
outline). Therefore, the change of cryptography is dynamic and requires no coding at all within an
application but rather by changing a text-based TAR sequence which is eventually folded with the
message produced.

Each test runs through an “unravel’ call which reverses the process of the ravel call. In the case of
a TAR test_a23: decode the base64 strings in NSstr into binary strings, perform a MS-DSA-44 PQC DSA
Verification on the digital signature string within and against the encrypted message, upon successful
verification perform a decryption using ChaCha20 on the encrypted message, convert the binary message
into an utf 8 string, deserialize the message from JSON into a Python structure (array, variable, string,
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dictionary, etc.), convert encoded ‘bytes’ strings into ‘bytes’ Python strings (press transmutation in
Python), and then return an NSstr data structure.

As easily seen, this sequence of processing of an unravel call is basically following the TAR
test_a23 backwards, performing the defined reverse operation of each TMX command producing the
original data in the structure it was provided to in the original ravel call. Obviously, the unravel call
expects a proper key stack populated with the exact keys needed in the correct forward TAR sequence. In
the case of a dign transmutation like ML-DSA-44, the call expects to have the private part of the
asymmetric key set when doing a forward traversal of the TAR. Any verifiable failures will result in
raising an error and the termination of the unravel call. For this particular case, it can happen during the
dign verify. Since ChaCha20 does not have a built-in data integrity feature, the dign will have to provide
that capability during the TAR processing; hence the compactness of the TAR allows the application of
logical cryptographic operations in a sequence that is commonly used.

All parameters and attributes necessary for executing the ravel/unravel process are embedded
within the NSstr data structure using data scoping. This approach abstracts away cumbersome cipher
parameter management from the application code, keeping it clean and straightforward. Moreover,
because all cryptographic parameters are folded into the message, any receiving or reading program can
process the message correctly—provided it can supply the necessary keys for the unravel call.

2.9.Integrating PQC KEM (Key Encapsulation Mechanism)

Following the NIST guidelines in the FIPS-203 standard ( [31] pg. 15 section 3.3) for
CRYSTALS-KYBER, the K-PKE component is not approved for independent use as a public key
encryption scheme. The ML-KEM standard has three algorithms: ML-KEM.KeyGen(), ML-
KEM.Encaps, and ML-KEM.Decaps. Figure 11 illustrates the workflow for these algorithms to establish
a shared secret (a 256 bit symmetric key) between two participants, Alice and Bob:

PQC KEM Calling Sequence

Alice Bob

Generate public, private key pair
Send public key part to Bob

{keygen() -+ U,R}

Receive public key part from Alice
Encapsulate shared secret to ciphertext
Send ciphertext to Alice

{encaps(U) + c.ss}

Receive ciphertext from Bob
Decapsulate ciphertext to get shared secret
Encrypt message using shared secret
Send encrypted message to Bob 9.
10. Receive encrypted message from Alice
{decrypt(m,ss) # m;} 1l. Decrypt encrypted message using shared secret
12. Check sent and received messages are identical {m,=m,}

{decaps(R.c)  ss}
{encrypt(m,, ss) # m.}

O N W~

Figure 11 Calling sequence for PQC KEM algorithm. Also the test in the SDFT KEM runs.
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The KEM forces a specific sequence to establish the shared secret, ss, between Alice and Bob. By
utilizing the three algorithms of ML-KEM in the sample sequence above, Alice and Bob will be able to
communicate using some symmetric cipher taking a 256 bit key, the shared secret ss.

The acipher transmutation (for asymmetric cipher, Figure 12) operations such as RSA operated
closer to the K-PKE component level algorithm and was thus characterized to be used as a public key
encryption scheme where one can directly encrypt a symmetric key and then decrypt it.

