

GLOBAL SPERM CONCENTRATION OVER TIME

Fragile Fertility

Average sperm count of men worldwide in 1973 and 2018 (million sperm per milliliter of semen)

Source: Levine et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Human Reproduction Update (2022)

Average sperm concentration, million per millilitre

Source: Levine et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Human Reproduction Update (2022)

Sperm count is declining at an accelerated pace globally

Guess what this graph represents?

- Sperm counts in Western countries dropped by over 50% from 1973 to 2011, based on 185 studies involving nearly 45,000 men.
- Sperm count decline has accelerated to over 2% per year since 2000.
- ♦ Testosterone levels in men have decreased by 1% annually since 1982.
- Sperm quality (motility, morphology, concentration) has declined globally, including in South America, Asia, and Africa.
- The average 20-something woman today is less fertile than her grandmother was at 35.
- Miscarriage rates in the U.S. increased by 1% per year from 1990 to 2011.
- Male infertility contributes to one-third of all infertility cases, often unrecognised.
- Prenatal exposure to endocrine-disrupting chemicals (EDCs) like phthalates correlates with smaller testicular size and reduced sperm mobility in male infants.
- The secondary sex ratio (male-to-female births) is shifting due to environmental stressors, reducing male births.
- By 2045, if trends continue, many populations may face fertility rates too low to sustain current population levels.

- Global fertility rates have fallen below the 2.1 replacement level in many countries.
- South Korea's population could decline by 85% in two generations due to low birth rates.
- Japan's working-age population has shrunk by 10% since 2000.
- Europe's fertility rate averages 1.5 children per woman, below replacement.
- ♦ By 2050, 23 countries may see populations halve without intervention.
- China's population began declining in 2022, earlier than projected.
- ♦ Low fertility risks a 20-30% GDP reduction in affected economies by 2100.
- Immigration offsets only 10-15% of population decline in developed nations.
- ♦ Pension systems face collapse with a 3:1 retiree-to-worker ratio by 2050.
- Pro-natal policies in Hungary increased birth rates by 9% from 2010-2020.

DATA ON BIRTHS AND THE TOTAL FERTILITY RATE (TFR) 2025

	į	Births		Cha-	Mon-	TFR (Children			per Woman)		
24		2024	2025	nge	ths	2015	2020	2023	2024	2025	
United S	itates	1.462.305	1.461.364	-0,1	5	1,84	1,64	1,60	1,59	1,58	
Canada		-	-		6 8 5 .	1,60	1,41	1,26	1,24	1,23	
Australia	1					1,80	1,59	1,50	1,48	1,45	
New Zea	aland	14.700	14.901	1,4	3	2,00	1,61	1,57	1,57	1,58	
United K	ingdom	-		-	-	1,77	1,51	1,43	1,41	1,36	
Ireland	200					1,86	1,65	1,50	1,45		
Finland		14.456	14.506	0,3	4	1,65	1,37	1,26	1,25	1,25	
Iceland		1.010	1.050	4,0	3	1,86	1,79	1,59	1,56	1,60	
Norway		13.025	13.102	0,6	3	1,73	1,48	1,40	1,44	1,45	
Sweden		33.175	32.179	-3,0	4	1,85	1,66	1,45	1,43	1,39	
Denmar	k	13.810	14.144	2,4	3	1,71	1,67	1,50	1,47	1,49	
Netherla	inds	67.427	66.892	-0,8	5	1,66	1,55	1,43	1,43	1,41	
Belgium		36.318	35.707	-1,7	4	1,69	1,55	1,47	1,44	1,40	
Luxemb		-		14	9 -	1,47	1,37	1,25	1,25	100	
German		160.256	152.402	-4,9	3	1,50	1,53	1,39	1,35	1,29	
Austria		18.816	18.006	-4,3	3	1,49	1,44	1,32	1,31	1,27	
Switzerl	and	23.618	23.264	-1,5	4	1,54	1,46	1,33	1,29	1,27	
France		273.600	263.200	-3,8	-5	1,96	1,79	1,66	1,62	1,56	
Italy		92.127	84.927	-7,8	3	1,33	1,24	1,20	1,18	1,11	
Spain		102.898	103.884	1,0	4	1,33	1,18	1,12	1,12	1,13	
Portugal		26.768	27.280	1,9	4	1,31	1,41	1,44	1,41	1,43	
Greece		33.746	31.763	-5,9	6	1,33	1,39	1,26	1,24	1,19	
Cyprus		=	-		92	1,32	1,36	1,40	1,30		
Malta			-	1 (4	12	1,37	1,13	1,06	1,00		
Estonia		4.121	3.718	-9,8	5	1,58	1,58	1,31	1,18	1,08	
Latvia		4.215	3.732	-11,5	4	1,71	1,55	1,36	1,24	1,12	
Lithuani	a	7.780	6.783	-12,8	5	1,63	1,36	1,18	1,14	1,01	
Poland		86.000	77.000	-10,5	4	1,44	1,45	1,16	1,11	1,02	
Czechia		20.299	18.095	-10,9	3	1,57	1,71	1,45	1,37	1,26	
Slovakia		15.353	13.590	-11,5	4	1,40	1,59	1,49	1,46	1,34	
Hungary		31.881	29.018	-9,0		1,44	1,56	1,51	1,39	1,28	
Slovenia		5.257	5.263	0,1	4	1,57	1,59	1,51	1,50	1,52	
Romania		47.233	43.723	-7,4	4	1,48	1,70	1,40	1,37	1,29	
Moldova		5.008	5.462	9,1	3	1,87	1,76	1,61	1,66	1,90	
Bulgaria	00	11.772	11.082	-5,9		1,59	1,69	1,60	1,62	1,57	
Croatia		13.072	12.665	-3,1	5	1,42	1,56	1,47	1,48	1,47	
Serbia°		24.114	22.351	-7,3	5	1,61	1,59	1,61	1,63	1,54	
Montene		2.241	2.139	-4,6	4	1,73	1,75	1,76	1,75	1,67	
	& Herzeg.°	5.520 4.925	5.225 4.735	-5,3 -3,9	3	1,48	1,53	1,59	1,60	1,55	
Albania	acedonia	5.056	4.735	-5,9 -7,8	3	1,89 1,80	1,65 1,73	1,49	1,41	1,39 1,54	
Kosovo		6.638	6.719	1,2	4	2,20	1,73	1,91	1,92	1,94	
Ukraine)	0.030	0.715	1,2	- 4	1,63	1,30	1.00	0.90	1,50	
Belarus				0 ,_		1,93	1,55	1,34	1,25		
Russia		500.934	475.500	-5,1	5	1,78	1,51	1,41	1,40	1,37	
Masid		300.304	47 0.000	-0,1	J	1,70	1,31	1,41	1,40	1601	
UK: England	ja.	100	-	-3,4	5	1,79	1,53	1,44	1,42	1,36	
Northern		8.337	7.968	-4.4	5	1,94	1,68	1,64	1,61	1,54	
Scotland		19.259	18.501	-3,9	5	1,59	1,34	1,30	1,29	1,24	
CA: British C		10.404	10.533	1,2	3	1,38	1,18	1,00	1,01	1,00	
Quebec		18.600	18.550	-0,3	3	1,67	1,51	1,38	1,33	1,31	
4,1,000		, ,,,,,,,,	, 5.550	-,0		1,,0,	.,	1,55	1977	.,	

Values in grey are based on developments in some subnational regions and are less reliable Chng: Percentage change compared to the same period one year earlier 2024 and 2025 data refer to the same period within the year

