R13 PERMIT APPLICATION

Mountain Valley Pipeline, LLC

Stallworth Compressor Station

Prepared By:

TRINITY CONSULTANTS

4500 Brooktree Road Suite 310 Wexford, PA 15090 (724)-935-2611

November 2025

TABLE OF CONTENTS

1

IN		JCTION :	L
	1.1. 1.2.	Facility and Project Description R-13 Application Organization	L 1
2.	2.1 To 2.2 Ho 2.3 M	MISSION SOURCE CALCULATIONS urbines	3
3.	R-	-13 APPLICATION FORM	
AT	ГАСНМ	MENT A – CURRENT BUSINESS CERTIFICATE	
AT	ГАСНМ	MENT B – MAP	
AT	ГАСНМ	MENT C - INSTALLATION AND START-UP SCHEDULE	
AT	ГАСНМ	MENT D - REGULATORY DISCUSSION	
AT	ГАСНМ	MENT E – PLOT PLAN	
AT	ГАСНМ	MENT F – PROCESS FLOW DIAGRAM	
AT	ГАСНМ	MENT G – PROCESS DESCRIPTION	
AT	ГАСНМ	MENT I – EMISSION UNITS TABLE	
AT	ГАСНМ	MENT J – EMISSION POINTS DATA SUMMARY SHEET	
AT	ГАСНМ	MENT K – FUGITIVE EMISSIONS DATA SUMMARY SHEET	
AT	ГАСНМ	MENT L – EMISSIONS UNIT DATA SHEETS	
AT	ГАСНМ	MENT N - SUPPORTING EMISSION CALCULATIONS	
AT	ГАСНМ	MENT O - MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS	
AT	ГАСНМ	MENT P – PUBLIC NOTICE	

INTRODUCTION

Mountain Valley Pipeline, LLC (Mountain Valley) is submitting this application to the West Virginia Department of Environmental Protection (WVDEP) for the modification of an existing natural gas transmission compressor station located in Fayette County, West Virginia (Stallworth Compressor Station). The Stallworth Compressor Station is currently authorized under Permit No. R13-3277A.

1.1. Facility and Project Description

The Stallworth Compressor Station is a natural gas transmission facility that will compress natural gas along the Mountain Valley Pipeline. The Station has the potential to operate 24 hours per day, 7 days per week.

The facility currently includes the following permitted emission sources:

- ► Two (2) Solar Titan 130 natural gas-fired turbines each rated at 19,483 horsepower (hp) at site-specific conditions (ISO rating at 20,500 hp each);
- ▶ Ten (10) Capstone C200 natural gas-fired microturbines each rated at 200 kW;
- ➤ Two (2) natural gas-fired, fuel gas heaters each rated at 1.54 million British thermal units per hour (MMBtu/hr);
- ▶ One (1) natural gas-fired, office building heater rated at 0.12 MMBtu/hr; and
- ▶ Two (2) storage tanks with capacities less than 15,000 gallons.

Mountain Valley is proposing to authorize the following changes:

- ➤ Converting the existing Solar Titan 130 natural gas-fired turbines to Solar Titan 130E (Titan 130-23502S) natural gas-fired turbines rated at 22,374 horsepower (hp) at site-specific conditions (ISO rating at 23,470 hp). The compressors (C45-3) associated with the turbines will remain the same;
- ▶ Installing two Solar Titan 130E (Titan 130-23502S) natural gas-fired turbines rated at 22,374 horsepower (hp) at site-specific conditions (ISO rating at 23,470 hp);
- ▶ Installing one natural gas-fired fuel gas heater rated at 1.54 MMBtu/h;
- ▶ Adding three Capstone C200 natural gas-fired microturbine rated at 200 kW; and
- ▶ Installing associated piping, fugitive components, and equipment.

There are no other facilities located within ¼ mile of the Stallworth Compressor Station.

1.2. R-13 Application Organization

This R-13 permit application is organized as follows:

► Section 1: Introduction

Section 2: Emission Source Calculations;Section 3: R-13 Application Form;

Attachment A: Current Business Certificate;

Attachment B: Map:

Attachment C: Installation and Start Up Schedule;

Attachment D: Regulatory Discussion:

Attachment E: Plot Plan;

Attachment F: Process Flow Diagram;

Attachment G: Process Description;Attachment I: Emission Units Table;

Attachment J: Emission Points Data Summary Sheet;
 Attachment K: Fugitive Emissions Data Summary Sheet;

Attachment L: Emissions Unit Data Sheets;

► Attachment N: Supporting Emission Calculations;

► Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans;

► Attachment P: Public Notice; and

Application Fee

2. EMISSION SOURCE CALCULATIONS

The characteristics of air emissions from the Stallworth Compressor Station, along with the methodology used for calculating emissions from the proposed new equipment, are described in narrative form below. Detailed supporting calculations are also provided in Attachment N.

Emissions from the Stallworth Compressor Station will result from natural gas combustion in the turbines, heaters, microturbine generators, and flashing, working, and breathing losses from the storage tanks. In addition, fugitive emissions from component leaks will result from the operation of the station. The methodologies employed in calculating emissions from these sources have been summarized below, with specific citations included in Attachment N.

2.1 Turbines

Potential emissions of nitrogen oxides (NO_x), CO, VOC, and CH₄ are calculated using factors provided by the turbine manufacturer. Sulfur dioxide (SO₂) is calculated using U.S. EPA's AP-42 Section 3.1, Table 3.1-2a "Emission Factors for Criteria Pollutants and Greenhouse Gases from Stationary Gas Turbines". Potential emissions of particulate matter (PM/PM₁₀/PM_{2.5}), and formaldehyde are calculated using factors from Product Information Letters published by the turbine manufacturer. All hazardous air pollutants (HAPs), with the exception of formaldehyde, are calculated using U.S. EPA's AP-42 Section 3.1, Table 3.1-3 "Emission Factors for Hazardous Air Pollutants from Natural Gas-Fired Stationary Gas Turbines". Potential emissions of greenhouse gas pollutants (GHGs) are calculated using manufacturer's data as available (CH₄ in this case) and U.S. EPA's emission factors from 40 CFR Part 98, Subpart C for all others.

Emissions from the turbines may vary due to operational load and ambient temperature. The vendor guarantees emissions of the $SoLoNO_x$ system at and above 0°F. The vendor has also provided estimated emissions from subzero temperatures, which are expected to occur infrequently. To calculate potential emissions, the vendor guaranteed emission rates at 0°F and maximum operating load (on a lb/hr basis) were assumed continuously (i.e., 8,760 hours per year). This calculation resulted in a more conservative (i.e., higher) annual emission rate compared to assuming nominal operations below 0°F and the remainder of the year at annual average temperature.

Annual emissions also include emissions from startup and shutdown, which are calculated by multiplying emissions per startup by the number of estimated startups per year.

2.2 Heaters

Potential emissions of all criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas combustion equipment. These calculations assume a site-specific heat content. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C. Although the operation of these sources may be intermittent, potential emissions are calculated assuming continuous operation (i.e., 8,760 hours per year).

2.3 Microturbine Generator

Potential emissions of NO_X , CO, VOC, methane, and CO_2 are calculated using manufacturer's emission data. Emissions of all other criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas internal combustion engines. These calculations use a site-specific heat content. Although one unit will

provide backup power, potential emissions of all units are calculated assuming continuous operation (i.e., 8,760 hours per year).

2.4 Storage Tanks

Working, standing, and flash loss emissions of VOC and HAPs from the produced fluids storage tank and used oil storage tank are calculated using BR&E ProMax software v6.0. Liquid loading emissions are calculated using EPA AP-42 Section 5.2 emission factors.

2.5 Fugitive Emissions

Emissions from fugitive equipment leaks are calculated using site specific component counts and EPA's Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017) Table 2-4. Emissions from blowdown events are calculated using engineering estimates of the amount of gas vented during each event. Emissions from the compressors were calculated using vendor seal emission rates or New Source Performance Standard thresholds, as applicable. Site specific gas analyses were used to speciate VOC, HAP, and GHG emissions for both fugitive and blowdown emissions.

3. R-13 APPLICATION FORM

The WVDEP permit application forms contained in this application include all applicable R13 application forms including the required attachments.

WEST VIRGINIA DEPARTMENT OF

ENVIRONMENTAL PROTECTION

DIVISION OF AIR QUALITY

APPLICATION FOR NSR PERMIT

601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/dag	TITI	AND TITLE V PERMIT REVISION (OPTIONAL)									
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN): □ CONSTRUCTION □ MODIFICATION □ RELOCATION □ CLASS I ADMINISTRATIVE UPDATE □ TEMPORARY □ CLASS II ADMINISTRATIVE UPDATE □ AFTER-THE-FACT	☐ ADMINISTRAT MODIFICATION ☐ SIGNIFICANT IF ANY BOX ABO	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT MINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION									
FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revision (Appendix A, "Title V Permit Revision Flowchart") and ability to o											
Section I. General											
Name of applicant (as registered with the WV Secretary of State Mountain Valley Pipeline, LLC	e's Office):	2. Federal Employer ID No. <i>(FEIN):</i> 61-1744744									
3. Name of facility (if different from above):		4. The applicant is the:									
Stallworth Compressor Station		☐ OWNER ☐ OPERATOR ☑ BOTH									
5A. Applicant's mailing address: 2200 Energy Drive Canonsburg, PA 15317	5B. Facility's present physical address: Dawson-Springdale Rd, Meadow Bridge, WV 25976										
 6. West Virginia Business Registration. Is the applicant a resident If YES, provide a copy of the Certificate of Incorporation/Org change amendments or other Business Registration Certificate If NO, provide a copy of the Certificate of Authority/Authority amendments or other Business Certificate as Attachment A. 	anization/Limited F as Attachment A.	Partnership (one page) including any name									
7. If applicant is a subsidiary corporation, please provide the name	of parent corporatio	n: EQT Corporation									
8. Does the applicant own, lease, have an option to buy or otherwis	se have control of the	e proposed site? 🛛 YES 🔲 NO									
 If YES, please explain: Applicant owns the site If NO, you are not eligible for a permit for this source. 											
	administratively updated or temporarily permitted (e.g., coal preparation plant, primary Classification System										
019-00116 asso		and 45CSR30 (Title V) permit numbers cess (for existing facilities only):									
All of the required forms and additional information can be found under	er the Permitting Sec	tion of DAQ's website, or requested by phone.									

12A	. .		
-	For Modifications, Administrative Updates or Te <i>present location</i> of the facility from the nearest state		please provide directions to the
-	For Construction or Relocation permits , please proad. Include a MAP as Attachment B .	provide directions to the <i>proposed new</i> s	ite location from the nearest state
	From Charleston, WV take I-64 E/I-77 S for 90 mile Dawson/State Route 29/4. Next, Turn right onto Motravel 2.8 miles on Dawson-Springdale. The site with the state of the stat	orris Branch Rd. Then, Turn left onto Co	take exit 150 toward ounty Rd 27/3. Finally, turn left an
12.E	B. New site address (if applicable):	12C. Nearest city or town:	12D. County:
		Meadow Bridge, WV 25976	Fayette
12.6	E. UTM Northing (KM): 4,191.20	12F. UTM Easting (KM): 521.31	12G. UTM Zone: 17
13.	Briefly describe the proposed change(s) at the facilit	y:	
at s	untain Valley Pipeline, LLC is converting two existing ite specific conditions (ISO rated at 23,470 bhp), instactific conditions (ISO rated at 23,470 bhp), three micrormation for Stallworth natural gas transmission comp	alling two Solar Titan 130-23502S turbir oturbines, one fuel gas heater, and upda	es rated at 22,374 bhp at site ating fugitive and blowdown
_	14A. Provide the date of anticipated installation or permit application, provide the date upon which the		14B. Date of anticipated Start-Up if a permit is granted: ASAP
14C	c. Provide a Schedule of the planned Installation of/application as Attachment C (if more than one unit		units proposed in this permit
15.	Provide maximum projected Operating Schedule of Hours Per Day 24 Days Per Week 7	f activity/activities outlined in this applica Weeks Per Year 52	ation:
16.	Is demolition or physical renovation at an existing fac-	cility involved? TYES NO	
17.	Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will become	e subject due to proposed
C	changes (for applicability help see www.epa.gov/cepp	oo), submit your Risk Management Pla	n (RMP) to U. S. EPA Region III.
18.	Regulatory Discussion. List all Federal and State a	air pollution control regulations that you	pelieve are applicable to the
ŗ	proposed process (if known). A list of possible applica	able requirements is also included in Att	achment S of this application
(Title V Permit Revision Information). Discuss applica	bility and proposed demonstration(s) of	compliance (if known). Provide thi
i	nformation as Attachment D .		
	Section II. Additional atta	achments and supporting d	ocuments.
	Include a check payable to WVDEP – Division of Air 45CSR13).	Quality with the appropriate applicatior	i fee (per 45CSR22 and
20.	Include a Table of Contents as the first page of you	ur application package.	
21.	Provide a Plot Plan , e.g. scaled map(s) and/or sketc source(s) is or is to be located as Attachment E (Re		rty on which the stationary
- I	ndicate the location of the nearest occupied structure	e (e.g. church, school, business, residen	ce).
22.	Provide a Detailed Process Flow Diagram(s) show device as Attachment F.	ving each proposed or modified emission	ns unit, emission point and control

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).

- 24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.
- For chemical processes, provide a MSDS for each compound emitted to the air.

23. Provide a Process Description as Attachment G.

25.	. Fill out the Emission Units Table and provide it as Attachment I.											
26.	. Fill out the Emission Points Data Summary Sheet (Table 1 and Tab	ole 2) and provide it as Attachment J.										
27.	. Fill out the Fugitive Emissions Data Summary Sheet and provide it	as Attachment K.										
28.	. Check all applicable Emissions Unit Data Sheets listed below:											
	Bulk Liquid Transfer Operations	☐ Quarry										
	Chemical Processes	☐ Solid Materials Sizing, Handling and Storage										
	Concrete Batch Plant	Facilities										
	Grey Iron and Steel Foundry	☐ Storage Tanks										
	General Emission Unit, specify Turbines, Blowdowns, Fugitives											
Fill	I out and provide the Emissions Unit Data Sheet(s) as Attachment L.											
	. Check all applicable Air Pollution Control Device Sheets listed below	w:										
	Absorption Systems Baghouse	☐ Flare										
	Adsorption Systems	☐ Mechanical Collector										
	Afterburner	or Wet Collecting System										
	Other Collectors, specify											
Fill	I out and provide the Air Pollution Control Device Sheet(s) as Attachr	ment M.										
30.	 Provide all Supporting Emissions Calculations as Attachment N, or Items 28 through 31. 	r attach the calculations directly to the forms listed in										
31.	31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O .											
^	Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.											
32.	Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general											
	circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>											
	Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.											
33.	33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?											
	☐ YES ⊠ NO											
>	If YES , identify each segment of information on each page that is subr segment claimed confidential, including the criteria under 45CSR§31-4 Notice – Claims of Confidentiality " guidance found in the General I	4.1, and in accordance with the DAQ's " <i>Precautionary</i>										
	Section III. Certification of	of Information										
34.	. Authority/Delegation of Authority. Only required when someone of Check applicable Authority Form below:	her than the responsible official signs the application.										
\Box		Authority of Partnership										
	_	Authority of Limited Partnership										
	ubmit completed and signed Authority Form as Attachment R.	, i										
	Il of the required forms and additional information can be found under the P	ermitting Section of DAQ's website, or requested by phone.										
	A. Certification of Information. To certify this permit application, a Re 28) or Authorized Representative shall check the appropriate box and sign											
Cer	ertification of Truth, Accuracy, and Completeness											
app reas stat Env and bus	the undersigned Responsible Official / Authorized Representate plication and any supporting documents appended hereto, is true, accurate asonable inquiry I further agree to assume responsibility for the constructionary source described herein in accordance with this application and avironmental Protection, Division of Air Quality permit issued in accordant described regulations of the West Virginia Division of Air Quality and W.Va. Codesiness or agency changes its Responsible Official or Authorized Representified in writing within 30 days of the official change.	ate, and complete based on information and belief after tion, modification and/or relocation and operation of the any amendments thereto, as well as the Department of ce with this application, along with all applicable rules § \$22-5-1 et seq. (State Air Pollution Control Act). If the										

Except for requirements identified in the Title Nath that, based on information and belief formed a compliance with all populations requirements. SIGNATURE AR716ECE3A784BR. (Please of Signe) 35B. Printed name of signee: Mike Lauderbau						
35D. E-mail: regulatory@eqt.com	36E. Phone: 844-378-5263	36F. FAX:				
33D. E-mail. regulatory@eqt.com	30L. 1 Hone. 044-370-3203	301 . 1 AX.				
36A. Printed name of contact person (if differe	nt from above): James Knibloe	36B. Title: Senior Environmental Engineer				
36C. E-mail: james.knibloe@eqt.com	36E. FAX:					
PLEASE CHECK ALL APPLICABLE ATTACHMEN	TS INCLUDED WITH THIS PERMIT APPLICAT	TION:				
Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Sche Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram Attachment G: Process Description Attachment H: Material Safety Data Sheets (Note Attachment I: Emission Units Table Attachment J: Emission Points Data Summand	Attachment L: Emission dule	 △ Attachment K: Fugitive Emissions Data Summary Sheet △ Attachment L: Emissions Unit Data Sheet(s) △ Attachment M: Air Pollution Control Device Sheet(s) △ Attachment N: Supporting Emissions Calculations △ Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans △ Attachment P: Public Notice △ Attachment Q: Business Confidential Claims △ Attachment R: Authority Forms △ Attachment S: Title V Permit Revision Information △ Application Fee 				
Please mail an original and three (3) copies of th address listed on the firs	e complete permit application with the signa t page of this application. Please DO NOT fa					
FOR AGENCY USE ONLY – IF THIS IS A TITLE V Forward 1 copy of the application to the Title For Title V Administrative Amendments: NSR permit writer should notify Title For Title V Minor Modifications: Title V permit writer should send apple NSR permit writer should notify Title For Title V Significant Modifications processes NSR permit writer should notify a Title Public notice should reference both 4 EPA has 45 day review period of a dra	e V Permitting Group and: V permit writer of draft permit, ropriate notification to EPA and affected stat V permit writer of draft permit. ed in parallel with NSR Permit revision: e V permit writer of draft permit, 5CSR13 and Title V permits,	es within 5 days of receipt,				

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

ATTACHMENT A – CURRENT BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:
MOUNTAIN VALLEY PIPELINE, LLC
625 LIBERTY AVE, SUITE 1700
PITTSBURGH, PA 15222-0000

BUSINESS REGISTRATION ACCOUNT NUMBER:

2305-4787

This certificate is issued on:

04/8/2015

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued

This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L0521552192

ATTACHMENT B – MAP

37,86801, -80,75776

ATTACHMENT B – AREA MAP

Figure 1 – 0.25 mile Radius Map of Stallworth Compressor Station

UTM Northing (KM): 4,191.198 UTM Easting (KM): 521.305 Elevation: ~2,785 ft

ATTACHMENT C - INSTALLATION AND START-UP SCHEDULE

Unit	Installation Schedule	Startup Schedule
Solar Titan 130E Turbine Upgrades (S001-S002) Solar Titan 130E Turbines (S0021-S0022) Fuel Gas Heater (S023) Microturbines (S024-S026)	Starting in 2Q 2027	June 2028

ATTACHMENT D - REGULATORY DISCUSSION

This section documents the applicability determinations made for Federal and State air quality regulations. The monitoring, recordkeeping, reporting, and testing plan is presented in Attachment O. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- Prevention of Significant Deterioration (PSD) permitting;
- ▶ Non-Attainment New Source Review (NNSR) permitting;
- ▶ Title V of the 1990 Clean Air Act Amendments;
- ▶ New Source Performance Standards (NSPS);
- ▶ National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- West Virginia State Implementation Plan (SIP) regulations.