Transmutation | operation= keylen= hashtyp= digestlen= e= keytyp
kesl hal/2/3 (9 160|224]256|384|512 65537
:kzl-;’;e: [1024]2048|3072] [Sh2l/2/3(9) | [160|224]256|384|512] ~ RSA

acipher

Figure 12 Asymmetric cipher TMX, acipher, for RSA

Since the FIPS-203 standard only allows using the KEM level algorithms KeyGen, Encaps and
Decaps, our TOP analysis pointed to requiring a new transmutation we will call akem for asymmetric
KEM. We normalized Kyber and 3 candidate KEMs as shown in Figure 13:

transmutation operation keytyp # key types variant trait library
512
[ovac | pgcerypto]
ml_kem kyber 3 768
1024 [quanterypt | pygc |
pgcrypto]
3114
bike _kem bike 3 6198 - N/A
10276
null
348864
f
akem null
460896
f
null
cmc_kem classicmc 5 6688128 pgcrypto
f
null
6960119
f
null
8192128
f
128
hac_kem hac 3 192 - N/A
256

Figure 13 Asymmetric KEM TMX, akem, for PQC algorithms normalized.
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Initially we did not find any available Python PQC implementation for bike and hqc, but later we
did find one for hqe in the libogs module.

Figure 13 shows that the replacement for RSA/ECC public key encryption schemes can come in 4
varieties with 19 variants. Quite a choice to make. Some of the key sizes for Classic-McEliece can grow
to well over 1MDb in size and there are performance considerations for processing such algorithms. Within
the SDFT library, those considerations are left up to the user/application to constrain if necessary. SDFT
allows any size keys using its Key Interchange Specification Structure (KISS) [13] which can act as both
a key and a keyhole. In fact, during this PQC integration into SDFT, the only changes made to the key
storage and manipulation of KISS constructs was to completely separate the operational relationship
between private and public keys when using PQC. More specifically, in RSA, it is common to just keep
the private key part because the public key part can be quickly derived from the private key part. In PQC,
there is no equivalent general rule of that nature concerning the relationship between public and private
key parts so none was made nor assumed. In terms of key storage and key manipulations, the existing
SDFT code required no modifications to accommodate PQC keys.

SDFT akem Call Steps and Processes

Input =———w—p  Output
Step Mode Operation Description
keystack obj keystack obj
Alice TX, | forward keygen none none_ﬁ,R ns(Uyss) Create key pair, send U to RX
Bob RX, reverse blankyss ns(UK|SS)4//(_,—— Uiss Convert received U into kiss key
Bob RX, forward U €=~ none U@C ns(Cyss) fCreate secret with U, send C to TX
Alice TX, reverse UR ns(CKBS)AW U,R@C ‘ Recover S from received C
Nut Access TXs forward UR C UR,S,C [ ns(URSCyss) Recover § from given C
Control TXg forward encaps UR none UR,S,C ns(Cyss) Create secret with U

TX is transmitter

RX is receiver

Processing is determined by conditions.
Transmittable SDFT message: ns(message)

Figure 14 A TMX normalized calling sequence for an akem TMX.

Following the TOP methodology, we transformed the Alice-Bob KEM sequence into a
normalized transmutation form shown in Figure 14. The notation in use: U, public key part; R, private
key part; S, shared secret; C, ciphertext (encapsulated encrypted S); TX, transmit; RX, receive; ns(),
NSstr structure; KISS, Key Interchange Specification Structure.

The newly formed akem transmutation can now be used to implement the above call steps and
processes and then use the shared secret in a message encryption call to test all the variants of PQC KEM
algorithms we found in Python modules in Figure 15.
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C:\GitNUTS\Nuts\NUTapi\beta>test_SDFT.py -t 14

SDFT loadTARs from Internal

TARS loaded 63 tars.

Loaded NSutil from C:\GitNUTS\Nuts\NUTapi\beta\NSutil.py
Loaded NSsdf from C:\GitNUTS\Nuts\NUTapi\beta\NSsdf.py

START NSsdf tests 2020-10-16 08:16:28.834199

Running testGlobalsLoading

testGlobalsLoading If you see duplicate Loading messages it failed.
Testing PQC kem test# 14

Tar being tested: test_alll

['akem ml_kem variant=1024', 'encode base 64']

Running tar cmd [| akem ml_kem variant=512 Llibrary=pqcrypto |
Running tar cmd [} akem ml_kem variant=768 library=pqcrypto 1]
Running tar cmd [| akem ml_kem variant=1024 library=pqcrypto ]
Running tar cmd [| akem ml_kem variant=512 librar

Running tar cmd [| akem ml_kem variant=768 libra

Running tar cmd [| akem ml_kem
tar teSt_alll Running tar cmd [| akem ml_kem
- - Running tar cmd [} akem cmc_kem
akem m1—kem Var1ant_1024_—=:: Running tar cmd [| akem cmc_kem variant=3u8864 trait=f ]
encode base 64 Running tar cmd [| akem variant=460896 ]
Running tar cmd [ akem variant=460896 trait=f ]

Running tar cmd [ akem

Running tar cmd [} akem ri 6688128 trait=f ]
Running tar cmd [|akem ri 60119 ]

Running tar cmd [} akem ri 60119 trait=f ]
Running tar cmd [| akem ri 92128 ]

Running tar cmd [} akem L variant=8192128 trait=f ]
SUCCESS 238 testAkem test_alll

SUCCESS testLooper

SUCCESS on all 238 tests.