	Birt		Cha-	Mon-	TFR (Children per Woman)				
	2024	2025	nge	ths	2015	2020	2023	2024	2025
Jamaica°	32	14	325	26	2,10	1,94		117	
Puerto Rico	7.257	6.838	-5,8	-5	1,34	0,92	0,89	0,87	0,84
Cuba	-		- 10 m ×		1,83	1,66	1,54	1,30	
Dominican Rep.	-	- 4		-8	2,47	1,82	2,09	1,95	
Mexico			5.00	- 20	2,11	1,69	1,55	1,45	
Guatemala	7	. 1			2,87	2,26	2,17	1,84	
Nicaragua	1 12	12	3323	20 T	2,55	2,13	1,79		
Costa Rica	14.774	14,481	-2,0	4	1,76	1,41	1,19	1,12	1,10
Panama					2,45	2,14	1,85	1,74	
Venezuela		5-			2,35	2,23	2,01		
Colombia		17.34	110-11		1,94	1,73	1,40	1,23	
Ecuador	7		0.4	- 3	2,36	1,97	1,77	1,60	
Peru	-		50#40	-9	2,39	2,00	1,76	1,00	
Chile	35.836	36.984	3,2	- 200 A	1,78	1,30	1,16	1,03	1,07
Argentina	33.030	30.304	-	20	2,24	1,54	1,33	1,24	1,14
Uruguay	+		14-2		1,96	1,42	1,25	1,19	14.14
Brazil**	-		00-20	- 1	1,80	1,62	1,57	1,47	
Algeria	-			-	3,12	2,93	2,72	1,47	
Tunisia	+	25	1155 S		2,40	1,96	1,55		
1111 PC 0001100111	494.000	454.700	-8,0	3	3,75	2,88	2,54	2,42	2,21
Egypt Palestine	434.000	404.700	-0,0	-	3,74	3,36	3,23	2,42	2,21
Jordan	-		(10 0 0	#3 1) #3	2,96	2,44	2,45	:	
	10	30 1 0	10 HX	-					
Iraq	57.977	57.684	0.5	4	3,83	3,05	2,91	2.07	2.02
Israel	57.977	57.004	-0,5	4	3,09	2,90	2,85	2,87	2,83
Georgia	10.517	0.700	7.0		2,30	1,97	1,70	1,67	4.05
Armenia	10.547	9.729	-7,8		1,64	1,66	1,88	1,75	1,65
Azerbaijan°	33.575	31.462	-6,3		2,30	1,89	1,83	1,69	1,62
Turkey	455.440	400 500	- 40.0	-	2,16	1,76	1,51	1,48	1,40
Kazakhstan	155.143	133.562	-13,9		2,73	3,13	2,96	2,80	2,42
Uzbekistan	347.415	333.352	-4,0	5	2,49	2,90	3,45	3,35	3,24
Kyrgyzstan°	46.273	43.026	-7,0	4	3,99	3,97	3,60	3,46	3,22
Tajikistan°					3,91	3,83	3,65	3,83	
Iran	259.398	245.678	-5,3		2,16	1,68	1,64	1,56	1,51
India	-	5.7	1150	-3	2,27	2,00			
Bangladesh	·-	1.5	1078	-	2,30	2,30	2,24		
Sri Lanka					2,11	1,92	1,62	1,45	
Mongolia	24.200	22.600	-6,6		3,01	2,94	2,71	2,48	2,38
Japan	230.014	220.261	-4,2		1,45	1,33	1,20	1,16	1,13
South Korea	79.627	85.739	7,7	4	1,24	0,84	0,72	0,75	0,81
Taiwan	53,434	46.407	-13,2	5	1,18	0,99	0,86	0,88	0,78
China	12		1/2	26	1,75	1,28	1,02	1,10	
Hong Kong	11.682	11.320	-3,1	4	1,20	0,88	0,75	0,84	0,84
Macao	1.155	1.006	-12,9	4	1,14	0,84	0,59	0,58	0,52
Vietnam		4		-8	2,10	2,12	1,96	1,91	
Thailand	221.933	201.175	-9,4		1,54	1,21	1,05	0,95	0,87
Malaysia	106.386	93.500	-12,1	3	2,05	1,80	1,73	1,60	1,40
Singapore	8.122	7.693	-5,3		1,24	1,10	0,97	0,97	0,93
Philippines**		0.0000000000000000000000000000000000000			2,77	1,96	1,78	1,55	11000
Mauritius					1,36	1,45	1,39	1,40	

[°] Corrected for unaccounted emigration

[°] Corrected for births happened outside of the country

^{*} Estimate based on rolling 12-month figures

^{**}Projection based on registered births and possible later registrations

Past, present or chronic medical conditions (infections, illness)

- STIs can affect the reproductive system
- Kidney disease / failure
- Cancer
- Varicocele
- Microbiota: dysbiosis in gut, genital tracts
- PCOS, Endometriosis
- Acid-alkaline imbalance (pH)
- Dental infections and/or interventions (e.g. periodontal disease, mercury fillings)
- Anogenital Distance

- ♦ Ahmed, S.B. (2023) CKD and Male Infertility. *Kidney News*. Link
- ♦ Alkhaled, Y. et al. (2021) STIs and Men's Sexual Function. Arab J Urol. Link
- Amini, L. et al. (2022) Periodontitis, Female Fertility and Conception. *Int J Women's Health Reprod Sci.* Link
- Cicinelli, E. et al. (2022) Human Genital Tracts Microbiota: Dysbiosis Crucial for Infertility. J Endocrinol Invest. Link
- Eisenberg, M.L. et al. (2011) The Relationship between Anogenital Distance, Fatherhood, and Fertility in Adult Men. PLoS ONE. Link
- ♦ Eisenberg, M.L. et al. (2015) Anogenital Distance as a Measure of Human Male Fertility. J Assist Reprod Genet. Link
- Fan, D. et al. (2024) Female Reproductive Disease, Endometriosis: From Inflammation to Infertility. J Reprod Immunol. Link
- ♦ Garcia, M.R. et al. (2024) The Gut Microbiota: Emerging Biomarkers and Potential Treatments for Infertility-Related Diseases. *Front Cell Infect Microbiol*. Link
- Goulart, A.C. et al. (2021) Bacterial STIs and Female Fertility. Int J Mol Sci. Link
- Hart, R.J. (2012) The Rate at Which Human Sperm Are Immobilized and Killed by Mild Acidity. Fertil Steril. Link
- Hong, X. et al. (2024) Gut Microbiota-Gonadal Axis: The Impact of Gut Microbiota on Reproductive Functions. Front Immunol. Link
- Hu, L. et al. (2024) Microbiome in Female Reproductive Health: Implications for Fertility and ART. Genomics
 Proteomics Bioinformatics. Link

- ♦ Kallen, A. et al. (2022) Fertility After Cancer: Risks and Successes. *Cancers*. <u>Link</u>
- Lavery, J.A. et al. (2024) Fertility in Colorectal Cancer Patients. Oncologist. <u>Link</u>
- ♦ Leaver, R.B. (2016) Male Infertility and Dental Health Status: A Systematic Review. *Am J Men's Health*. Link
- Li, M. et al. (2023) Kidney Damage and Fertility. PLoS ONE. Link
- Macer, M.B. and Taylor, H.S. (2012) Fertility and Anogenital Distance in Women. Reprod Toxicol. Link
- Mittal, S. et al. (2021) STIs and Reproductive Health. Reprod Health. Link
- Moreno-Sepulveda, J. and Rajendiran, E. (2024) Navigating the Microbial Landscape: Dysbiosis in Genital Tracts and Fertility. Microorganisms. Link
- Nobrega, R.H. et al. (2021) Fertility in Kidney Failure. Transplantology. Link
- Piccinni, M.P. et al. (2023) CKD and Female Infertility. Front Med. Link
- ◇ Pironti, C. et al. (2023) The Late Effects of Cancer Treatment on Female Fertility. *Life*. Link
- Rajendiran, E. and Moreno-Sepulveda, J. (2023) Gut Microbiota Dysbiosis: A Neglected Risk Factor for Fertility. Clin Med Insights. Link
- Razi, Y. et al. (2021) Semen pH and Its Correlation with Motility and Count. Andrologia. Link
- Rotar, S. et al. (2023) The Role of Gut Microbiota in Female Reproductive Health. Life. Link
- Saei Ghare Naz, M. et al. (2021) The Impact of Gut Microbiota on Reproductive and Metabolic Endocrine System. Gut Microbes. Link