This section summarizes applicable regulatory requirements and provides determinations of non-applicability for select regulations. The proposed project does not alter the existing regulatory applicability for the station. Accordingly, only those regulations with potential relevance to the proposed changes are discussed. Regulations that are categorically non-applicable to the station's operations (e.g., NSPS Subpart J – Standards of Performance for Petroleum Refineries) are not addressed.

PSD and NNSR Source Classification

Federal construction permitting programs regulate new and modified sources of attainment pollutants under PSD and new and modified sources of non-attainment pollutants under NNSR. PSD regulations apply when a new source is constructed in which emissions exceed PSD major source thresholds, an existing minor source undergoes a modification in which emission increases exceed PSD major source thresholds, or an existing major source undergoes a modification in which emission increases exceed PSD significant emission rates. The Stallworth Compressor Station will remain a minor source with respect to PSD because, as shown in Attachment N, the project will not increase the source's potential to emit above the applicable PSD threshold of 250 tons per year (tpy) for any NSR-regulated pollutant. As such, PSD permitting is not triggered.

NNSR regulations apply only in areas designated as non-attainment. The Stallworth Compressor Station is located in Fayette County, which is designated as attainment/unclassifiable for all criteria pollutants.¹ Therefore, NNSR regulations do not apply to the Stallworth Compressor Station.

Title V Operating Permit Program

Title 40 of the Code of Federal Regulations, Part 70 (40 CFR 70) establishes the Title V operating permit program. West Virginia has incorporated the federal provisions of this program into its Title V operating permit program in West Virginia 45 CSR 30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP and 100 tpy of all other regulated pollutants. The potential emissions of NO_X and CO are above the corresponding thresholds. Therefore, the Stallworth Compressor Station is a major source for Title V purposes. Mountain Valley will submit the Title V application within twelve months of startup in accordance with 45 CSR 30-4.1.a.2.

¹ U.S. EPA Greenbook, Nonattainment Areas for Criteria Pollutants (Green Book) | US EPA, as of July 31, 2025.

New Source Performance Standards

NSPS, located in 40 CFR Part 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The potential applicability of NSPS standards to the operations at the Stallworth Compressor Station are:

- ▶ 40 CFR Part 60 Subpart Dc Steam Generating Units;
- ▶ 40 CFR Part 60 Subpart GG Stationary Gas Turbines;
- ▶ 40 CFR Part 60 Subpart KKKK, KKKKa Stationary Combustion Turbines; and
- ▶ 40 CFR Part 60 Subpart OOOO, OOOOa, OOOOb Crude Oil and Natural Gas Facilities.

NSPS Subpart Dc – Steam Generating Units

This subpart applies to steam generating units of various sizes, all greater than 10 MMBtu/hr. The project does not include any steam generating units with a heat input greater than 10 MMBtu/hr. Therefore, the requirements of these subparts do not apply.

NSPS Subpart GG – Stationary Gas Turbines

This subpart applies to stationary gas turbines with a heat input at peak load equal to or greater than 10 MMBtu/hr, based on the lower heating value of the fuel, commencing construction after October 3, 1977. The Solar Turbines (both proposed and existing) meet this heat input threshold; however, they are subject to Subpart KKKK. Per §60.4305(b), if stationary combustion turbines are subject to Subpart KKKK, they are exempt from the requirements outlined in Subpart GG. Therefore, this rule does not apply to either the proposed or modified units.

NSPS Subpart KKKK, KKKKa – Stationary Combustion Turbines

Subpart KKKK, Standards of Performance for Stationary Combustion Turbines, applies to stationary combustion units with a heat input at peak load equal to or greater than 10 MMBtu/hr, based on the higher heating value of the fuel, and for which construction, modification, or reconstruction commenced after February 18, 2005.

The proposed Solar turbines for the Stallworth Compressor Station will be subject to the NO_X emissions limitations in §60.4320(a). Turbines with a rated capacity of $50 < MMBtu/hr \le 850 MMBtu/hr$ at peak load are limited to NO_X emissions of 25 ppm at 15% O_2 when firing natural gas. The Solar turbines that will be installed at the station are equipped with lean pre-mix combustion technology and are guaranteed by the manufacturer to emit a maximum of 9 ppm of NO_X at 15% O_2 under variable turbine load conditions when firing natural gas. This vendor guarantee is well below the Subpart KKKK standard.

Mountain Valley will perform annual performance tests in accordance with § 60.4340(a) and § 60.4400 to demonstrate compliance with the NO_X emission limitations, or as an alternative, will continuously monitor the appropriate parameters to determine whether the turbine is operating in low-NO_X mode in accordance with § 60.4340(b)(2)(ii) and § 60.4355(a). The Solar turbine must also comply with the SO₂ emission limits per § 60.4330. Mountain Valley will comply with the SO₂ requirements by the exclusive use of natural gas which contains total potential sulfur emissions less than 0.060 lb SO₂/MMBtu heat input in accordance with §60.4330(a)(2).

The existing turbines are subject to Subpart KKKK. The proposed project includes converting the existing turbines from T130 to T130E units, which will result in an increase in horsepower and fuel flow. However, the turbine combustion technology in the converted unit reduces the NO_X emissions from 15 ppm to 9 ppm. As a result, hourly emissions of NO_X will not increase and therefore the turbines would not be modified under 40 CFR § 60.14 for NO_X . However, since fuel flow will increase, hourly emissions of SO_2 would increase, which would trigger a modification. Subpart KKKKa, discussed below, may apply to the modified unit.

The proposed new microturbines are below the heat input applicability threshold and, therefore, are not subject to Subpart KKKK.

EPA recently proposed regulations to revise the NSPS for new, modified, or reconstructed combustion turbines under 40 CFR Part 60, Subpart KKKKa. Under the proposed rule, combustion turbines constructed, modified, or reconstructed after December 13, 2024 must meet more stringent NOx emission standards. EPA has announced that it will issue a final Subpart KKKKa rule in November 2025. Once the rule becomes final, Mountain Valley will evaluate its applicability to this project.

NSPS Subpart 0000, 0000a, 0000b - Crude Oil and Natural Gas Facilities

Subpart OOOO – Standards of Performance for Crude Oil and Natural Gas Facilities, applies to affected facilities that were constructed, reconstructed, or modified after August 23, 2011, and on or before September 18, 2015. As the proposed project will be constructed outside of these applicability dates, Subpart OOOO is not applicable.

Subpart OOOOa – Standards of Performance for Crude Oil and Natural Gas Facilities, establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC), greenhouse gas (as methane), and sulfur dioxide (SO_2) emissions from affected facilities in the crude oil and natural gas source category that commence construction, modification, or reconstruction after September 18, 2015, and on or before December 6, 2022. As the proposed project will be constructed outside of these applicability dates, Subpart OOOOa is not applicable.

Subpart OOOOb applies to affected facilities in the crude oil and natural gas source category that were constructed, reconstructed, or modified after December 6, 2022. The following sections discuss the applicability of Subpart OOOOb to the proposed project. Note that EPA has issued an interim final rule to Subpart OOOOb extending certain compliance deadlines. EPA has also announced a future proposed rule to reconsider Subpart OOOOb. Mountain Valley will evaluate changes to applicability and requirements upon release of such rule.

Centrifugal Compressors

There are two existing centrifugal compressors. The existing compressors are not being modified or reconstructed as part of the project. Therefore, the existing compressors are not subject to Subpart OOOOb.

As part of the proposed project, two new dry seal reciprocating compressors will be subject to Subpart OOOOb. Mountain Valley will comply with the requirements as outlined in § 60.5380b by either:

▶ Making initial and periodic measurements of volumetric flow to show it does not exceed 10 standard cubic feet per minute (scfm) per seal or changing or replacing the unit within 90 days after a measurement that exceeds 10 scfm per seal and measuring flow to confirm repair; or

▶ Replacing the seals on or before 8,760 hours of operation after startup, or every 8,760 hours after the previous flow rate measurement, or on or before 8,760 hours of operation after the date of the most recent dry seal replacement.

Pneumatic Controllers and Pumps

There are no natural gas driven process controllers or pumps as part of the proposed project. Therefore, Subpart OOOOb is not applicable to this equipment category for the proposed project.

Storage Vessels

The proposed project does not include construction of new tanks. Additionally, the proposed project will not result in an increase in water throughput through the existing pipeline fluids storage vessel beyond the original potential throughput. As such, the existing storage vessels at the facility will not be modified.² Accordingly, Subpart OOOOb requirements for storage vessels as affected facilities are not triggered.

Fugitive Components

Subpart OOOOb standards for equipment leaks at natural gas compressor stations apply to the group of all fugitive components at a natural gas compressor station. The addition of compressors will modify the existing compressor station with respect to fugitive components. Mountain Valley will monitor all fugitive emission components with an optical gas imaging (OGI) device and repair all sources of fugitive emissions in accordance with § 60.5397b. Mountain Valley will develop a monitoring plan, conduct surveys on a quarterly basis and comply with the applicable recordkeeping and reporting requirements of the rule.

National Emission Standards for Hazardous Air Pollutants

Regulatory requirements for facilities subject to NESHAP standards, otherwise known as Maximum Available Control Technology (MACT) Standards for source categories, are contained in 40 CFR Part 63. 40 CFR Part 61 NESHAP standards are defined for specific pollutants while Part 63 NESHAPs are defined for source categories where allowable emission limits are established on the basis of a MACT determination for a particular major source. A major source of HAP is defined as having potential emissions in excess of 25 tpy for total HAPs or potential emissions in excess of 10 tpy for any individual HAP. Part 63 NESHAPs apply to sources in specifically regulated industrial source categories (CAA Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type.

The proposed potential HAP emissions from the Stallworth Compressor Station are below the major source thresholds (i.e., less than 10 tpy of individual HAP and 25 tpy of total HAP) and therefore the facility is an area source of HAP.

The potential applicability of NESHAP standards to the operations at the Stallworth Compressor Station are:

- NESHAP Subpart HH Oil and Natural Gas Production Facilities;
- ▶ NESHAP Subpart HHH Natural Gas Transmission and Storage Facilities;
- ▶ NESHAP Subpart YYYY Stationary Combustion Turbines;
- ▶ NESHAP Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers Area Sources

² Note that the throughput modification definition in 60.5365b(e)(3)(ii)(D) is not effective until January 22, 2027.

NESHAP Subpart HH – Oil and Natural Gas Production Facilities

This standard applies to sources at natural gas production facilities that are major or area sources of HAP emissions. The Stallworth Compressor Station is a transmission facility; therefore, this facility is not subject to Subpart HH.

NESHAP Subpart HHH – Natural Gas Transmission and Storage Facilities

This standard applies to sources at oil and natural gas transmission and storage facilities that are major sources of HAP emissions and that transport or store natural gas prior to entering the pipeline to a local distribution company or to a final end user (if there is no local distribution company). The facility is located downstream of the point of custody transfer (after processing and/or treatment in the production sector), but upstream of the distribution sector and is therefore considered part of the source category. Although the Stallworth Compressor Station is a transmission facility, it is an area source of HAP emissions. Therefore, it is not subject to Subpart HHH.

NESHAP Subpart YYYY – Stationary Combustion Turbines

Stationary combustion turbines located at facilities that are major sources of HAPs are potentially subject to Subpart YYYY, NESHAP for Stationary Combustion Turbines. Subpart YYYY establishes emissions and operating limitations for lean premix gas-fired, lean premix oil-fired, diffusion flame gas-fired and diffusion flame oil-fired stationary combustion turbines. The Stallworth Compressor Station is an area source of HAP and therefore is not subject to the requirements of this subpart.

NESHAP Subpart JJJJJJ – Industrial, Commercial, and Institutional Boilers Area Sources

This standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources of HAP. The units at the Stallworth Compressor Station are gas-fired boilers as defined by the rule and therefore are not subject, per 63.11195(e).

West Virginia SIP Regulations

The proposed project at the station is potentially subject to regulations contained in the West Virginia Code of State Rules, Title 45 (Code of State Rules). The Code of State Rules fall under two main categories: those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors

According to 45 CSR 4-3.1:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The station is generally subject to this requirement. Mountain Valley will operate all equipment in a manner as to avoid causing or contributing to an objectionable odor at any location occupied by the public.

45 CSR 13: Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, Permission to Commence Construction, and Procedures for Evaluation

This rule establishes procedures for permitting and reporting of stationary sources. Mountain Valley will comply with the requirements of this rule by complying with the applicable general provisions in the facility's construction and operating permits.

45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CFR Part 60 by reference. As noted above, the facility will comply with all applicable NSPS subparts.

45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage, and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the Stallworth Compressor Station, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, Mountain Valley will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

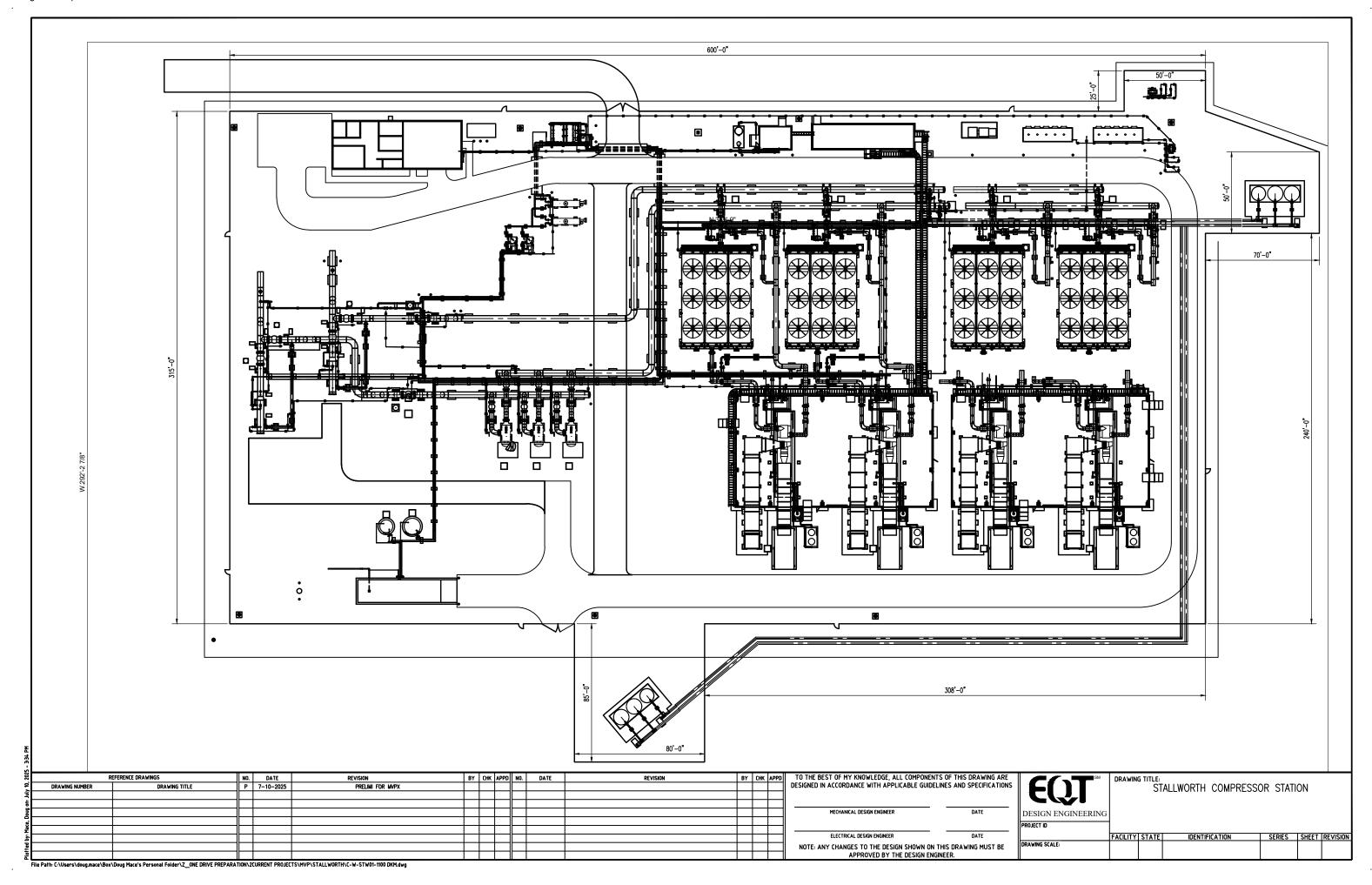
45 CSR 21: To Prevent and Control Air Pollution from the Emission of Volatile Organic Compounds

45 CSR 21 applies only to sources located in Putnam County, Kanawha County, Cabell County, Wayne County, and Wood County, West Virginia. The Stallworth Compressor Station is located in Fayette County. Therefore, the requirements of this section do not apply to the station.