STOP NSsdf tests 202u-10-16 08:16:36.791077

Total process run time 3.78125 secs

tar test_a20

press

TAR to test shared secret | serialize json f
encode strbin utf_8
scipher chacha20 256
encode base 64

Figure 15 PQC KEM test run log using test TAR.

For steps 1-4 (TX,RX,RX,TX) in Figure 14, the test uses TAR ‘test_alll’ only, Figure 15. The
‘mode’ and the ‘input’ determine the operation to perform using the akem transmutation. Once the shared
secret S is established, TAR test a20 is used with S to encrypt and then decrypt an arbitrary message. In
this particular case, verification is done by comparing the original message vs. the decrypted message
rather than using a digest or dign transmutation.

Overall, the successful integration of the PQC KEMs and DSAs into SDFT shows that the
application of new cryptography can be made modular, dynamic, compact, and portable. Any SDFT
message can change its cipher, any SDFT stored message can be read and rewritten with updated ciphers.
An updated list of transmutation commands after integrating PQC algoritms are presentd in Figure 16.
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Transmutation

Operations

serialize

JSON, XML, COM, CORBA, SOAP

compress

zlib, gzip, bz2, Izma

encode

base64, base85, utf_8, quopri, binary, over 90 variations of codecs

acipher

RSA: pkcsl_oaep, pkcsl_vl 5

scipher

aes, chacha20, salsa20

derive

digest

hmac: md5, shal, sha2
cmac: aes

dign

RSA: pkes1_v1_5, pkesl_pss
DSA/ECC: dss

Figure 16 TMX amended to include new PQC TMX.

2.10. A test of integration: libogs

As a test to gauge SDFT to integrate any new PQC Python module or library, we found a module
called ‘libogs’ built upon from Open Quantum Safe (libogs | Open Quantum Safe) C library and ported to
Python as a libogs Python module [28]. The libogs module was a nice package where it included most of

the PQC algorighms we integrated already as shown in Figure 17.
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SDFT parameter "library="
Function | Algorithm | Variant | quantcrypt pyqc libogs pqcrypto
512 X X X
kyber 768 X X X
1024 X X X X
bike 3114
6198
348864 X X
= | 460896 X X
o | E|6688128 x x
g | 26960119
KEM = X X
g 8192128 X X
& 348864 x x
& |, | 460896 X X
e ‘E 6688128 X X
6960119 X X
8192128 X X
128 *
hqc 192 *
256 *
a4 x X
dilithium 65 X X
87 X X
512 X X
falcon
1024 X X X
M 128 X X
S| 192 X x
sl ] 256 X X X
DSA = 128 x X
o~
+ _,;: 192 X X
g 256 X X
= 128 x X
& % 192
-|£ * *
= 256 X X X
B[] 128 x X
£ 192 X X
[}
256 X X

Figure 17 TMX commands amended to include libogs PQC algorithms.

The libogs module also provided an implementation of the hqc KEM algorithm which produces
512 bit symmetric keys. For our testing, the 512 bit string was reduced to 256 bits to allow ease of use in
the ChaCha20 cipher.

We began timing from the downloading of libogs Python module, following the instructions for
compiling it for Python installation which includes making the C library components, testing the Python
module installation using their test code, figuring out the peculiarities of calling sequences for the libogs
calls, then integrating it into SDFT, adding to the SDFT PQC test cases, verifying the tests were running
properly, and running the full suite of tests. This took 5 hours where about 2 hours were spent on non-
SDFT integration tasks such as installing, compiling and figuring out the libogs API. In all, it took less
than 3 hours to integrate 33 PQC variant algorithms into SDFT and have it fully tested. We can conclude
that the integration capability for new PQC algorithms into SDFT is efficient and cost effective.