- Shah, J.S. et al. (2023) The Association of Periodontal Disease with Extended Time to Conceive in Women. J Fertil Res. Link
- Shamsi, M.B. et al. (2024) pH Homeodynamics and Male Fertility. Front Endocrinol. Link
- Sharma, R. et al. (2023) Insights into the Role of Cervical Mucus and Vaginal pH in Unexplained Infertility. MedicalExpress. Link
- Siristatidis, C.S. et al. (2022) Periodontitis and Infertility: An Evidence-Based Review. Glob J Fertil Res. Link
- Tsevat, D.G. et al. (2017) STIs and Infertility. Am J Obstet Gynecol. Link
- Wissing, M.H. et al. (2025) CKD and Female Hormones. Kidney Int Rep. Link
- World Health Organization (2023) Infertility Key Facts (Authors N/A). WHO. Link
- Xu, X. et al. (2025) Global Infertility and STIs to 2050. Sci Rep. Link
- Yang, H. et al. (2025) Prevalence and Impact of Fertility Preservation in Young Women with Breast Cancer. Sci Rep. <u>Link</u>
- Yang, J. et al. (2023) Don't Trust Your Gut: When Gut Microbiota Disrupt Fertility. Cell Metab. Link
- ♦ Yang, S.C. et al. (2025) Recent Guidelines for Varicocele: KSSMA Recommendations. World J Men's Health. Link
- Zegers-Hochschild, F. et al. (2022) Revisiting the Impact of Varicocele and Its Treatments on Male Fertility. Reprod Biomed Online. Link
- ♦ Zhang, J. et al. (2024) The Evolving Landscape of Male Varicocele Pathophysiology. Biology. Link

Psychological stressors

- Stress and trauma related to infertility, previous pregnancy, miscarriage, stillbirth,
 SIDS (inability to conceive, IVF, miscarriages, birth trauma own birth and / or trauma from previous pregnancies / deliveries)
- Partner status / relational (e.g. congruent 'partner intention', broken relationships, divorce, loneliness)
- Personal / inner conflicts (based on age, cultural or religious expectations) and professional pressures (prioritising work goals over having a family)
- Fear, anxiety, lack of safely and security (exacerbated by news, social media, future uncertainty, etc.)
- Economic / financial factors (job security, can we afford the costs of child-rearing?)
- Societal policies / factors including support (e.g. access to services or community)

- Australian Institute of Family Studies (2005) It's Not for Lack of Wanting Kids: A Report on the Fertility Decision Making Project. (Authors N/A). AIFS. <u>Link</u>
- Brough, M. and Sheppard, P. (2022) Fertility Decision-Making in the UK: Insights from a Qualitative Study among British Men and Women. Soc Sci. Link
- Dourou, P. et al. (2023) Quality of Life among Couples with a Fertility Related Diagnosis. Clin Pract. Link
- Hasanpoor-Azghdy, S.B. et al. (2014) The Emotional-Psychological Consequences of Infertility among Infertile Women Seeking Treatment: Results of a Qualitative Study. *Iran J Reprod Med*. <u>Link</u>
- Kuang, B. and Berrington, A. (2025) The Changing Inter-Relationship between Partnership Dynamics and Fertility Trends in Europe and the United States: A Review. Demogr Res. Link
- OECD (2023) Exploring Norway's Fertility, Work, and Family Policy Trends. (Authors N/A). OECD. Link
- OECD (2024) Declining Fertility Rates Put Prosperity of Future Generations at Risk. (Authors N/A). OECD. Link
- Persson, P. and Rossin-Slater, M. (2018) Fertility and Social Security. J Demogr Econ. Link
- Simionescu, G. et al. (2021) The Complex Relationship between Infertility and Psychological Distress (Review). Exp Ther Med. Link
- Stanhiser, J. et al. (2021) Women's Experiences of Birth Trauma: A Scoping Review. Women Birth. Link

- Taebi, M. et al. (2021) Infertility Stigma: A Qualitative Study on Feelings and Experiences of Infertile Women. Int J Fertil Steril. Link
- Templeton, R. et al. (2022) Impacts of Policies on Fertility Rates. Australian National University. Link
- Testa, M.R. and Bolano, D. (2021) The Influence of Partnership Status of Fertility Intentions in Childless Women and Men Across European Countries. Eur J Popul. Link
- Werner-Bierwisch, T. et al. (2018) Mothers' and Fathers' Sense of Security in the Context of Pregnancy, Childbirth and the Postnatal Period: An Integrative Literature Review. BMC Pregnancy Childbirth. Link
- Wu, J. et al. (2023) Desire for Social Status Affects Marital and Reproductive Attitudes: A Life History Mismatch Perspective. Curr Res Ecol Soc Psychol. Link
- Ying, L.Y. et al. (2021) The Complex Relationship between Infertility and Psychological Distress (Review). Exp Ther Med. Link
- Yoldemir, T. et al. (2023) The Association between Childbirth-Related Fear, Childbirth Readiness, and Fertility Intentions, and Childbirth Readiness as the Mediator. Reprod Health. Link
- Zeng, T. et al. (2023) The Association between Childbirth-Related Fear, Childbirth Readiness, and Fertility Intentions, and Childbirth Readiness as the Mediator. Reprod Health. Link

Toxins in home & work environments

- Synthetic chemicals including 'fragrance' used in cleaning and laundry products, dry-cleaning
- ♦ Synthetic fragrance in scented candles, room deodorisers, paraffin candles
- Furnishings, fabrics & fittings Teflon, flame retardants, water / stain repellents, 'outgassing' VOCs, etc.
- ♦ Air-conditioning (can disperse mould, bacteria, toxins in recirculating air)
- Office (e.g. photocopiers) and industrial chemicals
- Indoor emissions (e.g. gas, heating and cooking fuels / smoke, cabin air in planes, car exhaust, pesticides)

- Ashcroft, S. (2024) Synthetic Endocrine Disruptors in Fragranced Products. Endocrines. Link
- ♦ BU School of Public Health (2016) Exposure to Flame Retardants May Lower Male Reproductive Hormone. (Authors N/A). BU School of Public Health. Link
- Carignan, C. (n.d.) Flame Retardant Chemicals Harm Conception and Pregnancy. EWG. Link
- CDC (n.d.) About Solvents and Reproductive Health. CDC. Link
- Chen, D. (2025) How Indoor Decoration Materials Contribute to Phthalates Pollution: Uncovering Occurrences, Sources, and Their Implications for Environmental Burdens in Households. J Hazard Mater. Link
- Duong, A. (2011) Reproductive and Developmental Toxicity of Formaldehyde: A Systematic Review. *Mutat Res.* Link
- El Khoury, D. (2019) Updates on the Effect of Mycotoxins on Male Reproductive Efficiency in Mammals. *Toxins*. Link
- ♦ EPA (n.d.) Our Current Understanding of the Human Health and Environmental Risks of PFAS. (Authors N/A). EPA. Link
- EWG (2008) UCLA Study: U.S. Women at Greater Risk from Teflon Chemical. (Authors N/A). EWG. Link
- Fei, C. (2009) Nonstick Chemicals Linked to Infertility. Human Reproduction. Link
- Hulscher, N. (n.d.) 47 Pesticides Found in U.S. Homes, Water, and People As Congress Moves to Shield Manufacturers. The Focal Points. Link