45 CSR 22: Air Quality Management Fee Program

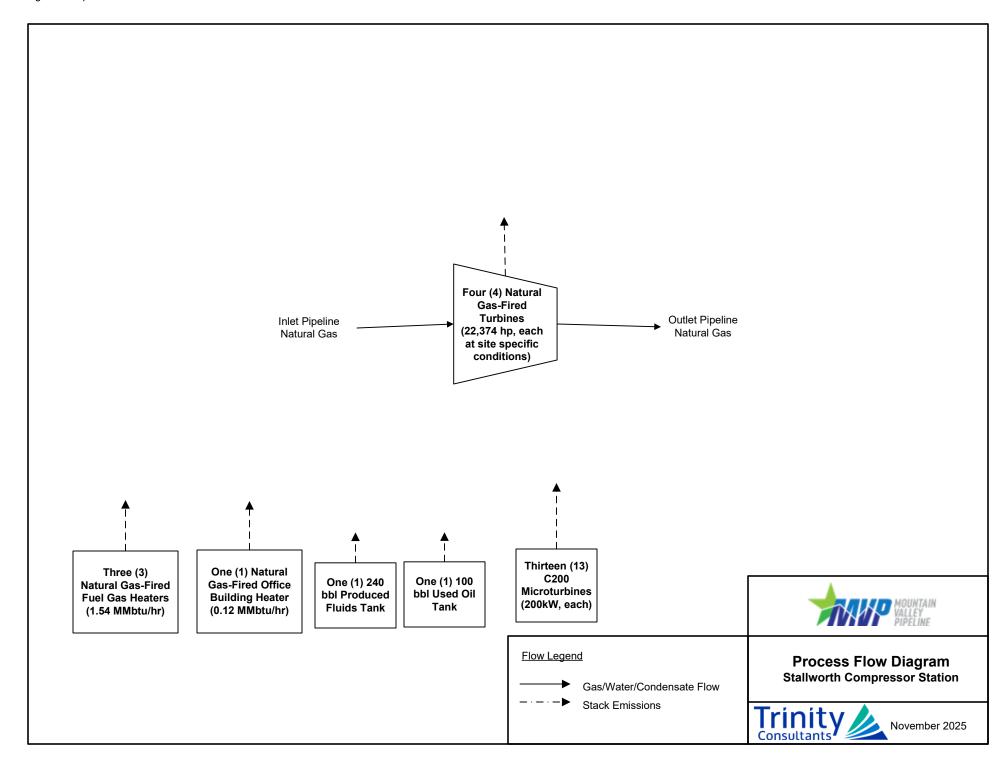
This regulation establishes a program to collect fees for certificates to operate and for permits to construct, modify or relocate sources of air pollution. Mountain Valley will comply with this rule by paying all required permitting fees.

45 CSR 34: Emissions Standards for Hazardous Air Pollutants


45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CFR Parts 61 and 63 by reference. As noted above, no NESHAPs are applicable to the station.

Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the Stallworth Compressor Station reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the station.


Docusign Envelope ID: 996C6861-F034-4FAB-A5C0-DAAFB140B80C

ATTACHMENT E – PLOT PLAN

Docusign Envelope ID: 996C6861-F034-4FAB-A5C0-DAAFB140B80C

ATTACHMENT F – PROCESS FLOW DIAGRAM

ATTACHMENT G – PROCESS DESCRIPTION

Mountain Valley Pipeline, LLC (Mountain Valley) is submitting this application for the modification of an existing natural gas transmission compressor located in Fayette County, West Virginia (Stallworth Compressor Station).

Natural gas enters the station via the transmission pipeline system and is compressed using one of the four natural gas-fired turbines (each rated at 22,374 hp at site-specific conditions, and ISO rated at 23,470 hp each). The compressed natural gas flows into the pipeline to be transported further along the transmission system. The station is also equipped with three fuel gas heaters, one office building heater, one produced fluids storage tank, one used oil storage tank, and thirteen natural gas-fired microturbine generators (each rated at 200 kW) providing electricity to the station. Collected water from separators, filters, etc. is sent to the produced fluids tank. Once the tanks are filled, the contents are loaded into trucks for transport.

A process flow diagram is included as Attachment F.

Docusign Envelope ID: 996C6861-F034-4FAB-A5C0-DAAFB140B80C

ATTACHMENT I – EMISSION UNITS TABLE

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

		· · · · · · · · · · · · · · · · · · ·				-
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
S001	E001	Solar Turbine #1	TBD	22,374 HP (site-specific conditions)	Modified (2028)	N/A
S002	E002	Solar Turbine #2	TBD	22,374 HP (site-specific conditions)	Modified (2028)	N/A
S021	E021	Solar Turbine #3	TBD	22,374 HP (site-specific conditions)	Proposed (2028)	N/A
S022	E022	Solar Turbine #4	TBD	22,374 HP (site-specific conditions)	Proposed (2028)	N/A
S003	E003	Microturbine Generator #1	2020	200 KW	Existing	N/A
S004	E004	Microturbine Generator #2	2020	200 KW	Existing	N/A
S005	E005	Microturbine Generator #3	2020	200 KW	Existing	N/A
S006	E006	Microturbine Generator #4	2020	200 KW	Existing	N/A
S007	E007	Microturbine Generator #5	2020	200 KW	Existing	N/A
S008	E008	Microturbine Generator #6	2020	200 KW	Existing	N/A
S009	E009	Microturbine Generator #7	2020	200 KW	Existing	N/A
S010	E010	Microturbine Generator #8	2020	200 KW	Existing	N/A
S011	E011	Microturbine Generator #9	2020	200 KW	Existing	N/A
S012	E012	Microturbine Generator #10	2020	200 KW	Existing	N/A
S024	E024	Microturbine Generator #11	TBD	200 KW	Proposed (2028)	N/A
S025	E025	Microturbine Generator #12	TBD	200 KW	Proposed (2028)	N/A
S026	E026	Microturbine Generator #13	TBD	200 KW	Proposed (2028)	N/A
S013	E013	Fuel Gas Heater	2020	1.54 MMBtu/hr	Existing	N/A
S014	E014	Fuel Gas Heater	2020	1.54 MMBtu/hr	Existing	N/A
S023	E023	Fuel Gas Heater	TBD	1.54 MMBtu/hr	Proposed (2028)	N/A
S015	E015	Produced Fluids Tank	2020	10,080 gallons	Existing	N/A
S016	E016	Used Oil Tank	2020	4,200 gallons	Existing	N/A
S017	E017	Office Building Heater	2020	0.120 MMBtu/hr	Existing	N/A

	Emission Units Table
Page of	03/2007

S018	E018	Fugitives	TBD	N/A	Revised Count (2028)	N/A
S019	E019	Liquid Loading	2020	126,000 gal/yr	Existing	N/A
S020	E020	Blowdowns	TBD	N/A	Revised Count (2028)	N/A

 $^{^1}$ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. 2 For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ New, modification, removal ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J – EMISSION POINTS DATA SUMMARY SHEET

Attachment J EMISSION POINTS DATA SUMMARY SHEET

						T	able 1:	Emissions Da	ta						
Emission Point ID No. (Must match Emission Units Table	h Type¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
& Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	conditions, Solid, Liquid or Gas/Vapor)		
S001	Upward Vertical stack	E001	Solar Turbine	NA	NA	NA	NA	NOx CO VOC SO2 PM/PM10/PM2.5 HAPs CO2e	5.64 5.72 0.66 0.57 1.68 0.54 19,901	24.72 25.26 2.97 2.51 7.38 2.36 87,295	5.64 5.72 0.66 0.57 1.68 0.54 19,901	24.72 25.26 2.97 2.51 7.38 2.36 87,295	Gas/Vapor	O^A O^A O^A O^A O^A $O^{A,B}$ $O^{A,C}$	
S002	Upward Vertical stack	E002	Solar Turbine	NA	NA	NA	NA	NOx CO VOC SO2 PM/PM10/PM2.5 HAPs CO2e	5.64 5.72 0.66 0.57 1.68 0.54 19,901	24.72 25.26 2.97 2.51 7.38 2.36 87,295	5.64 5.72 0.66 0.57 1.68 0.54 19,901	24.72 25.26 2.97 2.51 7.38 2.36 87,295	Gas/Vapor	O^A O^A O^A O^A $O^{A,B}$ $O^{A,C}$	
S021	Upward Vertical stack	E021	Solar Turbine	NA	NA	NA	NA	NOx CO VOC SO2 PM/PM10/PM2.5 HAPs CO2e	5.64 5.72 0.66 0.57 1.68 0.54 19,901	24.72 25.26 2.97 2.51 7.38 2.36 87,295	5.64 5.72 0.66 0.57 1.68 0.54 19,901	24.72 25.26 2.97 2.51 7.38 2.36 87,295	Gas/Vapor	O^A O^A O^A O^A O^A $O^{A,B}$ $O^{A,C}$	
S022	Upward Vertical stack	E022	Solar Turbine	NA	NA	NA	NA	NOx CO VOC SO2 PM/PM10/PM2.5 HAPs CO2e	5.64 5.72 0.66 0.57 1.68 0.54 19,901	24.72 25.26 2.97 2.51 7.38 2.36 87,295	5.64 5.72 0.66 0.57 1.68 0.54 19,901	24.72 25.26 2.97 2.51 7.38 2.36 87,295	Gas/Vapor	O^A O^A O^A O^A O^A $O^{A,B}$ $O^{A,C}$	
S003	Upward Vertical Stack	E003	Microturbine	NA	NA	NA	NA	NOx CO VOC SO2 PM/PM10/PM2.5 HAPs CO2e	0.08 0.22 0.02 0.01 0.02 <0.01 266	0.35 0.96 0.09 0.03 0.07 0.01 1,166	0.08 0.22 0.02 0.01 0.02 <0.01 266	0.35 0.96 0.09 0.03 0.07 0.01 1,166	Gas/Vapor	$\begin{array}{c} O^A \\ O^A \\ O^D \\ O^D \\ O^D \\ O^{A,C} \end{array}$	

J	1	1	T		NT A	NIA	NTA	NO	0.00	0.25	0.00	0.25			
S004	Upward	E004	Microturbine	NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O ^A	
	Vertical							CO	0.22	0.96	0.22	0.96		O ^A	
	Stack							VOC	0.02	0.09	0.02	0.09	G 77	O ^A	
								SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O_D	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07		O ^D	
								HAPs	< 0.01	0.01	< 0.01	0.01		O ^D	
								CO2e	266	1,166	266	1,166		$O^{A,C}$	
S005	Upward	E005	Microturbine	NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O^{A}	
5005	Vertical	E003	Wheroturome					CO	0.22	0.96	0.22	0.96		O^{A}	
	Stack							VOC	0.02	0.09	0.02	0.09		O^A	
	Stack							SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O_D	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07		O_D	
								HAPs	< 0.01	0.01	< 0.01	0.01		O_D	
								CO2e	266	1,166	266	1,166		$O^{A,C}$	
S006	17 1	E006	MC 4 11	NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O^A	
5006	Upward Vertical	E006	Microturbine					CO	0.22	0.96	0.22	0.96		O^{A}	
								VOC	0.02	0.09	0.02	0.09		O^{A}	
	Stack							SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O_D	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07	1	O_D	
								HAPs	< 0.01	0.01	< 0.01	0.01		O_D	
								CO2e	266	1,166	266	1,166		$O^{A,C}$	
				NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O ^A	
S007	Upward	E007	Microturbine	1112	1,11	1 1.1	1.11	CO	0.22	0.96	0.22	0.96		O^A	
	Vertical							VOC	0.02	0.09	0.02	0.09		O^A	
	Stack							SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O_D	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07	Gas/ vapor	O_D	
								HAPs	< 0.01	0.01	< 0.01	0.01		O_D	
								CO2e	266	1,166	266	1,166		$O^{A,C}$	
				NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O ^A	
S008	Upward	E008	Microturbine	1112	1,11	1 1.1	1.11	CO	0.22	0.96	0.22	0.96		O ^A	
	Vertical							VOC	0.02	0.09	0.02	0.09		O^A	
	Stack							SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O_D	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07	Gas/ vapor	O_D	
								HAPs	< 0.01	0.01	< 0.01	0.01		O_D	
								CO2e	266	1,166	266	1,166		$O^{A,C}$	
				NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O ^A	
S009	Upward	E009	Microturbine	INA	INA	INA	INA		0.08	0.33	0.08	0.96		O ^A	
	Vertical							CO	0.22	0.96	0.22	0.96		O ^A	
	Stack							VOC	0.02	0.09	0.02	0.09	Gog/Vomor	O _D	
								SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O _D	
								PM/PM10/PM2.5	< 0.02	0.07	< 0.02	0.07		O _D	
								HAPs CO2e	266	1,166	266	1,166		O ^{A,C}	
				NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O ^A	
S010	Upward	E010	Microturbine	11/1	14/7	14/1	11/1	CO	0.08	0.33	0.08	0.96		O ^A	
	Vertical							VOC	0.02	0.90	0.02	0.90		O ^A	
	Stack								0.02	0.03	0.02	0.03	Gas/Vapor	O_D	
								SO2	0.01	0.03	0.01	0.03	Gas/ v apor	O _D	
								PM/PM10/PM2.5	< 0.02	0.07	< 0.02	0.07		O_D	
								HAPs CO2e	266	1,166	266	1,166		$O^{A,C}$	
			+	NA	NA	NA	NA			-				_	
S011	Upward	E011	Microturbine	INA	INA	INA	INA	NOx	0.08 0.22	0.35 0.96	0.08 0.22	0.35 0.96		O^A O^A	
	Vertical							CO	0.22	0.96	0.22	0.96		O ^A	
	Stack							VOC	0.02	0.09	0.02	0.09	Cas/Van-:	O _D	
								SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O _D	
								PM/PM10/PM2.5	< 0.02	0.07	< 0.02	0.07		O _D	
								HAPs			266			$O^{A,C}$	
								CO2e	266	1,166	200	1,166		Unic	

		1	T T		NT A	NTA	NTA	NO	0.00	0.25	0.00	0.25	ı		
S012	Upward	E012	Microturbine	NA	NA	NA	NA	NOx	0.08 0.22	0.35 0.96	0.08 0.22	0.35 0.96		O^A O^A	
	Vertical							CO	0.22	0.96				O ^A	
	Stack							VOC	0.02	0.09	0.02 0.01	0.09 0.03	C N	O _D	
								SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O _D	
								PM/PM10/PM2.5	< 0.02	0.07	< 0.02	0.07		O _D	
								HAPs	266		266			O ^{A,C}	
					**.			CO2e		1,166		1,166			
S024	Upward	E024	Microturbine	NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O^A	S012
	Vertical							CO	0.22	0.96	0.22	0.96		O ^A	
	Stack							VOC	0.02	0.09	0.02	0.09		O_{R}^{A}	
								SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O_D	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07	_	O_D	
								HAPs	< 0.01	0.01	< 0.01	0.01		O_D	
								CO2e	266	1,166	266	1,166		$O^{A,C}$	
S025	11	E025	Microturbine	NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O^A	S012
3023	Upward Vertical	E023	Microturbine					CO	0.22	0.96	0.22	0.96		O^A	3012
	Stack							VOC	0.02	0.09	0.02	0.09		O^A	
	Stack							SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O_D	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07	Sas rupor	O_D	
								HAPs	< 0.01	0.01	< 0.01	0.01		O_D	
								CO2e	266	1,166	266	1,166		$O^{A,C}$	
0026		E027	NC	NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O^A	6012
S026	Upward Vertical	E026	Microturbine					CO	0.22	0.96	0.22	0.96		O^A	S012
								VOC	0.02	0.09	0.02	0.09		O^A	
	Stack							SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O_D	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07	Gas/ vapor	O_D	
								HAPs	< 0.01	0.01	< 0.01	0.01		O_D	
								CO2e	266	1,166	266	1,166		$O^{A,C}$	
				NA	NA	NA	NA	NOx	0.15	0.64	0.15	0.64		O^F	
S013	Upward	E013	Fuel Gas					CO	0.12	0.54	0.12	0.54		O^{F}	
	Vertical		Heater					VOC	0.01	0.04	0.01	0.04		O_{F}	
	stack							SO2	< 0.01	< 0.01	< 0.01	< 0.01	Gas/Vapor	O_{F}	
								PM/PM10/PM2.5	0.01	0.05	0.01	0.05		O^{F}	
								CO2e	180	789	180	789		O_C	
~~		7044	- 10	NA	NA	NA	NA	NOx	0.15	0.64	0.15	0.64		O^F	
S014	Upward	E014	Fuel Gas					CO	0.12	0.54	0.12	0.54		O^{F}	
	Vertical		Heater					VOC	0.01	0.04	0.01	0.04		O_{F}	
	stack							SO2	< 0.01	< 0.01	< 0.01	< 0.01	Gas/Vapor	O^F	
								PM/PM10/PM2.5	0.01	0.05	0.01	0.05		O^{F}	
								CO2e	180	789	180	789		O_C	
0022	77 1	E022	F 16	NA	NA	NA	NA	NOx	0.15	0.64	0.15	0.64		O_{L}	
S023	Upward	E023	Fuel Gas					CO	0.12	0.54	0.12	0.54		O^{F}	
	Vertical		Heater					VOC	0.01	0.04	0.01	0.04		O^{F}	
	stack							SO2	< 0.01	< 0.01	< 0.01	< 0.01	Gas/Vapor	O^{F}	
								PM/PM10/PM2.5	0.01	0.05	0.01	0.05		O^{F}	
								CO2e	180	789	180	789		O_C	
		1_		NA	NA	NA	NA	İ	İ		İ				
S-015	Upward	E-015	Produced			- 1.2		VOC	< 0.01	< 0.01	< 0.01	< 0.01			
	Vertical		Fluids					HAP	< 0.01	< 0.01	< 0.01	< 0.01	Gas/Vapor	O_{E}	
	Stack		Storage Tank					CO2e	3	14	3	14			
S-016	Upward	E-016	Used Oil	NA	NA	NA	NA								
2-010	Vertical	E-010	Storage Tank					VOC	< 0.01	< 0.01	< 0.01	< 0.01			
	Stack		Storage Talik					HAP	< 0.01	< 0.01	< 0.01	< 0.01	Gas/Vapor	O_E	
	Stack												1		
			1												·