Our experiment with integrating libogs requires an examination of the API presented because we
were surprised at the variability of API presentations even within the 4 Python modules we integrated.
Some presented class libraries, others just required module imports. NIST recommended API forms were
inconsistently implemented such as switching around the arguments in a call. In one module, binary
strings were returned as an array of integers. Some objects (cipher class instantiations) required presetting
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keys before a call, some did not. Therefore, after just working with a few libraries, even a well defined
API guidance provided by NIST resulted in unexpected variations of interpretation. For PQC standards,
there are very few parameters to choose for a given algorithm (unlike AES), but it still resulted in many
forms and styles of implementation.

These characteristics of SDFT messages allow for setting up dynamic protocols where two
communicating parties can change cryptography at will during the same session. Documents and data
stored onto persistent media as SDFT folded messages can be systematically and incrementally updated in
cryptography at next touch and/or on a prioritized basis without any system access down times. This is a
significant advantage to have when considering large repositories of encrypted unstructured data. SDFT
sets the foundations of providing a consistent method of processing data for both Data-At-Rest and Data-
In-Transit, something that has been lacking in applied cryptography. The use of TARs provids a one step
process for transforming an application data structure to a storable/transmissible message. By using well
designed TARs, a larger group of developers can apply consistent security to their data without the
requisite experience and knowledge requirements of conventional methods. SDFT TARs are written in
one direction and the reverse is implied: this capability can reduce potential errors in coding by 50% to
start.

2.11. Conclusion

Once SDFT is integrated into a system, that system gains the advantage of future proofing from
any change of cryptography that can be normalized into the SDFT library using the TOP methodology.
From an efficiency and cost perspective, SDFT can deliver significant advantages at scale indefinitely.

For these reasons, we believe that SDFT may present an opportunity to set a standard for
applying cryptography at the message level in a universal way for both DAR and DIT.
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3. Addendum

3.1. Applicability of SDFT: The Internet, Blockchain and Data-Centric
Security

The applicability of SDFT to secure data communication and secure data storage is
straightforward given the inherent benefits outlined in this report. This section presents a use case for how
SDFT can help (1) blockchain, and followed by a brief introduction to the initial motivation for
developing SDFT, (2) data-centric security.

3.2. Qryptosaurus: A Blockchain Extinction-Level Event

The last 15 years have witnessed a dramatic rise of digital assets in the form of cryptocurrencies
and NFTs. In a cryptocurrency such as Bitcoin, it is the cryptography which maintains and secures the
Bitcoin for the coin owner. The original paper for Bitcoin [32] does not specify a particular digital
signature, however, the Bitcoin codebase [33] and wiki [34] specify Elliptic Curve Digital Signature
Algorithm (ECDSA). In essence, a cryptocoin provides the most direct relationship between monetary
value and the application of a cryptographic algorithm. With the cryptocurrency asset base at over 3
trillion USD and being signaled as a priority of the incoming US Administration, the securing of
blockchain networks from CRQC will become increasingly critical to the blockchain industry.

During our work on the NIST grant to integrate PQC into the SDFT framework, it became
evident that quantum computers will pose an Extinction-Level Event (ELE) threat to blockchain systems.
Current asymmetric algorithms like RSA and Elliptic Curve Cryptography (ECC), used in Bitcoin, which
underpin blockchain security, are particularly vulnerable. A sufficiently powerful quantum computer
could break these cryptographic algorithms, potentially leading to catastrophic consequences for the
blockchain industry (including cryptocoins), including both permissioned and permission-less networks.

3.2.1. Blockchain’s Dependence on ECC

Most, if not all, blockchains rely on ECC (ECDSA to be more exact) to secure transaction
validations using digital signatures. This implies that a CRQC can derive the private key of a blockchain
transaction from its digital signature and/or the public key: this is equivalent to becoming the owner of the
particular cryptocoin in question. Cold wallets are ineffective for this attack vector. With the private key,
an attacker can spend or transfer the cryptocoin at will and there will be nothing the real cryptocoin owner
can do about it. Whether the blockchain memorializes authenticated cryptocoin transactions, NFTSs, or any
other digital asset, the vulnerability is the same if the primary security protecting the asset is a digital
signature that is not PQC.