- Innes, K.E. (2021) Legacy and Alternative Flame Retardant Exposures Among Couples Seeking Fertility Treatment and Their Fertility Relevant Outcomes. ResearchGate. <u>Link</u>
- Inovi Fertility (2025) Industrial Solvents and Their Hidden Threats to Fertility. (Authors N/A). Inovi Fertility & Genetics Institute. Link
- Jain, M. (2025) Environmental Toxins and Infertility. StatPearls. Link
- Kaniklidis, C. (2022) Toxicities of Laundry Products Review of the Evidence. ResearchGate. Link
- Li, M. (2024) Reproductive Toxicity of PFOA, PFOS and Their Substitutes: A Review Based on Epidemiological and Toxicological Evidence. *Environ Res*. Link
- Lv, X. (2023) The Association Between Self-Reported Household Renovation and Semen Parameters Among Infertile Men: A Cross-Sectional Study. Am J Men's Health. Link
- Luo, M. (2023) Household Polluting Cooking Fuels and Adverse Birth Outcomes: An Updated Systematic Review and Meta-Analysis. Front Public Health. Link
- Margiana, R. (2022) The Effect of Toxic Air Pollutants on Fertility Men and Women, Fetus and Birth Rate. Rev Environ Health. Link
- Merrell, W. (n.d.) Teflon Undermining Fertility? Psychology Today Australia. Link
- Pizzorno, J. (2018) Environmental Toxins and Infertility. *Integr Med Clin J.* Link

- Potera, C. (2009) REPRODUCTIVE TOXICOLOGY: Study Associates PFOS and PFOA with Impaired Fertility. Environ Health Perspect. Link
- Sajjad, Y. (2024) The Role of Mycotoxins in Reproductive Health: Mechanisms, Evidence, and Clinical Implications. J IVF-Worldwide. Link
- Siegel, E.L. (2023) Indoor and Outdoor Air Pollution and Couple Fecundability: A Systematic Review. Human Reprod Update. Link
- Sousa, A.C. (2021) The Impact of Endocrine-Disrupting Chemicals in Male Fertility: Focus on the Action of Obesogens. *J Clin Med*. Link
- Tricotteaux-Zarqaoui, S. (2024) Endocrine Disruptor Chemicals Exposure and Female Fertility Declining: From Pathophysiology to Epigenetic Risks. Front Public Health. Link
- University of California at Berkeley (n.d.) Exposure to Flame Retardant Decreases Female Fertility, Study Shows. (Authors N/A). Environ Health Perspect. Link
- ♦ Vessa B, Perlman B, McGovern PG, Morelli SS (2022) Endocrine Disruptors and Female Fertility: A Review of Pesticide and Plasticizer Effects. *F&S Reports*. Link
- Virginia Tech University (2015) Can Cleaning Chemicals Damage Your Reproductive Potential? (Authors N/A). Reprod Toxicol. Link

Toxins in personal care products

The skin is the largest organ of the body.

Don't put anything on your skin that you would not eat!

- Toxic synthetic chemicals and dyes in make-up
- Synthetic chemicals including 'fragrance' in deodorant, talc, soaps, shampoo, shave foam, lubricants
- Synthetic perfume and colognes
- ♦ Hand sanitiser 70+% alcohol (overuse can lead to liver damage), triclosan
- Hair dye / colouring chemicals
- ♦ Toxins under the skin (e.g. tattoos, Botox)

- ♦ Aliouche H, Ellis D (2021) What Are The Health Effects of Over-Sanitization? News-Medical. Link
- ♦ Cosmetic Laser Skin Surgery (n.d.) Can I Get Botox While Pregnant? Botox During Pregnancy Essential Information. (Authors N/A). Cosmetic Laser Skin Surgery. Link
- Di Renzo, G.C. et al. (2015) International Federation of Gynecology and Obstetrics Opinion on Reproductive Health Impacts of Exposure to Toxic Environmental Chemicals. *Int J Gynaecol Obstet*. Link
- EC Research and Innovation (2024) Silent Danger: Researchers Tackle Chemicals That Threaten Health and Fertility.
 (Authors N/A). Horizon Magazine. Link
- Faber, S. (2020) The Toxic Twelve Chemicals and Contaminants in Cosmetics. EWG. Link
- Farasani, A. (2022) Evaluation of Pollutants in Perfumes, Colognes and Health Effects on the Consumer: A
 Systematic Review. J Health Eng. Link
- Green, M.P. et al. (2021) Endocrine Disrupting Chemicals: Impacts on Human Fertility and Fecundity During the Peri-Conception Period. Environ Res. <u>Link</u>
- Healthline (2020) Does Hand Sanitizer Kill Sperm? (Authors N/A). Healthline. Link
- Healthline (2021) What Are the Side Effects of Using Hand Sanitizer? (Authors N/A). Healthline. Link
- Karwacka, A. et al. (2024) Associations Between Endocrine-Disrupting Chemical Exposure and Fertility Outcomes: A
 Decade of Human Epidemiological Evidence. Life. Link

- Klotz, K. et al. (2023) The Effects of Endocrine-Disrupting Chemicals on Ovarian- and Ovulation-Related Fertility
 Outcomes. Reprod Toxicol. Link
- Kohli R, Mittal A, Mittal A (2024) Adverse Effects of Cosmetics on the Women Health. BioConf. Link
- Pan, H. et al. (2024) Associations of Personal Care Products Use with Reproductive Outcomes of IVF/ICSI Treatment. Front Endocrinol. Link
- Plante, J. and McAninch, E.A. (2023) The Ugly Side of Beauty: Chemicals in Cosmetics Threaten College-Age Women's Reproductive Health. The Conversation. Link
- Sampath P (2014) 8 Reasons You Will Stop Using Hand Sanitisers Regularly. The Health Site. Link
- Tricotteaux-Zarqaoui, S. (2024) Endocrine Disruptor Chemicals Exposure and Female Fertility Declining: From Pathophysiology to Epigenetic Risks. Front Public Health. <u>Link</u>
- Vachhrajani, P. et al. (2023) Association of Triclosan and Human Infertility: A Systematic Review. J Pak Med Assoc. Link
- Wan, L. et al. (2024) Cutaneous Tattoo Ink as a Mimicker of Endometriosis-Like Lesions on Diagnostic Laparoscopy. Case Rep Obstet Gynecol. Link

Unhealthy lifestyle choices

- Obesity, carrying excess weight (increasing BMI linked to decreasing sperm count and motility)
- Smoking, passive smoking, vaping
- Excessive alcohol consumption
- Recreational and psychoactive drug use (including cocaine, marijuana, androgenic anabolic steroids)
- Poor sleep, sleep duration, altered circadian rhythms (e.g. shift work)
- Sedentary behaviour, or excessive exercise (esp. cycling due to pressure on scrotum)
- ♦ Restrictive, imbalanced or diets