S-017	Upward Vertical stack	E-017	Office Building Heater	NA	NA	NA	NA	NOx CO VOC SO2 PM/PM10/PM2.5 CO2e	0.01 0.01 <0.01 <0.01 <0.01 14	0.05 0.04 <0.01 <0.01 <0.01 62	0.01 0.01 <0.01 <0.01 <0.01 14	0.05 0.04 <0.01 <0.01 <0.01 62	Gas/Vapor	O^F O^F O^F O^F O^C	
S-018	Fugitives	E-018	Fugitives including Haul Roads	NA	NA	NA	NA	VOC PM/PM10/PM2.5 HAP CO2e	0.14 0.03 <0.01 317	0.60 0.12 <0.01 1,389	0.14 0.03 <0.01 317	0.60 0.12 <0.01 1,389	Gas/Vapor	O _C O _H O _G	
S-019	Liquid Loading	L1	Liquid Loading	NA	NA	NA	NA	VOC	0.01	0.05	0.01	0.05	Gas/Vapor	O _I	
S-020	Blowdowns	E-20	Blowdowns including Pigging	NA	NA	NA	NA	VOC HAP CO2e	3.67 0.01 8,539	16.09 0.02 37,403	3.67 0.01 8,539	16.09 0.02 37,403	Gas/Vapor	O^G O^H O^C	

- A- Manufacturer's specific pollutant emission factor
- B- AP-42 Section 3.1. Table 3.1-3 "Emission Factors for HAPs from Natural Gas Fired Stationary Gas Turbines". April 2000, except for Formaldehyde which is manufacturer's spec.
- C- 40 CFR 98, Subpart C for natural gas fired combustion.
- D- AP-42 Section 3.1 Table 3.1-2a
- E- BR&E ProMax software
- F- AP-42 Section 1.4 Tables 1.4-1, 1.4-2 and 1.4-3, July 1998.
- G- EPA Leak Protocol, Table 2-4, 40 CFR 98 Subpart W, & Site-Specific Gas Analysis
- H- AP-42 Table 13.2.2-2 (Final, 11/06)
- I- AP-42 Section 5.2 Table 5.2-1

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- ¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- ² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- ³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₃, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.
- ⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- ⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).
- Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

ATTACHMENT K – FUGITIVE EMISSIONS DATA SUMMARY SHEET

	ATTACHMENT K – FUGITIVE EMISSIONS SUMMARY SHEET								
	Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary.								
Source/Equipm	ent: Fugitiv	e Emissions							
Leak Detection Method Used Audible, visual, and olfactions Available				☐ Other (please describe)				□ None required	
Is the facility s	ubject to qua	rterly LDAR	nonitoring under 40CFR60 Su	ıbpart OOOOa? ⊠ Yes □ No	. If no, why?				
Component	Closed		Source	of Leak Factors	Stream type (gas, liquid,	Estir	mated Emissions (tpy)		
Туре	Vent System	Count		(EPA, other (specify))		VOC	НАР	GHG (CO ₂ e)	
Pumps	□ Yes ⊠ No			N/A	⊠ Gas □ Liquid □ Both				
Valves	☐ Yes ☑ No	970		Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).			< 0.01	1149.95	
Safety Relief Valves	□ Yes □ No			N/A					
Open Ended Lines	□ Yes ⊠ No	28		Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).		0.01	<0.01	14.75	
Sampling Connections	□ Yes □ No			N/A [
Connections (Not sampling)	□ Yes ⊠ No	2,750	1 1	Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).		0.06	< 0.01	144.90	
Compressors	☐ Yes ☐ No			N/A					
Flanges	□ Yes ⊠ No	770		Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).		0.03	<0.01	79.11	
Other ¹	☐ Yes ☐ No				☐ Gas ☐ Liquid ☐ Both				
¹ Other equipm	ent types ma	y include com	pressor seals, relief valves, di	aphragms, drains, meters, etc.					
Please indicate	if there are a	ny closed ver	t bypasses (include componer	nt):					
Specify all equ	ipment used	in the closed v	vent system (e.g. VRU, ERD.	thief hatches, tanker truck loading	. etc.)				

ATTACHMENT L - EMISSIONS UNIT DATA SHEETS

ATTACHMENT L – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S013	E013	Fuel Gas Heater	2020	Existing	1.54	1052
S014	E014	Fuel Gas Heater	2020	Existing	1.54	1052
S023	E023	Fuel Gas Heater	2028	New	1.54	1052

- Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ ENTER THE FUEL HEATING VALUE IN BTU/STANDARD CUBIC FOOT.

ATTACHMENT L - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. Generator(s) and microturbine generator(s) shall also use this form.

Situit disc i	ise inis joini	•					
Emission Unit ID#1		S024	-S026				
Engine Manufac	turer/Model	Caps	stone				
Manufacturers F	Rated bhp/rpm	26	8.2				
Source Status ²		NS					
Date Installed/ Modified/Removed/Relocated ³		20	028				
Engine Manufac		20	028				
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		Microturbine					
APCD Type ⁷		NA					
Fuel Type ⁸		PQ					
H ₂ S (gr/100 scf)		neg					
Operating bhp/r	pm	268.2					
BSFC (BTU/bhp	o-hr)						
Hourly Fuel Thr	oughput	2167 ft³/hr gal/hr			/hr l/hr		/hr l/hr
Annual Fuel The (Must use 8,760 emergency gene	hrs/yr unless	19 MMft³/yr gal/yr		MMft³/yr gal/yr		MMft³/yr gal/yr	
Fuel Usage or H Operation Meter		Yes ⊠ No □		Yes □ No □		Yes □ No □	
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)
MD	NO _x	0.08	0.35				
MD	СО	0.22	0.96				
MD	VOC	0.02	0.09				
AP	SO ₂	0.01	0.03				
AP	PM ₁₀	0.02	0.07				
AP	Formaldehyde	< 0.01	0.01				
AP	Total HAPs	< 0.01	0.01				
AP	GHG (CO ₂ e)	266	1,166				

2 Enter the Source Status using the following codes:

NS Construction of New Source (installation)
MS Modification of Existing Source

REM Removal of Source

ES Existing Source RS Relocated Source

Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being permitted.

6 Enter the Engine Type designation(s) using the following codes:

2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn

4SLB Four Stroke Lean Burn

7 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

 HEIS
 High Energy Ignition System
 SIPC
 Screw-in Precombustion Chambers

 PSC
 Prestratified Charge
 LEC
 Low Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Catalyst

SCR Lean Burn & Selective Catalytic Reduction

8 Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas /Production Gas D Diesel

9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.

MD Manufacturer's Data AP AP-42

GR GRI-HAPCalcTM OT Other (please list)

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

ATTACHMENT L – CENTRIFUGAL COMPRESSOR DATA SHEET

	re any centrifugal compressors at this facility that commenced n, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
	☐ Yes
	Please list:
Emission Unit ID#	Compressor Description
	re any centrifugal compressors at this facility that commenced ction, modification or reconstruction after September 18, 2015?
	∑ Yes □ No
	Please list:
Emission Unit ID#	Compressor Description
S001	C45-3
S002	C45-3
S021	C45-3
\$022	C45-3

Emission Unit ID#	Compressor Description
S001	C45-3
S002	C45-3
S021	C45-3
S022	C45-3

ATTACHMENT L – BLOWDOWN AND PIGGING OPERATIONS DATA SHEET

Will there be any blowdown and pigging operations that occur at this facility?

∑ Yes ☐ No

Please list:

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	VOC weight fraction	VOC emissions (ton/yr)
Compressor Blowdown	64	170,000	17.6	243.94	0.01	2.60
Compressor Startup	NA	NA	NA	NA	NA	NA
Plant Shutdown	4	1,100,000	17.6	98.65	0.01	1.05
Pig Venting	16	Varies	17.6	7.61	0.01	0.08
Main Gas Filter	36	91,000	17.6	73.45	0.01	0.78

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	HAP weight fraction	HAP emissions (ton/yr)
Compressor Blowdown	64	170,000	17.6	243.94	<0.01	< 0.01
Compressor Startup	NA	NA	NA	NA	NA	NA
Plant Shutdown	4	1,100,000	17.6	98.65	<0.01	<0.01
Pig Venting	16	Varies	17.6	7.61	< 0.01	< 0.01
Main Gas Filter	36	91,000	17.6	73.45	<0.01	<0.01

Attachment L **EMISSIONS UNIT DATA SHEET GENERAL**

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on <i>Equipment List Form</i>): S001, S002, S021, S022
Name or type and model of proposed affected source:
Natural Gas-Fired Solar Titan 130E Turbine - Rated 22,374 HP at site-specific conditions. ISO rating is 23,470 HP
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
NA
Name(s) and maximum amount of proposed material(s) produced per hour:
Does not produce any materials. The turbines compress natural gas.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
External combustion of natural gas
External compastion of natural gas

The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	6. Combustion Data (if applicable):							
	(a) Type and am	Type and amount in appropriate units of fuel(s) to be burned:						
Ν	atural gas – 165,0	090 scf/hr						
	(b) Chemical and and ash:	alysis of pr	oposed fuel(s), exc	eluding coal, in	cluding maxim	um percent sulfur		
N	Natural gas with negligible H ₂ S and ash content.							
	(c) Theoretical co	ombustion	air requirement (A	CF/unit of fue	I):			
		@		°F and		psia.		
	(d) Percent exce	ss air:						
1:	(e) Type and BTU/hr of burners and all other firing equipment planned to be used: 156.39 MMBtu/hr stationary gas turbine							
	(f) If coal is prop coal as it will		source of fuel, ide	ntify supplier a	ind seams and	give sizing of the		
N	A							
	(g) Proposed ma	ıximum de	sign heat input:	156.39	(LHV)	× 10 ⁶ BTU/hr.		
7.	Projected operati	ing schedu	ıle:		ı			
Но	urs/Day 2	24	Days/Week	7	Weeks/Year	52		

8.	. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:					
@	Unknown	°F and		psia		
a.	NO _X	See Emission Calculations in Attachment N	lb/hr	grains/ACF		
b.	SO ₂		lb/hr	grains/ACF		
C.	СО		lb/hr	grains/ACF		
d.	PM ₁₀		lb/hr	grains/ACF		
e.	Hydrocarbons		lb/hr	grains/ACF		
f.	VOCs		lb/hr	grains/ACF		
g.	Pb		lb/hr	grains/ACF		
h.	Specify other(s)	 				
	НАР		lb/hr	grains/ACF		
			lb/hr	grains/ACF		
			lb/hr	grains/ACF		
			lb/hr	grains/ACF		

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
REPORTING Submit report of initial compliance testing in accordance with 40 CFR 60.4375(b) within 60 days of the performance test	TESTING Annual performance testing in accordance with 40 CFR 60.4340(a) to demonstrate compliance with NOx emission limitations
PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE. POSED RECORDKEEPING THAT WILL ACCOMPANY THE
MONITORING.	
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to

Customer EQT		
Job ID		
MVPx - Stallworth		
Inquiry Number		
PI18-89660		
Run By	Date Run	
Marr Cameron H	7-Jul-25	

Engine Model TITAN 130-23502S CS/MD 59F MATCH	
Fuel Type	Water Injection
CHOICE GAS	NO
Engine Emissions Data	
REV. 0.0	

	NOx EMISSIO	NS	CO EMISSIONS		UHC EMISSIONS	
					J [
1 11187 HP 50	0.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	0 Deg. F
PPMvd at 15% O2	9.00		15.00		15.00	
ton/yr	17.94		18.20		10	0.43
Ibm/MMBtu (Fuel LHV)	0.036		0.037		0.	021
lbm/(MW-hr)	0.49		0.50			.29
(gas turbine shaft pwr)					-	
lbm/hr	4.10		4.16] [2	2.38
				1		
2 11083 HP 50	0.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	20.0 Deg. F
PPMvd at 15% O2	9.00		15.00 15.00		5.00	
ton/yr	17.34		17.59 10.08		0.08	
Ibm/MMBtu (Fuel LHV)	0.036		0.037		0.	021
lbm/(MW-hr)	0.48		0.49		0	.28
(gas turbine shaft pwr)					1	
lbm/hr	3.96		4.02] [2	2.30
2 4077C UD 50	00/ Lasal Flan	0775 (4	Dal Hamaidita	CO 00/	T	40.0 Day 5
3 10776 HP 50	0.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	40.0 Deg. F
PPMvd at 15% O2	9.00		15.00 15.00		5.00	
ton/yr	16.57		16.82 9.63		.63	
Ibm/MMBtu (Fuel LHV)	0.036		0.036 0.021		021	
lbm/(MW-hr)	0.47		0.48 0.27		.27	
(gas turbine shaft pwr) Ibm/hr	0.70		0.01		1	-
ibm/hr	3.78		3.84]2	2.20

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Customer	
EQT	
Job ID MVPx - Stallworth	
Run By	Date Run
Marr Cameron H	7-Jul-25
Engine Performance Code	Engine Performance Data
REV. 4.20.2.28.14	REV. 1.0

Model TITAN 130-23502S	
Package Type CS/MD	
Match 59F MATCH	
Fuel System GAS	
Fuel Type CHOICE GAS	

DATA FOR NOMINAL PERFORMANCE

Elevation Inlet Loss Exhaust Loss Accessory on GP Shaft	feet in H2O in H2O HP	2775 4.0 4.0 29.2		
		1	2	3
Engine Inlet Temperature	deg F	0	20.0	40.0
Relative Humidity	%	60.0	60.0	60.0
Driven Equipment Speed	RPM	7208	7117	6977
Specified Load	HP	50.0%	50.0%	50.0%
Net Output Power	HP	11187	11083	10776
Fuel Flow	mmBtu/hr	113.78	110.05	105.37
Heat Rate	Btu/HP-hr	10171	9930	9778
Therm Eff	%	25.017	25.623	26.021
Engine Exhaust Flow	lbm/hr	372797	354211	333928
PT Exit Temperature	deg F	964	966	971
Exhaust Temperature	deg F	877	899	921

Fuel Gas Composition (Volume Percent)

Methane (CH4)	93.83
Ethane (C2H6)	5.18
Propane (C3H8)	0.33
I-Butane (C4H10)	0.02
N-Butane (C4H10)	0.03
I-Pentane (C5H12)	0.0037
N-Pentane (C5H12)	0.0021
Heptane (C7H16)	0.0001
Octane (C8H18)	0.0000
Carbon Monoxide (CO)	0.24
Nitrogen (N2)	0.36
Oxygen (O2)	0.0027
Sulfur Dioxide (SO2)	0.0001
I-Hexene (C6H12)	0.0006
MethylCycloPentane (C6H12)	0.0002
CycloHexane (C6H12)	0.0001
MethylCycloHexane (C7H14)	0.0001
Benzene (C6H6)	0.0000
Toluene (C7H8)	0.0000

Fuel Gas Properties

LHV (Btu/Scf) 947.3 Specific Gravity 0.5855 Wobbe Index at 60F 1238.0

This performance was calculated with a basic inlet and exhaust system. Special equipment such as low noise silencers, special filters, heat recovery systems or cooling devices will affect engine performance. Performance shown is "Expected" performance at the pressure drops stated, not guaranteed.

Notes

Nominal Performance at Site Conditions

Customer EQT		
Job ID		
MVPx - Stallworth		
Inquiry Number		
PI18-89660		
Run By	Date Run	
Marr Cameron H	7-Jul-25	

Engine Model TITAN 130-23502S CS/MD 59F MATCH	
Fuel Type	Water Injection
CHOICE GAS	NO
Engine Emissions Data	

	NOx EMISSIO	ONS	CO EMISS	IONS	UHC E	MISSIONS
1 16780 HP 75	5.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	0 Deg. F
PPMvd at 15% O2	9.00		15.00		19	5.00
ton/yr	21.84		22.16		12	2.69
Ibm/MMBtu (Fuel LHV)	0.036		0.037		0.	021
lbm/(MW-hr)	0.40		0.40).23
(gas turbine shaft pwr)						
lbm/hr	4.99		5.06] [2	2.90
2 16624 HP 75	5.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	20.0 Deg. F
PPMvd at 15% O2	9.00		15.00	15.00 15.00		5.00
ton/yr	21.06		21.37		12.24	
Ibm/MMBtu (Fuel LHV)	0.036		0.037		0.	021
lbm/(MW-hr)	0.39		0.39			.23
(gas turbine shaft pwr)			4.00		1 -	
lbm/hr	4.81		4.88] [2	2.79
3 16163 HP 75	5.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	40.0 Deg. F
PPMvd at 15% O2	9.00	9.00		15.00 15.00		5.00
ton/yr	20.07	20.07		0.36 11.66		1.66
Ibm/MMBtu (Fuel LHV)	0.036	0.036		0.036 0.021		021
lbm/(MW-hr)	0.38	0.38		0.39 0.22).22
(gas turbine shaft pwr) Ibm/hr	4.58		4.65			2.66

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Customer	
EQT	
Job ID MVPx - Stallworth	
Run By	Date Run
Marr Cameron H	7-Jul-25
Engine Performance Code	Engine Performance Data
REV. 4.20.2.28.14	REV. 1.0

Model TITAN 130-23502S	
Package Type CS/MD	
Match 59F MATCH	
Fuel System GAS	
Fuel Type CHOICE GAS	

DATA FOR NOMINAL PERFORMANCE

Elevation Inlet Loss Exhaust Loss Accessory on GP Shaft	feet in H2O in H2O HP	2775 4.0 4.0 29.2		
		1	2	3
Engine Inlet Temperature	deg F	0	20.0	40.0
Relative Humidity	%	60.0	60.0	60.0
Driven Equipment Speed	RPM	8261	8187	8060
Specified Load	HP	75.0%	75.0%	75.0%
Net Output Power	HP	16780	16624	16163
Fuel Flow	mmBtu/hr	138.40	133.57	127.55
Heat Rate	Btu/HP-hr	8248	8035	7891
Therm Eff	%	30.851	31.668	32.244
Engine Exhaust Flow	lbm/hr	424357	406673	386477
PT Exit Temperature	deg F	902	902	905
Exhaust Temperature	deg F	868	879	890

Fuel Gas Composition (Volume Percent)

Methane (CH4)	93.83
Ethane (C2H6)	5.18
Propane (C3H8)	0.33
I-Butane (C4H10)	0.02
N-Butane (C4H10)	0.03
I-Pentane (C5H12)	0.0037
N-Pentane (C5H12)	0.0021
Heptane (C7H16)	0.0001
Octane (C8H18)	0.0000
Carbon Monoxide (CO)	0.24
Nitrogen (N2)	0.36
Oxygen (O2)	0.0027
Sulfur Dioxide (SO2)	0.0001
I-Hexene (C6H12)	0.0006
MethylCycloPentane (C6H12)	0.0002
CycloHexane (C6H12)	0.0001
MethylCycloHexane (C7H14)	0.0001
Benzene (C6H6)	0.0000
Toluene (C7H8)	0.0000

Fuel Gas Properties

LHV (Btu/Scf) 947.3 Specific Gravity 0.5855 Wobbe Index at 60F 1238.0

This performance was calculated with a basic inlet and exhaust system. Special equipment such as low noise silencers, special filters, heat recovery systems or cooling devices will affect engine performance. Performance shown is "Expected" performance at the pressure drops stated, not guaranteed.