3.2.2. Challenges in Cryptographic Transitions

3.2.2.1. Permissioned Blockchains

Permissioned blockchains—those with centralized governance—are relatively better equipped to
handle cryptographic transitions. Examples include:
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e Central Bank Digital Currencies (CBDCs): Being developed by all G20 nations to modernize
payment systems.

e Digital Asset Platforms: Managed by entities like DTCC for secure handling of financial
instruments.

e Private Ecosystems: Such as Hedera Hashgraph and JPMorgan, which are used for enterprise-
level applications.

In these cases, each entity acting as a central authority can enforce cryptographic updates on a
defined timeline, albeit with significant costs and operational disruptions. Integrating the SDFT API into
such systems can simplify the initial transition to PQC while ensuring future-proof adaptability. SDFT
provides the flexibility to accommodate new cryptographic standards without requiring extensive
overhauls repeatedly and in an incremental fashion.

3.2.2.2. Permission-less Blockchains

Permission-less blockchains, such as Bitcoin and Ethereum, operate without a central authority in
a consensus protocol, making coordinated cryptographic transitions far more complex. This lack of
centralized control, which is a core feature of these networks, complicates efforts to adopt quantum-safe
algorithms in an orderly and uniform manner.

When Bitcoin and Ethereum were initially developed, ECC and RSA were the only practical
options for digital signatures. As a result, their respective codebases are rigid and lack inherent flexibility
to support alternative cryptographic methods. For these systems, cryptoagility—the ability to adapt
cryptography dynamically—is not just beneficial but essential.

As we are still living through a quarter century of transitioning from IPv4 to IPv6, for similar
reasons, blockchains will suffer the same painful process of realizing the cost of making a design choice
based on the best estimates of security at the time. The main difference between the two scenarios is that
IPv6 transitions do not secure anything and do not have a ticking countdown clock with an undefined
wake-up time.

3.2.3. SDFT’s Cryptoagility: A Flexible Solution

SDFT offers a robust solution to the challenges posed by quantum threats by enabling blockchain
systems to dynamically integrate and transition between cryptographic algorithms. Its core capabilities
include:

1. Dynamic Algorithm Selection: SDFT allows each transaction to specify its cryptographic
algorithm, embedding these details within the transaction itself.

2. Self-Describing Transactions: Transactions become self-describing and self-prescribing, with
all necessary cryptographic parameters folded into the SDFT message.

3. Universal Compatibility: Node processors equipped with SDFT can process transactions
regardless of the chosen cryptographic algorithm, ensuring seamless interoperability.

For permission-less blockchains, this flexibility empowers users to select the level of
cryptographic protection they desire for their transactions on their schedule. Coin owners can dynamically
choose PQC algorithms, ensuring their assets remain secure without disrupting the broader network.
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3.2.4. Representation of Data-At-Rest and Data-In-Transit

SDFT also provides a consistent framework for representing blockchain transactions across their
lifecycle:

e Data-At-Rest (DAR): When a transaction is created and stored in a wallet, it is considered DAR.

e Data-In-Transit (DIT): When the transaction is transmitted to a node for validation, it transitions
to DIT.

e Data-At-Rest (DAR): Once the transaction is added to the blockchain ledger, it returns to DAR.

By embedding cryptographic parameters directly into the transaction using SDFT, this transaction
lifecycle can be managed securely and consistently, without requiring external transitions. SDFT ensures
that transactions remain quantum-resistant throughout their journey, safeguarding both individual assets
and network integrity.

3.2.5. Future-Proofing Blockchain Systems

The blockchain industry faces significant risks from cryptographic transitions, particularly as
quantum threats loom. The CNSA 2.0 timeline published by the NSA targets the Federal Government to
transition to PQC by 2033 or earlier [2] which is only 8 years away. SDFT mitigates these risks by
enabling:

e Permissioned Blockchains to transition securely to PQC standards with minimal disruption.
e Permission-less Blockchains to adopt cryptoagility, allowing users to dynamically select and
implement cryptographic protections when so desired.

SDFT offers an innovative approach to securing blockchain transactions, positioning itself as a
critical solution to the evolving landscape of cryptographic threats. By unifying cryptographic processes
and providing flexibility, SDFT ensures the long-term viability of blockchain systems in a post-quantum
world.