- Ajayi, A. F. et al. (2023) Psychoactive Drugs and Male Fertility: Impacts and Mechanisms. Reprod Biol Endocrinol.
 Link
- ♦ Arciello, M. et al. (2019) Nutrition and Female Fertility: An Interdependent Correlation. *Front Endocrinol*. Link
- ♦ Caba, M. et al. (2018) Circadian Rhythms and Clock Genes in Reproduction: Insights From Behavior and the Female Rabbit's Brain. *Front Endocrinol*. **Link**
- Cao, S. et al. (2022) Association Between Physical Activity and Infertility: A Comprehensive Systematic Review and Meta-Analysis. J Transl Med. <u>Link</u>
- Chen, C. et al. (2022) Effects of Physical Activity and Sleep Duration on Fertility: A Systematic Review and Meta-Analysis Based on Prospective Cohort Studies. Front Public Health. Link
- Dechanet, C. et al. (2011) Effects of Cigarette Smoking on Reproduction. *Hum Reprod Update*. Link
- Debbie Montjean et al. (2023) An Overview of E-Cigarette Impact on Reproductive Health. *Life*. Link
- Fan, D. et al. (2017) Female Alcohol Consumption and Fecundability: A Systematic Review and Dose-Response Meta-Analysis. Sci Rep. Link
- Finelli, R. et al. (2021) Impact of Alcohol Consumption on Male Fertility Potential: A Narrative Review. *Int J Environ Res Public Health*. Link
- Gaskins, A. J. and Chavarro JE (2016) Exercise and Human Reproduction: Induced Fertility Disorders and Possible Therapies. Springer. Link

- ♦ Harley, A. et al. (2015) Smoking and Male Infertility: An Evidence-Based Review. World J Mens Health. Link
- Harvard Health Publishing (2017) Making Fertility-Friendly Lifestyle Choices. (Authors N/A). Harvard Health. Link
- Hassan, M. and Killick, S. (2003) Delayed Conception and Active and Passive Smoking. Fertil Steril. Link
- Sijie, H. et al. (2023) Associations Between Smoking Status and Infertility: A Cross-Sectional Analysis Among USA Women Aged 18-45 Years. Front Endocrinol. Link
- Szumilas, K. et al. (2020) The Effects of E-Cigarette Vapor Components on the Morphology and Function of the Male and Female Reproductive Systems: A Systematic Review. *Int J Environ Res Public Health*. Link
- Lainas, G. et al. (2024) P-697 The Effect of Smoking and Vaping on Hormonal Ovarian Reserve Markers in Women of Reproductive Age in the United Kingdom. *Hum Reprod*. Link
- ♦ Lateef, O. M. and Akintubosun M. O. (2020) Disruption of Circadian Rhythms: A Crucial Factor in the Etiology of Infertility. *Int J Reprod Med*. Link
- Peng, L. et al. (2024) Unraveling the Link: Environmental Tobacco Smoke Exposure and Its Impact on Infertility Among American Women (18–50 Years). Front Public Health. Link
- Liu, Y. et al. (2022) The Cost of the Circadian Desynchrony on the Leydig Cell Function. Sci Rep. Link
- Masterson, T. A. et al. (2023) Fertility Outcomes in Men with Prior History of Anabolic Steroid Use. Fertil Steril. Link
- Mielczarek, M., Sroczyńska, P., Sroczyński, J., Lachowska, J., Senior, K., Smandek, J (2023) Anabolic Androgenic Steroids Intake and Its Impact on Male Reproductive System - Systematic Review. Qual Sport. Link

- Mima, M. et al. (2016) The Impact of Intense Exercise on Semen Quality. Am J Men's Health. Link
- Nagy, Z. .P et al. (2025) The Impact of Food and Nutraceuticals on Human Fertility. Reprod Biol. Link
- Neal, M. S. et al. (2005) Sidestream Smoking is Equally as Damaging as Mainstream Smoking on IVF Outcomes. Hum Reprod. Link
- Practice Committee of the American Society for Reproductive Medicine (2018) Smoking and Infertility: A Committee Opinion.(Authors N/A). Fertil Steril. Link
- Ricci, E. et al. (2023) Investigating the Association Between Alcohol Intake and Male Reproductive Function: A Current Meta-Analysis. Reprod Biol Endocrinol. Link
- Nosati, L. et al. (2023) Cocaine Effects on Reproductive Behavior and Fertility: An Overview. Vet Sci. Link
- Ryan, K. S. et al. (2021) Effects of Marijuana on Reproductive Health: Preconception and Gestational Effects. Curr Opin Endocrinol Diabetes Obes. <u>Link</u>
- Sansone, A. et al. (2022) Addiction and Human Male Fertility: A Systematic Review and a Critical Appraisal. Andrology. <u>Link</u>
- Dzubay, S. K. et al. (2025) Cannabis Use & Female Infertility: A Cross Sectional Analysis of the National Health and Nutrition Examination Survey, 2013–2018. Ann Epidemiol. <u>Link</u>

- Sciarra, F. et al. (2012) Circadian Rhythms and Fertility. Mol Cell Endocrinol. Link
- Sciarra, F. et al. (2022) The Potential Impacts of Circadian Rhythm Disturbances on Male Fertility. Front Endocrinol. Link
- Semet, M. et al. (2017) The Impact of Drugs on Male Fertility: A Review. Andrology. Link
- Sharma, R. et al. (2016) Sleep, Circadian Rhythms, and Fertility. Curr Sleep Med Rep. Link
- U.S. Department of Health and Human Services (2004) The Health Consequences of Smoking: A Report of the Surgeon General. (N/A Authors). NCBI. <u>Link</u>
- Wang, Y. et al. (2025) Does Metabolically Unhealthy/Healthy Status Impact IVF Outcomes in Women with Similar Body Mass Index: Evidence from a Large Retrospective Cohort Study. Fertil Steril. Link
- Windham, G. C. et al. (2023) Use of Anabolic-Androgenic Steroids and Male Fertility: A Systematic Review and Meta-Analysis. J Hum Reprod Sci. Link
- ♦ Zhang, et al. (2025) Effects of Marijuana and Tobacco on Male Fertility and Their Relationship to Genetic Variation of Mitochondrial Cytochrome C Oxidase Genes. *Sci Rep*. Link

Pharmaceutical & medical interventions

- Prescribed and OTC medications (e.g. anti-depressants, cholesterol meds, PPIs vaccines, immunosuppressants, some antibiotics, NSAIDs, steroids)
- Mandated medical interventions (e.g. C-19 mRNA)
- Radiation, chemotherapy, radioactive contrast dyes
- Long-term use of pharmaceutical contraception
- ♦ A history of elective termination/s may make it difficult to conceive
- Repeated failed attempts at IVF (e.g. synthetic hormones)

- Busnelli, A. et al. (2023) Recurrent Implantation Failure: A Comprehensive Summary from Etiology to Treatment. Front Endocrinol. Link
- Camilleri, C. et al. (2019) Biological, Behavioral and Physiological Consequences of Drug-Induced Pregnancy Termination at First-Trimester Human Equivalent in an Animal Model. Front Neurosci. Link
- Davies, M. et al. (2024) Effects of Cancer Treatment on Reproductive Health. Reprod Biomed Soc Online. Link
- Drobnis, E.Z. et al. (2017) FDA-Approved Medications That Impair Human Spermatogenesis. Oncotarget. Link
- Gal, B. et al. (2024) The Direct Effect of SARS-CoV-2 Virus Vaccination on Human Ovarian Granulosa Cells Explains Menstrual Irregularities. NPJ Vaccines. Link
- Logan, S. et al. (2019) Cancer Treatment-Related Infertility: A Critical Review of the Evidence. JNCI Cancer Spectr. Link
- Medical News Today (2023) Which Drugs Can Affect Fertility in Females? (Authors N/A). Medical News Today. Link
- Pironti, C. et al. (2023) The Late Effects of Cancer Treatment on Female Fertility and the Current Status of Fertility
 Preservation A Narrative Review. *Life*. **Link**
- Rahmati, M. et al. (2023) Increased Risk of Fetal Loss After COVID-19 Vaccination. *Hum Reprod*. Link
- ♦ Román S, Gilthorpe J (2023) The Link Between the Massive Drop in Birth Rates and mRNA Vaccines is Undeniable. *Daily Sceptic*. Link
- Samplaski, M.K. et al. (2023) The Adverse Effects of Commonly Used Medications on Male Fertility: A Comprehensive Review. *Urol Clin North Am*. Link