Notes

Nominal Performance at Site Conditions

Customer EQT	
Job ID MVPx - Stallworth	
Inquiry Number PI18-89660	
Run By	Date Run
Marr Cameron H	7-Jul-25

Engine Model TITAN 130-23502S CS/MD 59F MATCH		
Fuel Type	Water Injection	
i dei Type	Trater injection	
CHOICE GAS	NO	
1 **	•	

	NOx EMISSIC	NS	CO EMISSIONS		UHC EN	UHC EMISSIONS	
1 22374 HP 100	.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	0 Deg. F	
PPMvd at 15% O2	9.00		15.00] [1:	5.00	
ton/yr	24.69		25.05		14	1.35	
Ibm/MMBtu (Fuel LHV)	0.036		0.037		0.	021	
lbm/(MW-hr)	0.34		0.34		0	.20	
(gas turbine shaft pwr) lbm/hr	5.64		5.72]3	.28	
2 22165 HP 100	.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	20.0 Deg. F	
PPMvd at 15% O2	9.00		15.00		15.00		
ton/yr	24.00		24.35		1:	3.95	
lbm/MMBtu (Fuel LHV)	0.036		0.037		0.	021	
lbm/(MW-hr)	0.33		0.34			.19	
(gas turbine shaft pwr) lbm/hr	5.48		5.56]3	.18	
3 21551 HP 100	.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	40.0 Deg. F	
PPMvd at 15% O2	9.00		15.00		1:	5.00	
ton/yr	23.34		23.68		13.56		
Ibm/MMBtu (Fuel LHV)	0.036		0.036		0.021		
lbm/(MW-hr)	0.33		0.34		0.19		
(gas turbine shaft pwr) lbm/hr	5.33		5.41]3	3.10	

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Customer			
EG)T		
Job ID MVPx -	Stallworth		
Run By		Date Run	
Marr Ca	meron H	7-Jul-25	
Engine Perfe	ormance Code	Engine Performance Data	
REV. 4.2	20.2.28.14	REV. 1.0	

Model TITAN 130-23502S	
Package Type CS/MD	
Match 59F MATCH	
Fuel System GAS	
Fuel Type CHOICE GAS	

DATA FOR NOMINAL PERFORMANCE

Elevation Inlet Loss Exhaust Loss Accessory on GP Shaft	feet in H2O in H2O HP	2775 4.0 4.0 29.2		
		1	2	3
Engine Inlet Temperature	deg F	0	20.0	40.0
Relative Humidity	%	60.0	60.0	60.0
Driven Equipment Speed	RPM	8856	8856	8856
Specified Load	HP	FULL	FULL	FULL
Net Output Power	HP	22374	22165	21551
Fuel Flow	mmBtu/hr	156.39	152.13	148.22
Heat Rate	Btu/HP-hr	6990	6864	6877
Therm Eff	%	36.401	37.072	36.997
Engine Exhaust Flow	lbm/hr	445822	433458	419559
PT Exit Temperature	deg F	857	864	887
Exhaust Temperature	deg F	856	864	887

Fuel Gas Composition (Volume Percent)

Methane (CH4)	93.83
Ethane (C2H6)	5.18
Propane (C3H8)	0.33
I-Butane (C4H10)	0.02
N-Butane (C4H10)	0.03
I-Pentane (C5H12)	0.0037
N-Pentane (C5H12)	0.0021
Heptane (C7H16)	0.0001
Octane (C8H18)	0.0000
Carbon Monoxide (CO)	0.24
Nitrogen (N2)	0.36
Oxygen (O2)	0.0027
Sulfur Dioxide (SO2)	0.0001
I-Hexene (C6H12)	0.0006
MethylCycloPentane (C6H12)	0.0002
CycloHexane (C6H12)	0.0001
MethylCycloHexane (C7H14)	0.0001
Benzene (C6H6)	0.0000
Toluene (C7H8)	0.0000

Fuel Gas Properties

LHV (Btu/Scf) 947.3 Specific Gravity 0.5855 Wobbe Index at 60F 1238

This performance was calculated with a basic inlet and exhaust system. Special equipment such as low noise silencers, special filters, heat recovery systems or cooling devices will affect engine performance. Performance shown is "Expected" performance at the pressure drops stated, not guaranteed.

Notes

Nominal Performance at Site Conditions

Customer EQT	
Job ID MVPx - Stallworth	
Inquiry Number PI18-89660	
Run By	Date Run
Marr Cameron H	7-Jul-25

Engine Model TITAN 130-23502S CS/MD 59F MATCH	
Fuel Type	Water Injection
CHOICE GAS	NO
Engine Emissions Data	
REV. 0.0	

	NOx EMISSIO	NS	CO EMISSIONS		UHC EMISSIONS		
1 10298 HP 50	0.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	60.0 Deg. F	
PPMvd at 15% O2 9.00 15.00 15.00				5.00			
ton/yr	15.67		15.90		9	.11	
Ibm/MMBtu (Fuel LHV)	0.036		0.036		0.	021	
lbm/(MW-hr)	0.47		0.47		0	.27	
(gas turbine shaft pwr) lbm/hr	3.58		3.63		2	2.08	
2 9564 HP 50	0.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	80.0 Deg. F	
PPMvd at 15% O2	9.00		15.00		15.00		
ton/yr	14.37		14.58		8.35		
Ibm/MMBtu (Fuel LHV)	0.036		0.036		0.	021	
lbm/(MW-hr)	0.46		0.47		0	.27	
(gas turbine shaft pwr)					1		
lbm/hr	3.28		3.33]1	.91	
3 9137 HP 50	0.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	90.0 Deg. F	
PPMvd at 15% O2	9.00		15.00		15.00		
ton/yr	13.71		13.91		7.97		
lbm/MMBtu (Fuel LHV)	0.035		0.036		0.021		
lbm/(MW-hr)	0.46		0.47		0.27		
(gas turbine shaft pwr) Ibm/hr	3.13		3.18]1	.82	

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Customer EQT	
Job ID MVPx - Stallworth	
Inquiry Number PI18-89660	
Run By	Date Run
Marr Cameron H	7-Jul-25

Engine Model TITAN 130-23502S CS/MD 59F MATCH	
Fuel Type	Water Injection
CHOICE GAS	NO
Engine Emissions Data	
REV. 0.0	

		_	
NOx EMISSIONS	CO EMISSIONS		UHC EMISSIONS
	i .	ı	

4	8690 HP	50.0% Load	Elev.	2775 ft	Rel. Humidity	60.0%	Te	emperature 100.0 Deg. F
PF	PMvd at 15% O2	2	9.00		15.00		1	15.00
	ton/y	r	13.11		13.31		1	7.62
lbm/MN	/IBtu (Fuel LHV)	0.035		0.036		1	0.020
	lbm/(MW-hr)		0.46		0.47			0.27
(gas t	urbine shaft pw	(r)						
(3.0.1	lbm/h	r'	2.99		3.04			1.74

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Customer	
EQT	
Job ID MVPx - Stallworth	
Run By	Date Run
Marr Cameron H	7-Jul-25
Engine Performance Code	Engine Performance Data
REV. 4.20.2.28.14	REV. 1.0

Model TITAN 130-23502S	
Package Type CS/MD	
Match 59F MATCH	
Fuel System GAS	
Fuel Type CHOICE GAS	

DATA FOR NOMINAL PERFORMANCE

Elevation	feet	2775
Inlet Loss	in H2O	4.0
Exhaust Loss	in H2O	4.0
Accessory on GP Shaft	HP	29.2

		1	2	3	4
Engine Inlet Temperature	deg F	60.0	80.0	90.0	100.0
Relative Humidity	%	60.0	60.0	60.0	60.0
Driven Equipment Speed	RPM	6867	6665	6547	6438
Specified Load	HP	50.0%	50.0%	50.0%	50.0%
Net Output Power	HP	10298	9564	9137	8690
Fuel Flow	mmBtu/hr	100.00	92.32	88.59	85.34
Heat Rate	Btu/HP-hr	9711	9652	9695	9821
Therm Eff	%	26.200	26.361	26.243	25.909
Engine Exhaust Flow	lbm/hr	309146	281933	268760	256312
PT Exit Temperature	deg F	973	975	977	980
Exhaust Temperature	dea F	937	947	953	960

Fuel Gas Composition (Volume Percent)

Methane (CH4)	93.83
Ethane (C2H6)	5.18
Propane (C3H8)	0.33
I-Butane (C4H10)	0.02
N-Butane (C4H10)	0.03
I-Pentane (C5H12)	0.0037
N-Pentane (C5H12)	0.0021
Heptane (C7H16)	0.0001
Octane (C8H18)	0.0000
Carbon Monoxide (CO)	0.24
Nitrogen (N2)	0.36
Oxygen (O2)	0.0027
Sulfur Dioxide (SO2)	0.0001
I-Hexene (C6H12)	0.0006
MethylCycloPentane (C6H12)	0.0002
CycloHexane (C6H12)	0.0001
MethylCycloHexane (C7H14)	0.0001
Benzene (C6H6)	0.0000
Toluene (C7H8)	0.0000
·	

Fuel Gas Properties

LHV (Btu/Scf) 947.3 Specific Gravity 0.5855 Wobbe Index at 60F 1238

This performance was calculated with a basic inlet and exhaust system. Special equipment such as low noise silencers, special filters, heat recovery systems or cooling devices will affect engine performance. Performance shown is "Expected" performance at the pressure drops stated, not guaranteed.

Notes

Nominal Performance at Site Conditions

Customer EQT	
Job ID MVPx - Stallworth	
Inquiry Number PI18-89660	
Run By	Date Run
Marr Cameron H	7-Jul-25

Engine Model TITAN 130-23502S CS/MD 59F MATCH		
Fuel Type	Water Injection	
CHOICE GAS	NO	
Engine Emissions Data		

	NOx EMISSIO	ONS	CO EMISSIONS		UHC EI	UHC EMISSIONS	
					J L		
1 15446 HP 75	5.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	60.0 Deg. F	
PPMvd at 15% O2	9.00		15.00		19	5.00	
ton/yr	18.93		19.21		1.	1.00	
Ibm/MMBtu (Fuel LHV)	0.036		0.036		0.	021	
lbm/(MW-hr)	0.38		0.38			.22	
(gas turbine shaft pwr)					-		
lbm/hr	4.32		4.39] [2	2.51	
		0=== (:	5 1 11 1 111	00.00/			
2 14346 HP 75	5.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	80.0 Deg. F	
PPMvd at 15% O2	9.00		15.00		15	5.00	
ton/yr	17.58		17.84		10	0.22	
Ibm/MMBtu (Fuel LHV)	0.036		0.036		0.	021	
lbm/(MW-hr)	0.38		0.38			0.22	
(gas turbine shaft pwr)					1		
lbm/hr	4.01		4.07] [2	2.33	
3 13705 HP 75	.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	90.0 Deg. F	
10700111							
PPMvd at 15% O2	9.00		15.00		15.00		
ton/yr	16.86		17.11		9.80		
Ibm/MMBtu (Fuel LHV)	0.035		0.036		0.021		
lbm/(MW-hr)	0.38		0.38] [0.22	
(gas turbine shaft pwr) Ibm/hr	3.85		3.91		2.24		

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Customer EQT		
Job ID MVPx - Stallworth		
Inquiry Number PI18-89660		
Run By	Date Run	
Marr Cameron H	7-Jul-25	

Engine Model TITAN 130-23502S CS/MD 59F MATCH		
Fuel Type	Water Injection	
CHOICE GAS	NO	
Engine Emissions Data		
REV. 0.0		

		_	
NOx EMISSIONS	CO EMISSIONS		UHC EMISSIONS
	i .	ı	

4	13035 HP 75	5.0% Load	Elev.	2775 ft	Rel. Humidity	60.0%	Te	emperature 100.0 Deg. F
PF	PMvd at 15% O2	15% O2 9.00		15.00		1	15.00	
	ton/yr		16.11		16.35		9.36	
lbm/MN	/IBtu (Fuel LHV)		0.035		0.036			0.020
	lbm/(MW-hr)		0.38		0.38			0.22
(gas ti	urbine shaft pwr)						_	
,5	lbm/hr '		3.68		3.73			2.14

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Customer	
EQT	
Job ID MVPx - Stallworth	
Run By	Date Run
Marr Cameron H	7-Jul-25
Engine Performance Code	Engine Performance Data
REV. 4.20.2.28.14	REV. 1.0

Model TITAN 130-23502S	
Package Type CS/MD	
Match 59F MATCH	
Fuel System GAS	
Fuel Type CHOICE GAS	

DATA FOR NOMINAL PERFORMANCE

Elevation	feet	2775
Inlet Loss	in H2O	4.0
Exhaust Loss	in H2O	4.0
Accessory on GP Shaft	HP	29.2

		1	2	3	4
Engine Inlet Temperature	deg F	60.0	80.0	90.0	100.0
Relative Humidity	%	60.0	60.0	60.0	60.0
Driven Equipment Speed	RPM	7887	7639	7489	7330
Specified Load	HP	75.0%	75.0%	75.0%	75.0%
Net Output Power	HP	15446	14346	13705	13035
Fuel Flow	mmBtu/hr	120.77	112.95	108.94	104.84
Heat Rate	Btu/HP-hr	7819	7873	7949	8043
Therm Eff	%	32.542	32.317	32.011	31.635
Engine Exhaust Flow	lbm/hr	364444	339286	325783	311640
PT Exit Temperature	deg F	912	924	933	942
Exhaust Temperature	deg F	902	918	928	939

Fuel Gas Composition (Volume Percent)

Methane (CH4)	93.83
Ethane (C2H6)	5.18
Propane (C3H8)	0.33
I-Butane (C4H10)	0.02
N-Butane (C4H10)	0.03
I-Pentane (C5H12)	0.0037
N-Pentane (C5H12)	0.0021
Heptane (C7H16)	0.0001
Octane (C8H18)	0.0000
Carbon Monoxide (CO)	0.24
Nitrogen (N2)	0.36
Oxygen (O2)	0.0027
Sulfur Dioxide (SO2)	0.0001
I-Hexene (C6H12)	0.0006
MethylCycloPentane (C6H12)	0.0002
CycloHexane (C6H12)	0.0001
MethylCycloHexane (C7H14)	0.0001
Benzene (C6H6)	0.0000
Toluene (C7H8)	0.0000

Fuel Gas Properties

LHV (B	tu/Scf)	947.3	Specific Gravity	0.5855	Wobbe Index at 60F	1238.0
--------	---------	-------	------------------	--------	--------------------	--------

This performance was calculated with a basic inlet and exhaust system. Special equipment such as low noise silencers, special filters, heat recovery systems or cooling devices will affect engine performance. Performance shown is "Expected" performance at the pressure drops stated, not guaranteed.

Notes

Nominal Performance at Site Conditions

Customer EQT	
Job ID MVPx - Stallworth	
Inquiry Number PI18-89660	
Run By	Date Run
Marr Cameron H	7-Jul-25

Engine Model TITAN 130-23502S CS/MD 59F MATCH		
Fuel Type	Water Injection	
CHOICE GAS	NO	
Engine Emissions Data		

	NOx EMISSIO	NS	CO EMISSIONS UHC E		MISSIONS	
1 20595 HP 100	.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	60.0 Deg. F
PPMvd at 15% O2	9.00		15.00		1:	5.00
ton/yr	22.30		22.63		12	2.96
Ibm/MMBtu (Fuel LHV)	0.036		0.036		0.	021
lbm/(MW-hr)	0.33		0.34		C	.19
(gas turbine shaft pwr)						
lbm/hr ´	5.09		5.17		2.96	
2 19129 HP 100	.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	80.0 Deg. F
PPMvd at 15% O2	9.00		15.00		1:	5.00
ton/yr	20.83		21.14		12	2.11
Ibm/MMBtu (Fuel LHV)	0.036		0.036		0.	021
lbm/(MW-hr)	0.33		0.34		0.19	
(gas turbine shaft pwr)						
lbm/hr ´	4.76		4.83		2.76	
0 40074 UD 400	00/ 1 1 51	0775 (1	D.I. H	00.00/	T	00 0 D F
3 18274 HP 100	.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Temperature	90.0 Deg. F
PPMvd at 15% O2	9.00		15.00		15.00	
ton/yr	20.01		20.31		1	1.63
Ibm/MMBtu (Fuel LHV)	0.035	0.035			0.	021
lbm/(MW-hr)	0.34	0.34			0	.19
(gas turbine shaft pwr) Ibm/hr						
lbm/hr ´	4.57		4.64] [2	2.66

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Customer EQT	
Job ID MVPx - Stallworth	
Inquiry Number PI18-89660	
Run By	Date Run
Marr Cameron H	7-Jul-25

Engine Model TITAN 130-23502S CS/MD 59F MATCH		
Fuel Type	Water Injection	
CHOICE GAS	NO	
Engine Emissions Data		
REV. 0.0		

NOx EMISSIONS	CO EMISSIONS	UHC EMISSIONS
---------------	--------------	---------------

4 17380 HP 100	.0% Load Elev.	2775 ft	Rel. Humidity	60.0%	Te	emperature 100.0 Deg. F	
PPMvd at 15% O2	9.00		15.00 15.00		15.00		
ton/yr	19.17	19.17		19.45		11.14	
lbm/MMBtu (Fuel LHV)	0.035		0.036		1	0.020	
lbm/(MW-hr)	0.34		0.34			0.20	
(gas turbine shaft pwr)							
lbm/hr´	4.38		4.44 2.54		2.54		

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Customer	
EQT	
Job ID	
MVPx - Stallworth	
Run By	Date Run
Marr Cameron H	7-Jul-25
Engine Performance Code	Engine Performance Data
REV. 4.20.2.28.14	REV. 1.0

Model TITAN 130-23502S	
Package Type CS/MD	
Match 59F MATCH	
Fuel System GAS	
Fuel Type CHOICE GAS	

DATA FOR NOMINAL PERFORMANCE

Elevation	feet	2775
Inlet Loss	in H2O	4.0
Exhaust Loss	in H2O	4.0
Accessory on GP Shaft	HP	29.2
•		

		1	2	3	4
Engine Inlet Temperature	deg F	60.0	80.0	90.0	100.0
Relative Humidity	%	60.0	60.0	60.0	60.0
Driven Equipment Speed	RPM	8748	8529	8396	8252
Specified Load	HP	FULL	FULL	FULL	FULL
Net Output Power	HP	20595	19129	18274	17380
Fuel Flow	mmBtu/hr	142.17	133.76	129.22	124.69
Heat Rate	Btu/HP-hr	6903	6992	7071	7175
Therm Eff	%	36.861	36.388	35.982	35.465
Engine Exhaust Flow	lbm/hr	403106	380215	366647	352545
PT Exit Temperature	deg F	902	916	926	937
Exhaust Temperature	deg F	902	916	926	937

Fuel Gas Composition (Volume Percent)

Methane (CH4)	93.83
Ethane (C2H6)	5.18
Propane (C3H8)	0.33
I-Butane (C4H10)	0.02
N-Butane (C4H10)	0.03
I-Pentane (C5H12)	0.0037
N-Pentane (C5H12)	0.0021
Heptane (C7H16)	0.0001
Octane (C8H18)	0.0000
Carbon Monoxide (CO)	0.24
Nitrogen (N2)	0.36
Oxygen (O2)	0.0027
Sulfur Dioxide (SO2)	0.0001
I-Hexene (C6H12)	0.0006
MethylCycloPentane (C6H12)	0.0002
CycloHexane (C6H12)	0.0001
MethylCycloHexane (C7H14)	0.0001
Benzene (C6H6)	0.0000
Toluene (C7H8)	0.0000
·	

Fuel Gas Properties

LHV (Btu/Scf) 947.3 Specific Gravity 0.5855 Wobbe Index at 60F 1238.0

This performance was calculated with a basic inlet and exhaust system. Special equipment such as low noise silencers, special filters, heat recovery systems or cooling devices will affect engine performance. Performance shown is "Expected" performance at the pressure drops stated, not guaranteed.