One of'its core strengths is its ability to manage Data-At-Rest (DAR) and Data-In-Transit (DIT)
in a consistent and unified manner. For example, a transaction begins as DAR when created and stored in
a wallet. It transitions to DIT when transmitted to a node for validation and returns to DAR once added to
the blockchain ledger. This seamless unaltered representation across the transaction life-cycle fortifies
security at every stage while removing unnecessary vulnerability surfaces.

Moreover, SDFT empowers digital asset owners by allowing them to customize the level of
cryptographic protection for their digital assets. This combination of robust security against quantum
threats and implementation flexibility makes SDFT a transformative framework for safeguarding
blockchain systems.

By addressing the challenges of post-quantum cryptography and offering a forward-compatible
solution, SDFT not only secures current systems but also prepares them for the future, ensuring the
enduring integrity of blockchain networks for the foreseeable future.
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3.3.Data-Centric Security

3.3.1. NUTS needed SDFT

SDFT was not conjured out of thin air. It was needed in the research and development of the
NUTS Ecosystem and specifically the nut capsule, a secure encapsulation for data with unique
capabilities. Originally, two or three iterations of the NUT API were written in Python. But it became
quickly obvious that choices had to be made in selecting various cryptographic algorithms and their
associated parameters for the API. The questions became very clear: what if we made a weak choice?
What if a different user wanted something else? What about the old nut capsule on disk with old choices?
Does that mean we have to maintain different versions of the read/write routines? Then, we encountered
the classic problem of the code being intertwined with the choice of cryptography and parameters.

One of the reasons why applied cryptography is hard to abstract out to higher levels of design is
that the details drag you down to making difficult decisions which inevitably is expressed in ways that
limit the flexibility of the codebase and encrypted data formats. Thus, SDFT was created out of the need
to allow abstractions using cryptographic methods and make the codebase and data independent of the
cryptography choices as much as possible. This focus on allowing abstractions resulted in what SDFT
looks like today.

3.3.2. NUTS: What is Data-to-Data communications?

Thus far, the development of the Internet has been about machine-to-machine communications.
The Next Generation Internet will be about data-to-data communications.

NUTS focuses on these goals: how to manage secured data throughout its lifecycle automatically
with minimal administrative overhead; and how to allow data to communicate with each other.

IP addresses, MAC addresses, ports, process IDs: these are all parts of the current Internet to
identify a particular process running a specific application allowing connections from a different
application running on a different process on a different port. But it stops there, application-to-application
or machine-to-machine, there’s not that much difference. Data-centric approaches have various meanings
from different studies (ACDC [35], TDF/ZTDF [36]) and different vendors such as Virtru [37] and
Seclore [38]. Data-centric security approaches also present a cacophony of definitions and sometimes
called Zero Trust Data.

NUTS, or eNcrypted Userdata Transit & Storage or NUTS [11], envisions and enacts a digital
environment where data can,

e Protect itself

e Identify itself

e Recognize its owner

e Converse with itself and other data

o Ask for authenticated services to be performed on itself
e Replicate itself

e Heal itself

e Know its provenance and history

e Preserve itself
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e Realize when tampered with
e Manage itself
e Plan a future for itself

The characteristics listed above are derived from a study of viewing DNA as a data model and
applying its operating principles upon digital data. NUTS implements such an ecosystem where security
is NOT an afterthought but integrated at the very THING that all systems want to protect, access to data.

In NUTS, a secure data encapsulation called a nut capsule is created from a complex data
structure where many sub parts are created from SDFT messages. A nut capsule is endowed with an
independently created identifier called a NutID at creation. The security layers of the nut capsule present
novel portable cryptographic technical controls to give fine grain access controls back to the data owner.

The NUTS Ecosystem enables unlimited data sizes, location independence, security portability
(think BYOS: “bring your own security”), and data portability. And, of course, a nut capsule inherits all
the capabilities of SDFT messages such as easy transitions of cryptography and unified DAR and DIT.
We found that building entire ecosystems out of nut capsules allows the security of the nut capsule to
percolate to higher layers of the system, we call this fractal security.

Identifiers have been around for a long time. What’s interesting is that most identifiers are doled
out from a central authority primarily for uniqueness, control, and de-anonymization. The NUTS data-
centric model flips that on its head to allow independent user devices to come up with NutIDs with large
enough entropy that collisions are minimized. No other system we know of allows that level of specificity
to a piece of data that a single user might create using their own laptop. But this type of anonymized and
random identifier is produced by DNA every day, there is no registry in Nature, and theoretically, every
person who has ever been born could be identified by their DNA fingerprint. We opted to not
philosophize on why Nature creates unique identifiers, but to assume that an ID is a significant factor in
its data model.