- Semet, M. et al. (2017) The Impact of Drugs on Male Fertility: A Review. Andrology. Link
- Svecova, O. et al. (2025) Rates of Successful Conceptions According to COVID-19 Vaccination Status: Data from the Czech Republic. Preprints. Link
- Thorp, J.A. et al. (2023) COVID-19 Vaccines: The Impact on Pregnancy Outcomes and Menstrual Function. JAm Phys Surg. Link
- Thorp, J.A. et al. (2024) Are COVID-19 Vaccines in Pregnancy as Safe and Effective as the U.S. Government, Medical Organizations, and Pharmaceutical Industry Claim? Part II. Preprints. Link
- Unbekoming (2025) The Birth Control Deception: What They Don't Want You to Know. Unbekoming Substack. Link
- ♦ VAERS (n.d.) VAERS COVID Vaccine: Reproductive Health Related Reports. OpenVAERS. Link
- Wang, Z. et al. (2020) scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells. Link
- ♦ Zhang, T. et al. (2023) The Effect of COVID-19 Vaccine on Women's Reproductive Health: A Cross-Sectional Study. *Int J Womens Health*. Link

Toxins in the air & environment

- Environmental pollutants (particulate matter, heavy metals, chemical sprays e.g. ammonia, pesticides) from:
 - industry
 - o farming
 - o mining
- ♦ City living (road transport, domestic fuel burning) London ranked 18th most polluted city in the world in 2022
- Cloud seeding, solar geo-engineering, weather modification
- ♦ Noise pollution (e.g. wind turbines, traffic, city living, etc.)

- ♦ Balcombe, M. (2024) Noise Pollution Can Harm Women's Fertility, Study Finds. Women's Health. Link
- Brehm, E. and Knapke, C. M. (2019) Environmental Contaminants Affecting Fertility and Somatic Health. Semin Reprod Med. Link
- Canipari, R. et al. (2020) Female Fertility and Environmental Pollution. Int J Environ Res Public Health. Link
- Imperial College London (ERG) Fuller, G., Friedman, S., Mudway, I., Greater London Authority, Mills,. I (2023) Impact s of Air Pollution Across the Life Course Evidence Highlight Note. *Imperial College London*. Link
- O'Hare, R. (2023) Review Highlights Lifelong Health Impacts of Air Pollution. (Authors N/A). Imperial College London. Link
- Jo, E.A. et al. (2020) Nighttime Environmental Noise and Semen Quality: A Single Fertility Center Cohort Study. PLoS
 ONE. Link
- Jurewicz, J. et al. (2024) Exposure to Air Pollution and Ovarian Reserve Parameters. Sci Rep. Link
- Knez, J. et al. (2023) Effects of Endocrine Disrupting Compounds on Female Fertility. Best Pract Res Clin Endocrinol Metab. Link
- Li, H. et al. (2025) The Impacts of Noise Pollution on Sperm Quality and The Suggestive Mechanisms. ResearchGate. Link
- Min, K. B. and Min, J. Y. (2017) Exposure to Environmental Noise and Risk for Male Infertility: A Population-Based Cohort Study. Environ Pollut. Link

- Pandey, P. et al. (2018) Cloud Seeding; Its Prospects and Concerns in the Modern World-A Review. ResearchGate. Link
- Sengupta, P. et al. (2014) Environmental Toxins: Alarming Impacts of Pesticides on Male Fertility. Hum Exp Toxicol. Link
- Sengupta, P. et al. (2020) Impact of Environmental Toxin Exposure on Male Fertility Potential. Transl Androl Urol. Link
- Thacher, J. .D et al. (2024) Long Term Exposure to Road Traffic Noise and Air Pollution and Risk of Infertility in Men and Women: Nationwide Danish Cohort Study. BMJ. Link
- The Guardian (2024) Air Pollution Can Decrease Odds of Live Birth After IVF by 38%, Study Finds. (N/A Authors). The Guardian. Link
- Xue, T. et al. (2024) Reduced Human Fecundity Attributable to Ambient Fine Particles in Low- and Middle-Income Countries. Hum Reprod. Link
- Zheng, P. et al. (2024) Exposure to Environmental Chemicals and Infertility Among US Reproductive-Aged Women. Int
 J Environ Res Public Health. Link

Contaminants in drinking water

- Fluoride & anti-corrosive chemicals added to drinking water
- Pharmaceuticals excreted and not removed from the water supply (including birth control, antidepressants)
- PFAS, 'Forever chemicals'
- ♦ Toxic run-off from farming (e.g. nitrates, pesticides), mining and industry
- Desalinated water for drinking (e.g. River Thames)
- Recycled waste-water for drinking ('toilet to tap'; IPR 'indirect potable reuse' systems)

- ♦ Blake, B. E. et al. (2018) Longitudinal Serum Perfluoroalkyl Substance (PFAS) Levels and Measures of Thyroid Hormone, Kidney Function, and Body Mass Index in the Fernald Community Cohort. *Environ Pollut*. Link
- Clausen, H.S. et al. (2020) Association Between Drinking Water Nitrate and Adverse Reproductive Outcomes: A Systematic PRISMA Review. Water. Link
- Clausen, H.S. et al. (2020) Association Between Drinking Water Nitrate and Adverse Reproductive Outcomes: A Systematic PRISMA Review. Water. Link
- Cohen, N. et al. (2023) Exposure to Perfluoroalkyl Substances and Women's Fertility Outcomes in a Singaporean Population-Based Preconception Cohort. Sci Total Environ. Link
- ♦ Collier, R. (2012) Swallowing the Pharmaceutical Waters. CMAJ. Link
- Femtech World (2025) Fertility-Linked Chemical Found in Nearly All UK Rivers. (N/A Authors). Femtech World. Link
- ♦ Fluoride Alert (2023) How Can Fluoride Impact Fertility? (N/A Authors). Fluoride Alert. Link
- ♦ Kabir, E. R. et al. (2015) Fluoride-Induced Testicular and Ovarian Toxicity: Evidence from Animal Studies. *Biol Res.* Link
- ♦ Kabir, E. R. et al. (2025) Impact of Fluoride Exposure on Reproductive Health: Insights into Molecular Mechanisms and Health Implications. *Reprod Toxicol*. Link
- ♦ Kabir, E. R. et al. (2024) Effects of Fluoride Toxicity on the Male Reproductive System: A Review. *J Trace Elem Med Biol.* Link
- Kabir, E. R. et al. (2020) Endocrine Disruptors in Water and Their Effects on the Reproductive System. Int J Environ Res Public Health. Link

- OECD (2019) Pharmaceutical Residues in Freshwater: Hazards and Policy Responses. (N/A Authors). OECD Studies
 on Water. Link
- Mount Sinai (2023) Exposure to Chemicals Found in Everyday Products Is Linked to Significantly Reduced Fertility. (N/A Authors). Mount Sinai. Link
- NIEHS (2023) PFAS Exposure Linked to Reduced Fertility in Women. (N/A Authors). NIEHS. Link
- ♦ RSC (n.d.) Cleaning Up UK Drinking Water. (N/A Authors). RSC. Link
- ScienceDaily (2009) Declining Male Fertility Linked to Water Pollution. (N/A Authors). ScienceDaily. Link
- ♦ The Guardian (2023) 'Forever Chemicals' Linked to Infertility in Women, Study Shows. (N/A Authors). The Guardian. Link
- Wang, W. et al. (2023) The Effects of Perfluoroalkyl and Polyfluoroalkyl Substances on Female Fertility: A Systematic Review and Meta-Analysis. *Environ Res*. <u>Link</u>
- ETR Labs (2025) 7 Water Contaminants That Could Be Harming Your Fertility. (N/A Author). ETR Labs. Link