Notes

Nominal Performance at Site Conditions

ATTACHMENT N – SUPPORTING EMISSION CALCULATIONS

Company Name: Mountain Valley Pipeline, LLC Facility Name: Stallworth Compressor Station **Project Description:** R13 Permit Application

TABLE 1. Potential Atmospheric Emissions from Each Source at the Facility

	Pollutants																	
Source	V	С	N	O _x	С	0	PN	1 10	PN	I _{2.5}	S	02	нс	НО	Total	HAPs	GHG	(CO ₂ e)
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Turbine 1 (S001)	0.66	2.97	5.64	24.72	5.72	25.26	1.68	7.38	1.68	7.38	0.57	2.51	0.48	2.12	0.54	2.36	19,901	87,295
Turbine 2 (S002)	0.66	2.97	5.64	24.72	5.72	25.26	1.68	7.38	1.68	7.38	0.57	2.51	0.48	2.12	0.54	2.36	19,901	87,295
Turbine 3 (S021)	0.66	2.97	5.64	24.72	5.72	25.26	1.68	7.38	1.68	7.38	0.57	2.51	0.48	2.12	0.54	2.36	19,901	87,295
Turbine 4 (S022)	0.66	2.97	5.64	24.72	5.72	25.26	1.68	7.38	1.68	7.38	0.57	2.51	0.48	2.12	0.54	2.36	19,901	87,295
Microturbine 1 (S003)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 2 (S004)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 3 (S005)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 4 (S006)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 5 (S007)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 6 (S008)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 7 (S009)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 8 (S010)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 9 (S011)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 10 (S012)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 11 (S024)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 12 (S025)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 13 (S026)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Fuel Gas Heater (S013)	0.01	0.04	0.15	0.64	0.12	0.54	0.01	0.05	0.01	0.05	0.00	0.00	0.00	0.00	0.00	0.01	180	789
Fuel Gas Heater (S014)	0.01	0.04	0.15	0.64	0.12	0.54	0.01	0.05	0.01	0.05	0.00	0.00	0.00	0.00	0.00	0.01	180	789
Fuel Gas Heater (S023)	0.01	0.04	0.15	0.64	0.12	0.54	0.01	0.05	0.01	0.05	0.00	0.00	0.00	0.00	0.00	0.01	180	789
Produced Fluids Tank (S015)	0.00	0.00		-											0.00	0.00	3	14
Used Oil Tank (S016)	0.00	0.00		-											0.00	0.00	-	
Office Building Heater (S017)	0.00	0.00	0.01	0.05	0.01	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14	62
Fugitives (S018)	0.14	0.60		-			0.03	0.12	0.00	0.01					0.00	0.00	317	1,389
Liquid Loading (S019)	0.01	0.05		-	-					-							-	
Blowdowns (S020)	3.67	16.09		-											0.01	0.02	8,539	37,403
Total	6.73	29.88	24.05	105.39	26.12	115.24	6.99	30.63	6.97	30.52	2.39	10.48	1.96	8.59	2.20	9.62	92,479	405,576

- $\overline{1. PM_{10}}$ and $PM_{2.5}$ emissions are filterable + condensable.
- 2. Fugitives emissions include haul road emissions.
- 3. Global Warming Potential (40 CFR 98 Subpart A Table A -1)

 CO_2

1

 CH_4 28 N₂O

265

Company Name: Facility Name: Project Description: Mountain Valley Pipeline, LLC
Stallworth Compressor Station
R13 Permit Application

TABLE 2. Turbine Emissions Calculations

Turbine Information:

Source ID:	S001-S002, S021-S022
Manufacturer:	Solar
Model No.:	Titan 130 - 23502S
Fuel Used:	Natural Gas
Design Basis Fuel Lower Heating Value (Btu/scf):	947.3
Rated Horsepower (bhp at site conditions):	22374
Maximum Fuel Consumption at 100% Load (scf/hr):	165090
Heat Input (MMBtu/hr)	156.39
Control Device:	None
Stack Designation:	TBD

Operational Details:

Potential Annual Hours of Operation (hr/yr):	8,760
Potential Fuel Consumption (MMscf/yr):	1,446.19
Potential Startup/Shutdown Events (per year):	12

Manufacturer Specific Pollutant Emission Factors:

Pollutant	Emission Factors	Units	Emission Factor Source
NO _X	5.640	lb/hr	Manufacturer
co	5.720	lb/hr	Manufacturer
SO ₂	3.66E-03	lb/MMBtu	AP-42, Table 3.1-2a
PM ₁₀	0.011	lb/MMBtu	Manufacturer, PIL 171 Rev 11
PM _{2.5}	0.011	lb/MMBtu	Manufacturer, PIL 171 Rev 11
VOC	0.656	lb/hr	20% of UHC per Manufacturer
Formaldehyde	0.003	lb/MMBtu	Manufacturer, PIL 168
CO ₂	126.72	lb/MMBtu	40 CFR 98, Subpart C, Table C-1
CH ₄	2.624	lb/hr	80% of UHC per Manufacturer
N ₂ O	2.4E-04	lb/MMBtu	40 CFR 98, Subpart C, Table C-2

*Emission factors from AP-42 and Subpart C are based on HHV. To calculate a LHV emission factor, emissions are multiplied by (HHV/LHV). For AP-42 HHV is 1020 Btu/scf, for Subpart C HHV is 1026 Btu/scf. PM and HCHO emission factors are provided in HHV in the specifications and were converted to LHV using a HHV value of 1020 Btu/scf.

Company Name: Facility Name: Project Description: Mountain Valley Pipeline, LLC
Stallworth Compressor Station
R13 Permit Application

TABLE 2. Turbine Emissions Calculations

Pollutant Emission Rates:

	Potential Emissions				
Pollutant	(lb/hr) ¹	(tpy) ²			
NO _X	5.64	24.72			
со	5.72	25.26			
SO ₂	0.57	2.51			
PM ₁₀	1.68	7.38			
PM _{2.5}	1.68	7.38			
VOC	0.66	2.97			
Formaldehyde	0.48	2.12			
CO ₂	19,817	86,810			
CH ₄	2.62	15.78			
N_2O	0.04	0.16			
GHG (CO2e)	19,901	87,295			

^{*}Annual emissions shown above include startup/shutdown events.

Hazardous Air Pollutant (HAP) Emission Rates:

	Emission Factor		Potential Emissions
Pollutant	(lb/MMBtu) ³	(lb/hr) ¹	(tpy) ^{2,4}
HAPs:			
Acetaldehyde	4.31E-05	6.74E-03	2.95E-02
Acrolein	6.89E-06	1.08E-03	4.72E-03
Benzene	1.29E-05	2.02E-03	8.85E-03
1,3-Butadiene	4.63E-07	7.24E-05	3.17E-04
Propylene Oxide	2.90E-05	4.54E-03	1.99E-02
Ethylbenzene	3.45E-05	5.39E-03	2.36E-02
Toluene	1.40E-04	2.19E-02	9.59E-02
Xylene	6.89E-05	1.08E-02	4.72E-02
Polycyclic Organic Matter:			
Naphthalene	1.40E-06	2.19E-04	9.59E-04
PAH	2.37E-06	3.70E-04	1.62E-03
Total HAP (Including HCHO)		0.54	2.36

^{1.} Emission Rate (lb/hr) = Rated Capacity (MMBtu/hr) × Emission Factor (lb/MMBtu)

^{2.} Emission Rate (tpy) = Emission Rate (lb/hr) × Hours of Operation (hr/yr) / 2000 (tons/lb) + SU/SD emissions, as applicable

^{3.} Emission factors from AP-42 Section 3.1, Table 3.1-3 "Emission Factors for HAPs from Natural Gas Fired Stationary Gas Turbines", April 2000. Factors are based on HHV of 1020. Therefore, they were converted to LHV by multiplying by (HHV/LHV).

^{4.} Emission calculations are based on maximum operating load of 100% load, ambient temperature 0°F and site elevation. The turbine ratings can vary with ambient conditions. Each Turbine is ISO rated at 23,470 HP

Company Name: Facility Name: Project Description: Mountain Valley Pipeline, LLC
Stallworth Compressor Station
R13 Permit Application

TABLE 2. Turbine Emissions Calculations

Startup/Shutdown Combustion Emission Factors:

Pollutant	Startup Emissions ^a (lbs/event)	Shutdown Emissions ^a (lbs/event)	Emission Factor Source
NO _X	1.0	1	Manufacturer
СО	16.0	19	Manufacturer
VOC	4.0	4	Manufacturer
CO ₂	767	869	Manufacturer

^a Each startup and shutdown event is estimated to last approximately 10 minutes, per manufacturer. Emissions were using PIL 170 Revision 11.

Pneumatic Start Venting Emissions					
Natural Gas Purged During Startup	4500	scfm			
Duration of Normal Purge	4.0	min			
Total Gas Purged (Per Startup)	18000	scf			
VOC Purged (Per Startup)	9	lbs/startup			
CO ₂ Purged (Per Startup)	5	lbs/startup			
CH₄ Purged (Per Startup)	715	lbs/startup			
		· 3			

Density of natural gas: 0.04 lb/ft³

^{*}Current design includes electric motor starts, but pneumatic starts have been included as a conservative measure.

Company Name: Mountain Valley Pipeline, LLC
Facility Name: Stallworth Compressor Station
Project Description: R13 Permit Application

TABLE 3. Microturbine Emissions Calculations

Microturbine Unit Information:

Engine ID:	S003-S012, S024-S026
Manufacturer:	Capstone
Model No.:	C200
Number of Units:	13

Microturbine Fuel Information:

	Per Unit
Fuel Type:	Natural Gas
Rated Electrical Power Output (kW):	200
Rated Electrical Power Output (MW):	0.2
Rated Horsepower (bhp):	268.2
Heat Input (MMBtu/hr)	2.28
Potential Fuel Consumption (MMBtu/yr):	19,973
Max. Annual Hours of Operation (hr/yr):	8,760

Microturbine Emissions Data:

Pollutant	Emission Factors	Units	Maximum Potential Emissions Per Unit		Estimation Basis / Emission Factor Source
			lbs/hr	tpy	
NO _x	0.40	lb/MWhe	0.0800	0.3504	Manufacturer's Specifications
VOC	0.10	lb/MWhe	0.0200	0.0876	Manufacturer's Specifications
CO	1.10	lb/MWhe	0.2200	0.9636	Manufacturer's Specifications
SO ₂	0.0034	lb/MMBtu	0.0078	0.0340	AP-42, Table 3.1-2a (Apr-2000)
PM ₁₀	0.0066	lb/MMBtu	0.0150	0.0659	AP-42, Table 3.1-2a (Apr-2000)
PM _{2.5}	0.0066	lb/MMBtu	0.0150	0.0659	AP-42, Table 3.1-2a (Apr-2000)
GHG (CO₂e)	See Tab	ole Below	266.2740	1166.2801	Manufacturer's Specifications / 40 CFR 98, Table C-2
Other (Total HAP)	See Tab	ole Below	0.0023	0.0103	AP-42, Table 3.1-3 (Apr-2000)

Notes:

- 1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).
- 2. GHG (CO_2e) is carbon dioxide equivalent, which is the summation of CO_2 (GWP = 1) + CH_4 (GWP = 28) + N_2O (GWP = 265).
- 3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this engine type.

Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:

Pollutant	Emission Factor	Units	Maximum Potential Emissions Per Unit		Estimation Basis / Emission Factor Source	
			lbs/hr	tpy		
GHGs:						
CO ₂	1330	lb/MWhe	266	1,165	Manufacturer's Specifications	
CH ₄	0.001	kg/MMBtu	0.01	0.02	40 CFR 98, Tables C-1 & C-2	
N ₂ O	0.0001	kg/MMBtu	0.00	0.00	40 CFR 98, Tables C-1 & C-2	
GHG (CO ₂ e)			266	1,166		
HAPs:						
1,3-Butadiene	4.3E-07	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)	
Acetaldehyde	4.0E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)	
Acrolein	6.4E-06	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)	
Benzene	1.2E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)	
Ethylbenzene	3.2E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)	
Formaldehyde	7.1E-04	lb/MMBtu	0.00	0.01	AP-42, Table 3.1-3 (Apr-2000)	
Naphthalene	1.3E-06	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)	
PAH	2.2E-06	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)	
Propylene oxide	2.9E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)	
Toluene	1.3E-04	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)	
Xylene	6.4E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)	
Total HAP	l		0.002	0.010		

 Company Name:
 Mountain Valley Pipeline, LLC

 Facility Name:
 Stallworth Compressor Station

 Project Description:
 R13 Permit Application

TABLE 4. Fuel Gas Heater Emissions Calculations

Fuel Gas Heater Information:

Source ID:	S013-S014, S023
Number of Units:	3

Fuel Gas Heater Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,052
Heat Input (MMBtu/hr)	1.54
Potential Fuel Consumption (MMBtu/yr):	13,477
Max. Fuel Consumption (MMscf/hr):	0.0015
Max. Fuel Consumption (MMscf/yr):	12.8
Max. Annual Hours of Operation (hr/yr):	8,760

Fuel Gas Heater Emission Data:

Pollutant	Emission Factor	Units	Maximum Potential Emissions Per Unit		Estimation Basis / Emission Factor Source	
			lbs/hr	tpy		
NO _X	100	lb/MMScf	0.15	0.64	AP-42, Table 1.4-1 (Jul-1998)	
VOC	5.5	lb/MMScf	0.01	0.04	AP-42, Table 1.4-2 (Jul-1998)	
CO	84	lb/MMScf	0.12	0.54	AP-42, Table 1.4-1 (Jul-1998)	
SO ₂	0.6	lb/MMScf	0.00	0.00	AP-42, Table 1.4-2 (Jul-1998)	
PM ₁₀	7.6 lb/MMScf		0.01	0.05	AP-42, Table 1.4-2 (Jul-1998)	
PM _{2.5}	7.6 lb/MMScf		0.01	0.05	AP-42, Table 1.4-2 (Jul-1998)	
Formaldehyde (HCHO)	0.08	lb/MMScf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
GHG (CO ₂ e)	See Table Below		180	789	40 CFR 98, Tables C-1 & C-2	
Other (Total HAP)	See Table Below		0.00	0.01	AP-42, Tables 1.4-3 & 1.4-4 (Jul-1998)	

- 1. PM₁₀ and PM_{2.5} are total values (filterable + condensable).
- 2. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 28) + N₂O (GWP = 265).
- 3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

 Company Name:
 Mountain Valley Pipeline, LLC

 Facility Name:
 Stallworth Compressor Station

 Project Description:
 R13 Permit Application

TABLE 4. Fuel Gas Heater Emissions Calculations

Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:

Pollutant	Emission Factor	Units	Maximum Potential Emissions Per Unit		Estimation Basis / Emission Factor Source	
			lbs/hr	tpy		
GHGs:						
CO ₂	53.06	kg/MMBtu	180.00	788	40 CFR 98, Tables C-1 & C-2	
CH₄	0.001	kg/MMBtu	0.00	0.01	40 CFR 98, Tables C-1 & C-2	
N ₂ O	0.0001	kg/MMBtu	0.00	0.00	40 CFR 98, Tables C-1 & C-2	
GHG (CO ₂ e)			180	789		
Organic HAPs:						
2-Methylnaphthalene	2.40E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
3-Methylchloranthrene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
7,12-Dimethylbenz(a)anthracene	1.60E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
Acenapthene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
Acenapthylene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
Anthracene	2.40E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
Benz(a)anthracene	1.80E-06	lb/MMscf	0.00	0.00	AP-42. Table 1.4-3 (Jul-1998)	
Benzene	2.10E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
Benzo(a)pyrene	1.20E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
Benzo(b)fluoranthene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
Benzo(g,h,i)perylene	1.20E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
Benzo(k)fluoranthene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
Chrysene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
Dibenzo(a.h)anthracene	1.20E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
Dichlorobenzene	1.20E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
Fluoranthene	3.00E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
Fluorene	2.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
n-Hexane	1.80E+00	Ib/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998) AP-42, Table 1.4-3 (Jul-1998)	
			0.00	0.01	AP-42, Table 1.4-3 (Jul-1998) AP-42, Table 1.4-3 (Jul-1998)	
Indeno(1,2,3-c,d)pyrene	1.80E-06 6.10E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1996) AP-42, Table 1.4-3 (Jul-1998)	
Naphthalene		lb/MMscf			AP-42, Table 1.4-3 (Jul-1996) AP-42, Table 1.4-3 (Jul-1998)	
Phenanthrene	1.70E-05	lb/MMscf	0.00	0.00	, , ,	
Pyrene	5.00E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
Toluene	3.40E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)	
Metal HAPs:						
Arsenic	2.00E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)	
Beryllium	4.40E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)	
Cadmium	1.10E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)	
Chromium	1.40E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)	
Cobalt	8.40E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)	
Lead	5.00E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-2 (Jul-1998)	
Manganese	3.80E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)	
Mercury	2.60E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)	
Nickel	2.10E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)	
Selenium	2.40E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)	
Total HAP	<u>'</u>		0.003	0.01	•	

 Company Name:
 Mountain Valley Pipeline, LLC

 Facility Name:
 Stallworth Compressor Station

 Project Description:
 R13 Permit Application

TABLE 5. Storage Tank Emissions Calculations - Produced Fluids Tank

Storage Tank Information:

S015
10,080
Produced Water
126,000
8.22
None
N/A
8,760

Tank Emissions Data:

Dellutent	Uncontrolled Emissions		Controlled Emissions		Emissions Estimation Mathed	
Pollutant	lbs/hr	tpy	lbs/hr	tpy	Emissions Estimation Method	
VOC	0.00	0.00	0.00	0.00	ProMax	
HAPs	0.00	0.00	0.00	0.00	ProMax	
GHG (CO2e)	3.13	13.72	3.13	13.72	ProMax	

Notes:

Promax Tanks Emissions Data:

Pollutant	Total Emission	Total Emissions (Working + Breathing + Flashing)			Total Emissions		
	lbs/hr	lbs/yr	tpy	lbs/hr	lbs/yr	tpy	
voc	0.00	8.11	0.00	0.00	8.11	0.00	
HAPs	0.00	0.18	0.00	0.00	0.18	0.00	
Carbon Dioxide	0.02	132.42	0.07	0.02	132.42	0.07	
Methane	0.11	974.99	0.49	0.11	974.99	0.49	
GHG (CO ₂ e)	3.13	27,432.23	13.72	3.13	27,432.23	13.72	

^{1.} GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 28) + N₂O (GWP = 265).