The current rage in the cybersecurity industry is about Zero Trust Identity Access Management.
This is a narrow-focused implementation of data-centricity in only trying to map authorized accesses to
digital assets by identified and authenticated users. A user is represented as identifiable data in any Zero
Trust IAM system. Extrapolated further, a piece of data can be represented as identifiable data in a data-
centric system. The additional condition of data-centric security requires the identifiable data to be
represented in a secure encapsulation such as a nut capsule.

The ability to identify a user’s one piece of data on any connected storage anywhere in the world
is a unique proposition when coupled with security that only allows the user to access the data and send
messages to the data in order to manipulate it. This ‘data’ can be anything, scripts, documents, databases,
applications, images, credentials, LLMs, configurations, [oT devices, printers, systems, memory,
networks, satellites, data streams, sensors, etc. NUTS allows data to be acted upon directly in an
authenticated manner no matter where it is stored. We have found this paradigm shift of directly
communicating with data having profound implications on how systems can be designed to be inherently
secure and ultimately provide more utility for the user.

For example, the NutManager, a user facing interface to the NUTS Ecosystem, implements a
simple nut-based chat session where a single chatnut is created and shared (via a Data Defined Network)
amongst the participants and the payload is a single line of text. Since a nut capsule is designed to carry a
configurable amount of revision history of the payload, the revision history turns out to be the actual chat
session. Adding to the revision history just requires a group member to modify the payload and the NUTS

27



DRAFT December 13, 2024

Ecosystem ‘sends a message’ to the chatnut to synchronize the change in each copy of the chatnut sitting
on each members’ laptops. In the prototype nutchat implementation, chatnuts are transmitted in whole
since they are small in size. Each chatnut is eventually made consistent by each group member when
received. This is an implementation of generalized eventual consistency at the object level with choice of
collision algorithm per payload type with full security. We do not know of any other system with this
combination of capabilities.

Essentially, the nutchat provides end-to-end encrypted chat sessions with full encrypted chat
histories on each members’ devices with unlimited participants, all without a dedicated chat server sitting
in the cloud: the NUTS Ecosystem just moves nut capsules. This example shows that every nut capsule
has built-in eventual consistency with configurable histories, an inspiration from the DNA data model.

Imagine an operating system that will only execute an application that comes wrapped in a nut
capsule? This simple concept can eliminate most malware from running on systems. In a secured data-to-
data communication channel, it is possible to deterministically eliminate all spam and intruders; think
about a secure nut-based email system where it’s virtually impossible to receive spam. The current
production version of the NUTS Ecosystem is capable of providing near real-time recovery of nut
capsules for groups of trusted users (Data Defined Networks or FHOGs [39]) with full revision control
capabilities at the object level on each users’ local device. This type of feature set in a single platform is
unheard of without a large IT administrative team supporting it. The NUTS Ecosystem runs itself.

How to manage the keys? The NUTS Ecosystem provides a user interface called the NutManager
with a built-in universal KMS. Any KMS requires 3 features: secure storage for the key, key
identification, and key distribution. By putting a key inside a nut capsule which is acted upon by the
NUTS Ecosystem, all three requirements of the KMS are satisfied. NUTS is the only data management
system where the KMS is identical to the data protection system that the keys are used for. Not only does
this design provide utter simplicity, but it is also scalable, and more importantly, it removes the need for a
dedicated IT administrator to manage the KMS and/or data protection system which thus removes another
possible attack vector and cost. We do not believe a business modeled on keeping a client’s keys hostage
on a centralized server is fair, proper, economical, nor secure. Therefore, NUTS provides a fully
independent KMS on every user installation.

SDFT plays an integral role in constructing secure encapsulations like a nut capsule. NUTS is
secure by design, secure by default [40] [41], and provides easy transitions to new cryptography due to its
inherited features of SDFT for both DAR and DIT. With all the cybersecurity problems on the Internet,
NUTS was designed to address the root causes of those problems rather than to temporarily relieve
symptoms. When security becomes integrated with the data, some symptoms never even appear. NUTS
can enable data-to-data communications to usher in a new age of digital networks where the primary
focus is on protecting your data all the time, everywhere.
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