Toxic chemicals in agriculture & farming

- Pervasive synthetic herbicides, pesticides, fertilisers and biosolids in the soil and on crops
- Glyphosate herbicide (Roundup now reformulated with diquat, fluazifop and triclopyr)
- ♦ GMO seeds require chemical farming methods, and pollute non-GMO crops
- ♦ DDT banned in UK in 1984, persists in the food chain
- Synthetic RNA in agriculture
- Depletion of minerals and soil nutrients through over-farming, etc. leads to more synthetic chemicals being used

- ♦ Bellinger, D. et al. (2024) Biosolids and Male Reproduction. *Environ Health Perspect*. Link
- Cannarella, R. et al. (2023) Endocrine Disrupting Chemicals and Male Fertility: From Physiological to Molecular Effects. Front Public Health. Link
- ♦ CASI (2013) GMOs, Diet and Infertility. (N/A Authors). CASI. Link
- Chiu, Y. H. et al. (2018) Association Between Pesticide Residue Intake From Consumption of Fruits and Vegetables and Pregnancy Outcomes Among Women Undergoing Infertility Treatment With Assisted Reproductive Technology. JAMA Intern Med. Link
- Fleetwood, J. (2023) Moderna's Parent Company Now Spraying RNA Into Your Food. Jon Fleetwood Substack. Link
- ♦ Gillezeau, C. et al. (2024) Glyphosate Presence in Human Sperm: First Report and Positive Correlation with Oxidative Stress in an Infertile French Population. *Ecotoxicol Environ Saf.* Link
- ♦ GMWatch (2018) Scientists Warn of Toxic Chemical Cocktail Sprayed on Food. (N/A Authors). GMWatch. Link
- ♦ Grantham, J. (2023) Chemical Toxicity and the Baby Bust. *GMO*. <u>Link</u>
- Gul, M. et al. (2023) The Environmental and Occupational Influence of Pesticides on Male Fertility: A Systematic Review
 of Human Studies. Andrology. Link
- Ingaramo, P. et al. (2020) Are Glyphosate and Glyphosate-Based Herbicides Endocrine Disruptors That Alter Female Fertility? *Mol Cell Endocrinol*. Link
- Ingaramo, P. et al. (2025) Re-Evaluating the Use of Glyphosate-Based Herbicides: Implications On Fertility. Reprod Sci. Link

- Liu, J. et al. (2023) Effects of Dichlorodiphenyltrichloroethane on the Female Reproductive Tract Leading to Infertility and Cancer: Systematic Search and Review. *J Clin Med*. Link
- Liu, W. et al. (2023) Fertility Loss: Negative Effects of Environmental Toxicants on Oogenesis. *Environ Pollut*. Link
- McCarthy, M. et al. (2023) Emerging Environmental Health Risks Associated with the Land Application of Biosolids: A Scoping Review. Environ Health. Link
- Mesnage, R. et al. (2021) Glyphosate Herbicide: Reproductive Outcomes and Multigenerational Effects. Front Microbiol. Link
- Perro, M. (2018) Pesticides in Foods Can Harm Human Fertility. GMO Science. Link
- Nodriguez, H. (2020) Research Indicates That GMO Could Be a Cause of Infertility. Natural Fertility Info. Link
- PAN UK (2023) 'Forever Chemicals' Found in UK Food. (N/A Authors). PAN UK. Link
- Swan, S.H. et al. (2018) The Effect of Glyphosate on Human Sperm Motility and Sperm DNA Fragmentation. Int J Environ Res Public Health. Link
- The Guardian (2019) Biosolids: Mix Human Waste with Toxic Chemicals, Then Spread on Crops. (N/A Authors). The Guardian. Link
- USRTK (2024) Glyphosate Poses Widespread Risks to Female Fertility and Reproductive Health: New Research. (N/A Authors). USRTK. Link
- Zhang, Q. et al. (2022) Evaluation of Adverse Effects/Events of Genetically Modified Food Consumption: A Systematic Review of Animal and Human Studies. Environ Sci Eur. Link

Toxic chemicals in livestock food production

- ♦ Bovaer and other methane-reduction additives in feed
- Synthetic hormones (injected and via feed)
- Decades-long overuse of antibiotics, especially in CAFO animals
- Untested mRNA technologies mandated in pork, beef, game, poultry
- ♦ Industrial pollutants, biosolids contaminate feed, including pastures
- ♦ Toxins in commercial egg production (PFAS, dioxin, PCBs, fipronil)
- Toxins in aquaculture marine and fresh water (fish, shellfish, algae farming) including antibiotics, disinfectants, pesticides, and hormones

- Adeyemi, J.A. (2024) Chemical Contaminants and Environmental Stressors Induced Teratogenic Effect in Aquatic Ecosystem – A Comprehensive Review. Mar Pollut Bull. <u>Link</u>
- Akter, S. (2023) A Review on the Fate, Human Health and Environmental Impacts, as Well as Regulation of Antibiotics Used in Aquaculture. Aquacult Int. Link
- Aliko, V., Qirjo, M. (2022) Endocrine-Disrupting Compounds (EDCs) as Emerging Aquatic Contaminants: Emphasis on Reproduction and Development. Springer. <u>Link</u>
- Aliko, V., Qirjo, M. (2021) Endocrine-Disrupting Compounds in Aquatic Ecosystem: An Emerging Threat to Wildlife and Human Health. J Inst Eng India Ser D. Link
- Food Safety Commission of Japan (2024) 3-Nitrooxypropanol (Feed Additives) (Authors N/A). Food Safety. Link
- ♦ Jeong, S.H. et al. (2010) Risk Assessment of Growth Hormones and Antimicrobial Residues in Meat. *Toxicol Res.* Link
- Kamaly, H.F., Sharkawy, A.A. (2023) Hormonal Residues in Chicken and Cattle Meat: A Risk Threat the Present and Future Consumer Health. Food Chem Toxicol. Link
- Laranja, J.L.Q., Amarasinghe, U.S. (2018) A Review on the Use of Hormones in Fish Farming: Analytical Methods to Determine Their Residues. *Aquacult Int*. Link
- Ma, F., Xu, S., Tang, Z., Li, Z., Zhang, L. (2021) Occurrence and Sources of Hormones in Water Resources Environmental and Health Impact. Sustain Sci. Link

- Ma, F., Xu, S., Tang, Z., Li, Z., Zhang, L. (2021) Unpacking Factors Influencing Antimicrobial Use in Global Aquaculture and Their Implication for Management: A Review from a Systems Perspective. Sustain Sci. Link
- Magnusson, U. (2022) Antimicrobial Use and Resistance in Food-Producing Animals How Can We Protect the Efficacy of Antibiotics for Reproductive Diseases?. Reprod Domest Anim. Link
- Malekinejad, H., Rezabakhsh, A. (2015) Hormones in Dairy Foods and Their Impact on Public Health A Narrative Review Article. Iran J Public Health. Link
- Roth, Z., Komsky-Elbaz, A., Kalo, D. (2020) Effect of Environmental Contamination on Female and Male Gametes A
 Lesson from Bovines. Reprod Domest Anim. Link
- Schram, M.D., Peterson, B.C., Bosworth, B.G., Beck, B.H. (2023) Reproductive Sterility in Aquaculture: A Review of Induction Methods and an Emerging Approach with Application to Pacific Northwest Finfish Species. Rev Aquacult. Link
- Senthil, R., Singh, R., Kumar, S., Singh, D.P. (2024) Dietary Exposure to Pesticide and Veterinary Drug Residues and Their Effects on Human Fertility and Embryo Development: A Global Overview. Int J Mol Sci. Link
- van der Fels-Klerx, H.J. et al. (2017) Chemical and Physical Hazards in the Egg Production Chain in the Netherlands. RIKILT Wageningen University & Research. Link

Toxins in food processing, storage & preparation

- ♦ GMOs not labelled
- Ultra-Highly Processed foods
- Food additives used to improve shelf life, maintain colour, texture and taste (e.g. artificial colours, preservatives, antioxidants, acidity regulators, thickeners, stabilisers, emulsifiers, acidity regulators, artificial flavours, synthetic sweeteners)
- Synthetic / fake food, lab-grown foods, insect protein
- Long distance transportation and long storage of fresh food depletes nutrient value
- Chemicals used in storage of food, packaging (e.g. plastics BPAs, PFAS, EDCs)
- Microwaving food, especially in plastic containers
- Food coating technology (e.g. Apeel) to 'prevent waste' / increase profit (reduces consumer understanding of freshness, etc.)