^{1.} Emissions estimated using BR&E ProMax software.

TABLE 6. Storage Tank Emissions Calculations - Used Oil Tank

Storage Tank Information:

Source ID:	S016
Tank Capacity (gallons):	4,200
Tank Contents:	Used Oil
Annual Throughput (gallons/year):	3,150
Control Type:	None
Control Efficiency:	N/A
Max. Annual Hours of Operation (hr/yr):	8,760

Tank Emissions Data:

Pollutant	Uncontrolle	d Emissions	Emissions Estimation Method		
Poliutant	lbs/hr	tpy			
voc	1.59E-05	6.97E-05	ProMax		
HAPs	1.59E-05	6.97E-05	ProMax		
GHG (CO ₂ e)	N/A	N/A	N/A		

ProMax Emissions Data - Used Oil Tank:

Pollutant	Working Losses	Breathing Losses	Flashing Losses	sses Total Emissions		
Foliutalit	tpy	tpy	tpy	lbs/hr	lbs/yr	tpy
voc	1.13E-06	6.86E-05	N/A	0.00	0.14	6.97E-05
HAPs	1.13E-06	6.86E-05	N/A	0.00	0.14	6.97E-05

Notes:

- 1. Emissions estimated using ProMax software.
- 2. This tank does not contain hydrocarbons that would be expected to be flashed off at tank operating conditions.

TABLE 7. Office Building Heater Emissions Calculations

Office Building Heater Information:

Source ID:	S017
Number of Units:	1

Office Building Heater Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,052
Heat Input (MMBtu/hr)	0.12
Potential Fuel Consumption (MMBtu/yr):	1,051
Max. Fuel Consumption (MMscf/hr):	0.0001
Max. Fuel Consumption (MMscf/yr):	1.0
Max. Annual Hours of Operation (hr/yr):	8,760

Office Building Heater Emissions Data:

Pollutant	Emission Factor	Units		ential Emissions r Unit	Estimation Basis / Emission Factor Source
			lbs/hr	tpy	
NO _X	100	lb/MMScf	0.01	0.05	AP-42, Table 1.4-1 (Jul-1998)
VOC	5.5	lb/MMScf	0.00	0.00	AP-42, Table 1.4-2 (Jul-1998)
CO	84	lb/MMScf	0.01	0.04	AP-42, Table 1.4-1 (Jul-1998)
SO ₂	0.6	lb/MMScf	0.00	0.00	AP-42, Table 1.4-2 (Jul-1998)
PM ₁₀	7.6	lb/MMScf	0.00	0.00	AP-42, Table 1.4-2 (Jul-1998)
PM _{2.5}	7.6	lb/MMScf	0.00	0.00	AP-42, Table 1.4-2 (Jul-1998)
Formaldehyde (HCHO)	0.08	lb/MMScf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
GHG (CO₂e)	See Tab	le Below	14	62	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tab	le Below	0.00	0.00	AP-42, Tables 1.4-3 & 1.4-4 (Jul-1998)

Notes:

- 1. PM₁₀ and PM_{2.5} are total values (filterable + condensable).
- 2. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 28) + N₂O (GWP = 265).
- 3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

TABLE 7. Office Building Heater Emissions Calculations

Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:

Pollutant	Emission Factor	Units	Maximum Poter	ntial Emissions Unit	Estimation Basis / Emission Factor Source		
			lbs/hr	tpy			
GHGs:							
CO ₂	53.06	kg/MMBtu	14.04	61	40 CFR 98, Tables C-1 & C-2		
CH₄	0.001	kg/MMBtu	0.00	0.00	40 CFR 98, Tables C-1 & C-2		
N ₂ O	0.0001	kg/MMBtu	0.00	0.00	40 CFR 98, Tables C-1 & C-2		
	0.0001	kg/iviivibtu	0.00		40 01 K 30, Tables 0 T a 0 2		
GHG (CO₂e)			14	62			
Organic HAPs:							
2-Methylnaphthalene	2.40E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
3-Methylchloranthrene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
7,12-Dimethylbenz(a)anthracene	1.60E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Acenapthene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Acenapthylene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Anthracene	2.40E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Benz(a)anthracene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Benzene	2.10E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Benzo(a)pyrene	1.20E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Benzo(b)fluoranthene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Benzo(g,h,i)perylene	1.20E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Benzo(k)fluoranthene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Chrysene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Dibenzo(a,h)anthracene	1.20E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Dichlorobenzene	1.20E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Fluoranthene	3.00E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Fluorene	2.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
n-Hexane	1.80E+00	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Indeno(1,2,3-c,d)pyrene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Naphthalene	6.10E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Phenanthrene	1.70E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Pyrene	5.00E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Toluene	3.40E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)		
Metal HAPs:							
Arsenic	2.00E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)		
Beryllium	4.40E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)		
Cadmium	1.10E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)		
Chromium	1.40E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)		
Cobalt	8.40E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)		
Lead	5.00E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-2 (Jul-1998)		
Manganese	3.80E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)		
Mercury	2.60E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)		
Nickel	2.10E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)		
Selenium	2.40E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)		
Total HAP			0.000	0.00	` '		
IVILLIA			0.000	0.00			

TABLE 8. Liquid Loading Emissions Calculations

Liquid Loading Information:

Parameter	Value	Description
S	1.45	saturation factor for splash loading (AP-42 Table 5.2-1)
Collection Efficiency	0.0%	
Control Efficiency	0%	
Р	0.21	true vapor pressure of liquid loaded (psia) - assume octane
M	114.23	molecular weight of vapors (lb/lb-mol) - assume octane
T	516.4	temperature of liquids loaded (deg R) - TANKS Data

Description	Loading Losses	Maximum Throughput ²	VOC En	nissions
	(lb/10 ³ gal) ¹	(gal)	(lb/hr)	(tpy)
Liquids Hauling	0.8	126,000	0.01	0.05

Notes:

1. Uncontrolled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T

2. Hourly emissions assume continuous operation (i.e., 8760 hr/yr).

TABLE 9. Fugitive Emissions Calculations

Fugitive Component Information:

Component Type	Estimated Component Count	Gas Leak Emission Factor		Average Gas Leak Rate	Max Gas Leak Rate	Potential VOC Emissions	Potential HAP Emissions
	Component Count	(lb/hr/component)	Factor Source	(lb/hr)	(tpy)	(tpy)	(tpy)
Connectors	2,750	0.0004	Table 2-4	1.21	5.84	0.06	0.00
Flanges	770	0.0009	Table 2-4	0.66	3.19	0.03	0.00
Open-Ended Lines	28	0.0044	Table 2-4	0.12	0.59	0.01	0.00
Pump Seals	0	0.0053	Table 2-4	0.00	0.00	0.00	0.00
Valves	970	0.0099	Table 2-4	9.62	46.36	0.49	0.00
Other	0	0.0194	Table 2-4	0.00	0.00	0.00	0.00
Total				11.62	55.99	0.60	0.00

Notes:

- 1. "Other" equipment types include compressor seals, relief valves, diaphragms, drains, meters, etc.
- 2. The component count is based on the current design of the station plus 100% for the addition of 2 new turbines.
- 3. Conservatively assumed that maximum leak rate is 10% greater than measured average leak rate for the purposes of establishing PTE.
- 4. VOC and HAP emissions are based on fractions of these pollutants in the site-specific gas analysis.
- 5. Emission factors are from EPA's Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017)

GHG Fugitive Emissions from Component Leaks:

Component Type	Estimated Component Count		Leak on Factor	Average Gas Leak Rate	Max Gas Leak Rate	Potential CH ₄ Emissions	Potential CO ₂ Emissions	Potential CO ₂ e Emissions
	Component Count	(lb/hr/component)	Factor Source	(lb/hr)	(tpy)	(tpy)	(tpy)	(tpy)
Connectors	2,750	0.0004	Table 2-4	1.21	5.84	5.17	0.04	144.90
Flanges	770	0.0009	Table 2-4	0.66	3.19	2.82	0.02	79.11
Open-Ended Lines	28	0.0044	Table 2-4	0.12	0.59	0.53	0.00	14.75
Pump Seals	0	0.0053	Table 2-4	0.00	0.00	0.00	0.00	0.00
Valves	970	0.0099	Table 2-4	9.62	46.36	41.06	0.28	1149.95
Other	0	0.0194	Table 2-4	0.00	0.00	0.00	0.00	0.00
Total				11.62	55.99	49.58	0.34	1388.72

Notes:

- 1. "Other" equipment types include compressor seals, relief valves, diaphragms, drains, meters, etc.
- 2. The component count is based on the current design of the station plus 100% for the addition of 2 new turbines.
- 3. Conservatively assumed that maximum leak rate is 10% greater than measured average leak rate for the purposes of establishing PTE.
- $4.\ CO_2\ and\ CH_4\ emissions\ are\ based\ on\ fractions\ of\ these\ pollutants\ in\ the\ site-specific\ gas\ analysis.$
- 5. Emission factors are from EPA's Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017)

Fugitive Component Emissions Data:

Pollutant	Atmospheric Emissions			
	lbs/hr tpy			
voc	0.14	0.60		
HAPs	0.00	0.00		
GHG (CO₂e)	317	1,389		

0.45

0.45

TABLE 10. Haul Road Emission Calculations

b

Unpaved Road Information:

Unpaved Roads: E (lb/VMT) = $k(s/12)^a(W/3)^b)^*[(365-p)/365]$ $PM_{2.5}$ PM PM_{10} k Factor (lb/VMT) 4.9 1.5 0.15 AP-42 Table 13.2.2-2 (Final, 11/06) Silt content, s 4.8 AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing Number of Rain Days, p 150 AP-42 Figure 13.2.1-2 0.9 0.9 AP-42 Table 13.2.2-2 (Final, 11/06) 0.7 а

0.45

Description	Weight of Empty Truck (tons)		Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile/trip)	Trips Per Year	Mileage Per Year	Control (%)	PM	Emissions (tpy) PM ₁₀	PM _{2.5}
Service Truck	4	4	4	0.75	365	274	0	0.24	0.06	0.01
Liquids Hauling - Vendor Fluid	12	20	16	0.75	2	2	0	0.00	0.00	0.00
Liquids Hauling - Produced Fluid	20	32	26	0.75	32	24	0	0.05	0.01	0.00
Employee Vehicles	2	2	2	0.75	365	274	0	0.17	0.04	0.00
Total Potential Emissions								0.46	0.12	0.01

AP-42 Table 13.2.2-2 (Final, 11/06)

TABLE 11. Blowdown Emission Calculations

¹Mole fractions of CH₄,VOC, HAP and CO₂ based on gas analysis:

CH_{4:} 93.83% CO₂: 0.24% VOC 0.39% HAP 0.00%

HAP

0.00%

 2 Weight fractions of CH₄ , VOC, HAP and CO₂ based on gas analysis: CH₄: 88.56% CO₂: 0.61% VOC 1.07%

3 Carbon equivalent emissions (CO2e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

Carbon Dioxide (CO_2): 1 Methane (CH_4): 28

Emissions from Compressor Seal:

Number of Compressors ^{1,2}	Number of seals Per Compressor	Leak Rate (scf/hr/seal)	Total Volume NG Emitted (scf/yr)	Potential VOC Emissions (tpy)	Potential HAP Emissions (tpy)	Potential CO ₂ Emissions (tpy)	Potential CH ₄ Emissions (tpy)	Potential CO ₂ e Emissions (tpy)
2		1560	27,331,200	6.54	0.01	3.73	542.75	15,201
2	2	600	21,024,000	5.03	0.01	2.87	417.50	11,693
Total				11.57	0.02	6.60	960.25	26,894

^{1.} Leak rate for existing units and seal information from Solar Turbines PIL 251. Conservatively used C45 compressor at 1500 psig suction pressure (highest leak rate).

Sample calculation: Volume vented (scf/yr) x density of natural gas (lb/scf) x wt % VOC / 2000 lb/ton

Sample calculation: Volume vented (scf/yr) x density of GHG (kg/scf) x mol % VOC x 2.2 lb/kg / 2000 lb/ton

VOC and HAP Vented Blowdown Emissions

Blowdown Emissions Sources	Vented Gas Volume Per Blowdown Event (scf)	Number of Blowdown Events per year	Total Volume NG Emitted (scf/yr)	Potential VOC Emissions (tpy)	Potential HAP Emissions (tpy)
Station ESD Vent	1,100,000	4	4,400,000	1.05	0.00
Compressor Unit Blowdowns	170,000	64	10,880,000	2.60	0.00
Main Gas Filter Changes	91,000	36	3,276,000	0.78	0.00
Total				4.44	0.01

^{1.} Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton) Sample calculation: Volume vented (scf/yr) x density of natural gas (lb/scf) x wt % VOC / 2000 lb/ton

GHG Vented Blowdown Emissions

Blowdown Emissions Sources	Vented Gas Volume Per Blowdown Event (scf)	Number of Blowdown Events per year	Total Volume NG Emitted (scf/yr)	Potential CH ₄ Emissions ¹ (tpy)	Potential CO ₂ Emissions ¹ (tpy)	Potential CO ₂ e Emissions (tpy)
Station ESD Vent	1,100,000	4	4,400,000	87.38	0.60	2447
Compressor Unit Blowdowns	170,000	64	10,880,000	216.06	1.49	6051
Main Gas Filter Changes	91,000	36	3,276,000	65.06	0.45	1822
Total				368.5	2.53	10,320

^{1.} Calculated in accordance with Equations W-35 and W-36 in Subpart W of 40 CFR 98.

^{2.} Leak rate for the new unit was estimated by using the max dry seal compressor leak rate from NSPS OOOOb.

^{3.} Potential emissions VOC/HAP (tpy) = Gas volume vented (scflyr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP + 100 ÷ 379 (scfl/b-mol) + 2,000 (lb/ton)

^{4.} GHG emissions calculated in accordance with Equations W-35 and W-36 in Subpart W of 40 CFR 98.

TABLE 11. Blowdown Emission Calculations

Pigging Emissions:

Segment Name	Pigging Events (#/yr)	Diameter (in)	Length of pipeline (ft)	Volume of Gas Occupied in Pipeline* (acf)	Pipeline Operating Pressure (psig)	Event Duration ¹ (hr/event)	Total Gas Volume per Event (scf/event)	Gas Volume to Atmosphere per Year (scf/yr)
Pig Receiver 42"	4	42	20.5	197	1,480	0.017	20,014	80,057
Pig Receiver 48"	4	48	22	276	1,480	0.017	28,054	112,215
Pig Launcher 42"	4	42	9.5	91	1,480	0.017	9,275	37,100
Pig Launcher 48"	4	48	21.6	271	1,480	0.017	27,544	110,175
Total							84,887	339,547

¹ Assumes pigging event duration of approximately 1 minute.

VOC and HAP Vented Pigging Emissions

Blowdown Emissions Sources	Vented Gas Volume Per Blowdown Event (scf)	Number of Blowdown Events per year	Total Volume NG Emitted (scf/yr)	Potential VOC Emissions (tpy)	Potential HAP Emissions (tpy)
Pig Receiver 42"	20,014	4	80,057	0.02	0.00
Pig Receiver 48"	28,054	4	112,215	0.03	0.00
Pig Launcher 42"	9,275	4	37,100	0.01	0.00
Pig Launcher 48"	27,544	4	110,175	0.03	0.00
Total		•		0.08	0.00

GHG Vented Pigging Emissions

Segment Name	Vented Gas Volume Per Pigging Event (scf)	Number of Blowdown Events per year	Total Volume NG Emitted (scf/yr)	Potential CH ₄ Emissions ¹ (tpy)	Potential CO ₂ Emissions ¹ (tpy)	Potential CO ₂ e Emissions (tpy)
Pig Receiver 42"	20,014	4	80,057	1.59	0.01	45
Pig Receiver 48"	28,054	4	112,215	2.23	0.02	62
Pig Launcher 42"	9,275	4	37,100	0.74	0.01	21
Pig Launcher 48"	27,544	4	110,175	2.19	0.02	61
Total				6.74	0.05	189

^{1.} Calculated in accordance with Equations W-35 and W-36 in Subpart W of 40 CFR 98.