- ♦ Abdollahi, M. et al. (2023) The Impact of Non-Caloric Artificial Sweetener Aspartame on Female Reproductive System in Mice Model. *Reprod Biol Endocrinol*. Link
- Afeiche, M.C. et al. (2024) Consumption of Ultra-Processed Foods and Semen Quality in Healthy Young Men Living in Italy. Nutrients. Link
- Al-Dhabaan, A.A. et al. (2023) Synthetic Food Dyes Cause Testicular Damage via Up-Regulation of Pro-Inflammatory Cytokines and Down-Regulation of FSH-R and TESK-1 Gene Expression. Food Sci Nutr. Link
- Cariati, F. et al. (2019) "Bisphenol A: An Emerging Threat to Male Fertility". Reprod Biol Endocrinol. Link
- Chianese, R. et al. (2022) Aspartame Consumption, Mitochondrial Disorder-Induced Impaired Ovarian Function, and Infertility Risk. Int J Mol Sci. Link
- Chianese, R. et al. (2022) The Impact of Non-Caloric Sweeteners on Male Fertility: A Systematic Review and Narrative Synthesis in Rodent Models. *Nutrients*. Link
- Encarnação, S. et al. (2025) Consumption of Ultra-Processed Foods and Female Infertility: A Cross-Sectional Study. Front Public Health. Link
- Fazelian-Dehkordi, K. et al. (2025) The Role of Food Additives in Reproductive Endocrine Disruption: A Revised Perspective. ResearchGate. Link
- Kamali, K. et al. (2024) Association Between Ultra-Processed Foods and Female Infertility: A Large Cross-Sectional Study. Front Nutr. Link

- Knapke, C.M. et al. (2024) The Impact of Minerals on Female Fertility: A Systematic Review. Front Endocrinol. Link
- Knoblauch, J. A. (2007) Some Food Additives Mimic Human Hormones. Scientific American. Link
- Lestari, P. (2020) Effect of Ingested Foods Preheated (With Microwave) in Plastic Containers on the Reproductive Profile
 of Male Albino Rats. J Adv Med Med Res. Link
- Mitsunami, M. et al. (2024) The Association Between Consumption of Ultra-Processed Foods and Sperm Quality Parameters: A Cross-Sectional Study. ResearchGate. <u>Link</u>
- Rickard, B.P. et al. (2017) Selected Nutrient Analyses of Fresh, Fresh-Stored, and Frozen Fruits and Vegetables. J Sci Food Agric. Link
- Sifakis, S. et al. (2023) Adverse Effects of Microplastics and Nanoplastics on the Reproductive System: A Comprehensive Review of Fertility and Potential Harmful Interactions. Sci Total Environ. Link
- Smith, E. (2023) Everything You Need to Know About Apeel. Wicked Leeks. Link
- Velez, M.P. et al. (2024) Ultra-Processed Food Consumption and Semen Quality Parameters in the Led-Fertyl Study. Hum Reprod. Link
- Wise, S. (2023) Is Apeel Appealing? Weston A. Price Foundation. Link
- Yousuf, S. et al. (2025) Unraveling Connections with Artificial Sweeteners and Their Impact on Human Health: A Comprehensive Review. Food Sci Nutr. Link

Toxic EMF 'pollution' & 5G exposure

- ♦ Mobile phones, wearable technology, implantable devices
- Wi-fi and cell tower exposure
- ♦ SMART homes, SMART meters
- LEDs, artificial lighting, excessive blue light exposure (e.g. computer, mobile, TV screens)
- ♦ Radiation and overheating testicles (e.g. laptops / tablets / phones on lap)
- Carrying cell phones / devices on the body (e.g. pants / shirt pockets, bra)

- Adams, J. A. et al. (2014) Effect of Mobile Telephones on Sperm Quality: A Systematic Review and Meta-Analysis.
 Environ Int. Link
- Agarwal, A. et al. (2011) Effects of the Exposure to Mobile Phones on Male Reproduction: A Review of the Literature. J Androl. Link
- Environmental Health Trust (2023) High Cell Phone Use May Impact Sperm Count, Study Says. (N/A Authors).
 EHT. Link
- Environmental Health Trust (2022) Recent Studies Show Wireless Radiation Impacts Fertility. (N/A Authors). EHT. Link
- Gholami, D. et al. (2021) The Impact of Radiofrequency Waves on Male Infertility: A Systematic Review. Shiraz E-Med
 J. Link
- ♦ Vogel, K. (2023) High Cellphone Use Linked to Decline in Semen Quality, Study Finds. (N/A Authors). Health. Link
- Houston, B.J. et al. (2021) Male Cellular Telephone Exposure, Fecundability, and Semen Quality: Results from Two Preconception Cohort Studies. Hum Reprod. Link
- Ramkhelawon, L. (2022) Exposure to WiFi Reduces Sperm Motility and Viability in the Lab. IVF.net. Link
- Jain, M. et al. (2023) Adverse Effects of Wi-Fi Radiation on Male Reproductive System: A Systematic Review. Tohoku J Exp Med. Link
- ♦ Kamali, K. et al. (2017) Human Microchipping: Yes or NO? ResearchGate. Link
- Okechukwu, C. E. (2020) Does the Use of Mobile Phone Affect Male Fertility? A Mini-Review. J Hum Reprod Sci. Link

- Okechukwu, C. E. (2020) Does the Use of Mobile Phone Affect Male Fertility? A Mini-Review. J Hum Reprod Sci. Link
- Royal Australian College of General Practitioners (2021) Can Wi-Fi Devices Affect Male Fertility? (N/A Authors).
 RACGP. Link
- ♦ Shahin, S. et al. (2015) Effects of Wi-Fi (2.45 GHz) Exposure on Apoptosis, Sperm Parameters and Testicular Histomorphometry in Rats: A Time Course Study. *Cell J.* Link
- Wang, Z. et al. (2024) Effect of Mobile Telephones on Sperm Quality: A Systematic Review and Meta-Analysis. Front Reprod Health. Link
- Yu, G. et al. (2022) Effects of Mobile Phone Use on Semen Parameters: A Cross-Sectional Study of 1634 Men in China. Reprod Fertil Dev. Link
- Zunzunegui, V. et al. (1997) Time Enough Consequences of Human Microchip Implantation. Risk. Link
- Zunzunegui, V. et al. (1997) Is Microchipping Humans Safe? Dr Phil. YouTube. Link

Our resource library is continually being updated with new research.

SCAN FOR ACCESS
TO THE MOST RECENTLY
UPDATED REFERENCES
FOR THIS PRESENTATION

- downloadable as a PDF.

TRUTH CONTRACT MATRIX

The Truth Contract (TTC) is a platform connecting caring, independent minds and critical thinkers – offering expert insights beyond the mainstream to empower informed decisions, present-time action and real-world solutions.

David CM Carter CO-FOUNDER

david@thetruthcontract.co.uk
www.thetruthcontract.co.uk
thetruthcontract.substack.com