Blowdowns Emissions Data:

Pollutant	Atmospheric Emissions		Emissions Estimation Method			
Ibs/hr tpy		tpy	Emissions Estimation Method			
VOC	3.67	16.09	Engineering Estimates, Manufacturer Data, and Site-Specific Gas Analysis			
HAPs	0.01	0.02	Engineering Estimates, Manufacturer Data, and Site-Specific Gas Analysis			
GHG (CO ₂ e)	8,539	37,403	Engineering Estimates, Manufacturer Data, and Site-Specific Gas Analysis			

Hourly emissions are annualized (i.e., assume 8,760 hours per year).

TABLE 12. Site-Specific Gas Analysis

Sample Location: MVP Pipeline HHV (Btu/scf): 1,052.08

Constituent	Natural Gas Stream Speciation (Vol. %)	Natural Gas Stream Speciation (Wt. %)	Molar Weight
Nitrogen	0.356	0.587	0.100
Oxygen	0.003	0.005	0.001
Methane	93.831	88.558	15.050
Carbon Dioxide	0.235	0.610	0.104
Ethane	5.184	9.172	1.559
Propane	0.335	0.869	0.148
Isobutane	0.020	0.067	0.011
n-Butane	0.029	0.100	0.017
Isopentane	0.004	0.016	0.003
n-Pentane	0.002	0.009	0.002
Cyclopentane	0.000	0.001	0.000
Isohexane	0.000	0.002	0.000
n-Hexane	0.000	0.001	0.000
Benzene	0.000	0.000	0.000
Cyclohexane	0.000	0.000	0.000
Isoheptanes	0.000	0.000	0.000
Heptanes	0.000	0.000	0.000
Toluene	0.000	0.000	0.000
Methylcyclohexane	0.000	0.001	0.000
2,2,4 Trimethylpentane	0.000	0.000	0.000
Octanes	0.000	0.000	0.000
Ethylbenzene	0.000	0.000	0.000
Xylenes	0.000	0.000	0.000
Isononanes	0.000	0.000	0.000
n-Nonane	0.000	0.000	0.000
Isodecanes	0.000	0.000	0.000
n-Decane	0.000	0.000	0.000
Isoundecanes+	0.000	0.000	0.000
Totals	100.000	100.000	16.995

TOC (Total)	99.41	98.80
VOC (Total)	0.39	1.07
HAP (Total)	0.00	0.00

Simulation Report

Client Name: EQM
Location: Stallworth
Job: R13 Application

ProMax Filename: 2025-0804 Stallworth PWT v0.2

ProMax Version: 6.0.24302.0 Property Stencil Name: PWT Property Stencil Flowsheet: Flowsheet1

Emission Summary [Total]						
Companent Subset	Tank Losses	Flashing Losses	Working Losses	Standing Losses	Loading Losses	
Component Subset	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	
VOCs	0.004	0.004	0.000	0.000	0.000	
HAPs	0.000	0.000	0.000	0.000	0.000	
BTEX	0.000	0.000	0.000	0.000	0.000	
H2S	0.000	-	-	-	-	
Methane	0.487	0.477	0.002	0.008	0.000	

Bryan Research & Engineering, LLC

Chemical Engineering Consultants
P.O. Box 4747 Bryan, Texas 77805
Office: (979) 776-5220
FAX: (979) 776-4818
mailto:sales@bre.com
http://www.bre.com/

Report Navigator can be activated via the ProMax Navigator Toolbar.

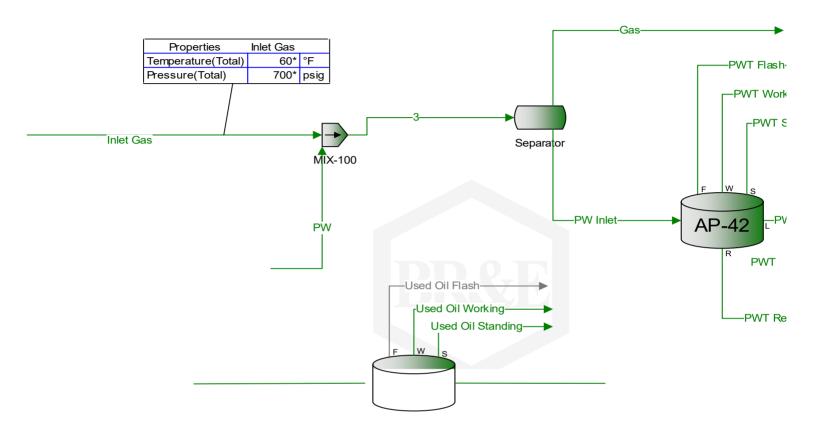
Simulation Report

Client Name: EQM
Location: Stallworth
Job: R13 Application

ProMax Filename: 2025-0804 Stallworth PWT v0.2

ProMax Version: 6.0.24302.0 Property Stencil Name: Used Oil Tank Property Stencil Flowsheet: Flowsheet1

Emission Summary [Total]						
Component Subset	Tank Losses	Flashing Losses	Working Losses	Standing Losses	Loading Losses	
Component subset	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	
VOCs	0.000	0.000	0.000	0.000	0.000	
HAPs	0.000	0.000	0.000	0.000	0.000	
BTEX	0.000	0.000	0.000	0.000	0.000	
H2S	0.000	-	-	-	-	
Methane	0.000	0.000	0.000	0.000	0.000	


Bryan Research & Engineering, LLC

Chemical Engineering Consultants
P.O. Box 4747 Bryan, Texas 77805
Office: (979) 776-5220
FAX: (979) 776-4818
mailto:sales@bre.com
http://www.bre.com/

Report Navigator can be activated via the ProMax Navigator Toolbar.

Flowsheet1

Stallworth Storage Tank Emissions

Inlet Stream Summary							
Stream Name	Inlet Gas	PW	Used Oil				
Stream Flowsheet		Flowsheet1	Flowsheet1	Flowsheet1			
Temperature	°F	60.000	60.000	60.000			
Pressure	psig	700.000	685.304	0.000			
Standard Vapor Volumetric Flow	MSCFD	2129907.057	962.363	0.124			
Standard Liquid Volumetric Flow	bbl/d	884367.668	130.472	0.205			
Vapor Fraction	(%)	100.000	0.000	0.000			
Component		[Mol%]	[Mol%]	[Mol%]			
Carbon Dioxide		0.235	0.000	0.000			
Nitrogen		0.356	0.000	0.000			
Oxygen		0.003	0.000	0.000			
Methane		93.831	0.000	0.000			
Ethane		5.184	0.000	0.000			
Propane		0.335	0.000	0.000			
Isobutane		0.020	0.000	0.000			
n-Butane	0.029	0.000	0.000				
i-Pentane	i-Pentane		0.000	0.000			
n-Pentane		0.002	0.000	0.000			
Cyclopentane		0.000	0.000	0.000			
n-Hexane		0.001	0.000	0.000			
Cyclohexane		0.000	0.000	0.000			
Heptane		0.000	0.000	0.000			
Methylcyclohexane		0.000	0.000	0.000			
2,2,4-Trimethylpentane		0.000	0.000	0.000			
Benzene		0.000	0.000	0.000			
Toluene		0.000	0.000	0.000			
Ethylbenzene		0.000	0.000	0.000			
m-Xylene		0.000	0.000	0.000			
Octane		0.000	0.000	0.000			
Water		0.000	100.000	0.000			
Lube Oil		0.000	0.000	100.000			

Flowsheet Information	
Tank Losses Block Name	PWT
Tank Losses Block Inlet Stream	PW Inlet

	Tank Characteristics		
Tank Type		Vertical Cylinder	
Time Frame		Year	
Material Category		Light Organics	
Number of Tanks		1	
Shell Height	[ft]	24.000	
Diameter [ft]	[ft]	12.000	
Maximum Liquid Height	[%] [ft]	90.000	21.600
Average Liquid Height	[%] [ft]	50.000	12.000
Minimum Liquid Height	[%] [ft]	10.000	2.400
Sum of Increases in Liquid Level	[ft/yr]	148.950	
Tank Volume	[gal] [bbl]	20304.644	483.444
Insulation		Uninsulated	
Bolted or Riveted Construction		False	
Vapor Balanced Tank		False	
	Paint Characteristics		
Shell Color		Medium Grey	
Shell Paint Condition		Average	
Roof Color		Medium Grey	
Roof Paint Condition		Average	
	Roof Characteristics		
Туре		Cone	
Diameter	[ft]	-	
Slope	[ft/ft]	0.063	
	Breather Vent Settings		
Breather Vacuum Pressure	[psig]	-0.030	
Breather Vent Pressure	[psig]	0.030	

Loading Loss Parameters						
Cargo Carrier Tank Truck or Rail Tank Car						
Land Based Mode of Operation	Submerged Loading of a Clean Cargo Tank					
Marine Based Mode of Operation	-					
Control Efficiency [%]	0.000					
Truck Annual Leak Test Passed	None					
Overall Reduction Efficiency [%]	0.000					

Meteorological Data						
Location		Charleston, WV				
Average Atmospheric Pressure	[psia]	14.160				
Maximum Average Temperature	[°F]	65.400				
Minimum Average Temperature	[°F]	45.500				
Solar Insolation	[BTU/ft^2*day]	1237.000				
Average Wind Speed	[mph]	4.000				
	Tank Conditions					
Flashing Temperature	[°F]	67.830				
Maximum Liquid Surface Temperature	[°F]	67.830				
Average Liquid Surface Temperature	[°F]	60.211				
Known Liquid Bulk Temperature?		False				
Bulk Liquid Temperature	[°F]	58.085				
Net Throughput	[bbl/day] [bbl/yr]	8.221	3000.688			
Net Throughput Per Tank	[bbl/day] [bbl/yr]	8.221	3000.688			
Annual Turnovers Per Tank		7.758				
Residual Liquid	[bbl/day]	8.220				
Residual Liquid Per Tank	[bbl/day]	8.220				
Raoult's Law Used for Vapor Pressure Calc?		False				
Vapor Pressure @ Minimum Liquid Surface Temperature	[psia]	12.434				
Vapor Pressure @ Maximum Liquid Surface Temperature	[psia]	14.160				
Vapor Pressure @ Average Daily Liquid Surface Temperature	[psia]	13.291				
	Tank Conditions					
Heated Tank?		-				

Flowsheet Information	
Tank Losses Block Name	Used Oil Tank
Tank Losses Block Inlet Stream	Used Oil

	Tank Characteristics		
Tank Type		Vertical Cylinder	
Time Frame		Year	
Material Category		Heavy Crude	
Number of Tanks		1	
Shell Height	[ft]	24.000	
Diameter [ft]	[ft]	12.000	
Maximum Liquid Height	[%] [ft]	90.000	21.600
Average Liquid Height	[%] [ft]	50.000	12.000
Minimum Liquid Height	[%] [ft]	10.000	2.400
Sum of Increases in Liquid Level	[ft/yr]	3.717	
Tank Volume	[gal] [bbl]	20304.644	483.444
Insulation		Uninsulated	
Bolted or Riveted Construction		False	
Vapor Balanced Tank		False	
	Paint Characteristics		
Shell Color		White	
Shell Paint Condition		Average	
Roof Color		White	
Roof Paint Condition		Average	
	Roof Characteristics		
Туре		Cone	
Diameter	[ft]	-	
Slope	[ft/ft]	0.063	
	Breather Vent Settings		
Breather Vacuum Pressure	[psig]	-0.030	
Breather Vent Pressure	[psig]	0.030	

Loading Loss Parameters						
Cargo Carrier Tank Truck or Rail Tank Car						
Land Based Mode of Operation	Submerged Loading of a Clean Cargo Tank					
Marine Based Mode of Operation	-					
Control Efficiency [%]	0.000					
Truck Annual Leak Test Passed	None					
Overall Reduction Efficiency [%]	0.000					

Meteorological Data						
Location		Charleston, WV				
Average Atmospheric Pressure	[psia]	14.160				
Maximum Average Temperature	[°F]	65.400				
Minimum Average Temperature	[°F]	45.500				
Solar Insolation	[BTU/ft^2*day]	1237.000				
Average Wind Speed	[mph]	4.000				
	Tank Conditions					
Flashing Temperature	[°F]	62.623				
Maximum Liquid Surface Temperature	[°F]	62.623				
Average Liquid Surface Temperature	[°F]	57.126				
Known Liquid Bulk Temperature?		False				
Bulk Liquid Temperature	[°F]	56.378				
Net Throughput	[bbl/day] [bbl/yr]	0.205	74.889			
Net Throughput Per Tank	[bbl/day] [bbl/yr]	0.205	74.889			
Annual Turnovers Per Tank		0.194				
Residual Liquid	[bbl/day]	0.205				
Residual Liquid Per Tank	[bbl/day]	0.205				
Raoult's Law Used for Vapor Pressure Calc?		False				
Vapor Pressure @ Minimum Liquid Surface Temperature	[psia]	0.000				
Vapor Pressure @ Maximum Liquid Surface Temperature	[psia]	0.000				
Vapor Pressure @ Average Daily Liquid Surface Temperature	[psia]	0.000				
	Tank Conditions					
Heated Tank?		-				

Emission Summary [Total]								
Component Subset	Tank Losses Flashing Losses Working Losses Standing Losses Loading Losses							
Component subset	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]			
VOCs	0.004	0.004	0.000	0.000	0.000			
HAPs	0.000	0.000	0.000	0.000	0.000			
BTEX	0.000	0.000	0.000	0.000	0.000			
H2S	0.000	-	-	-	-			

Emission Summary [Per Tank]								
Component Subset	Tank Losses	Flashing Losses	Working Losses	Standing Losses	Loading Losses			
Component subset	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]			
VOCs [C3+]	0.004	0.004	0.000	0.000	0.000			
HAPs	0.000	0.000	0.000	0.000	0.000			
BTEX	0.000	0.000	0.000	0.000	0.000			
H2S	0.000	-	-	-	-			

Stream Properties								
	Tank Inlet Flashing Losses Working Losses Standing Losses Loading Losses Residual							
Molecular Weight	[lb/lbmol]	18.016	17.894	22.240	22.240	18.023	18.015	
Net Ideal Gas Heating Value	[BTU/scf]	-	904.277	248.541	248.541	0.482	-	
Standard Vapor Volumetric Flow	[scf/d]	-	70.267	1.399	4.356	0.378	-	
Specific Gravity		0.999	-	-	-	-	0.999	
Reid Vapor Pressure	[psi]	1.095	-	-	-	-	1.030	
API Gravity		10.110	-	-	-	-	9.998	
Standard Liquid Volumetric Flow	[bbl/d]	8.250	-	-	-	-	8.220	

		Strea	m Mass Flow [Total]				
	Tank Inlet	Flashing Losses	Working Losses	Standing Losses	Loading Losses	Residual	Total Emissions
Component	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]
Carbon Dioxide	0.066	0.046	0.005	0.015	0.000	0.000	0.066
Nitrogen	0.002	0.002	0.000	0.000	0.000	0.000	0.002
Oxygen	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Methane	0.487	0.477	0.002	0.008	0.000	0.000	0.487
Ethane	0.063	0.061	0.000	0.002	0.000	0.000	0.063
Propane	0.003	0.003	0.000	0.000	0.000	0.000	0.003
Isobutane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n-Butane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
i-Pentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n-Pentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cyclopentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n-Hexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Heptane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Methylcyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2,2,4-Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Toluene	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ethylbenzene	0.000	0.000	0.000	0.000	0.000	0.000	0.000
m-Xylene	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Octane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	525.345	0.015	0.007	0.022	0.003	525.301	0.043
Lube Oil	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Stream Compostion										
Component	Tank Inlet	Flashing Losses	Working Losses	Standing Losses	Loading Losses	Residual				
component	[Mol%]	[Mol%]	[Mol%]	[Mol%]	[Mol%]	[Mol%]				
Carbon Dioxide	0.005	3.083	16.710	16.710	0.000	0.000				
Nitrogen	0.000	0.190	0.024	0.024	0.000	0.000				
Oxygen	0.000	0.003	0.001	0.001	0.000	0.000				
Methane	0.104	88.062	22.740	22.740	0.000	0.000				
Ethane	0.007	6.016	2.412	2.412	0.000	0.000				
Propane	0.000	0.227	0.065	0.065	0.000	0.000				
Isobutane	0.000	0.009	0.002	0.002	0.000	0.000				
n-Butane	0.000	0.015	0.004	0.004	0.000	0.000				
i-Pentane	0.000	0.001	0.000	0.000	0.000	0.000				
n-Pentane	0.000	0.000	0.000	0.000	0.000	0.000				
Cyclopentane	0.000	0.000	0.000	0.000	0.000	0.000				
n-Hexane	0.000	0.000	0.000	0.000	0.000	0.000				
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000				
Heptane	0.000	0.000	0.000	0.000	0.000	0.000				
Methylcyclohexane	0.000	0.000	0.000	0.000	0.000	0.000				
2,2,4-Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000				
Benzene	0.000	0.001	0.021	0.021	0.012	0.000				
Toluene	0.000	0.000	0.006	0.006	0.001	0.000				
Ethylbenzene	0.000	0.000	0.000	0.000	0.000	0.000				
m-Xylene	0.000	0.000	0.000	0.000	0.000	0.000				
Octane	0.000	0.000	0.000	0.000	0.000	0.000				
Water	99.883	2.393	58.016	58.016	99.987	100.000				
Lube Oil	0.000	0.000	0.000	0.000	0.000	0.000				
	Tank Inlet	Flashing Losses	Working Losses	Standing Losses	Loading Losses	Residual				
Component	[Mass%]	[Mass%]	[Mass%]	[Mass%]	[Mass%]	[Mass%]				
Carbon Dioxide	0.013	7.583	33.067	33.067	0.000	0.000				
Nitrogen	0.000	0.298	0.030	0.030	0.000	0.000				
Oxygen	0.000	0.005	0.001	0.001	0.000	0.000				
Methane	0.093	78.950	16.403	16.403	0.000	0.000				
Ethane	0.012	10.108	3.261	3.261	0.000	0.000				
Propane	0.001	0.559	0.128	0.128	0.000	0.000				
Isobutane	0.000	0.028	0.005	0.005	0.000	0.000				
n-Butane	0.000	0.048	0.010	0.010	0.000	0.000				
i-Pentane	0.000	0.004	0.001	0.001	0.000	0.000				
n-Pentane	0.000	0.001	0.000	0.000	0.000	0.000				
Cyclopentane	0.000	0.000	0.000	0.000	0.000	0.000				
n-Hexane	0.000	0.000	0.000	0.000	0.000	0.000				
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000				
Heptane	0.000	0.000	0.000	0.000	0.000	0.000				
Methylcyclohexane	0.000	0.000	0.000	0.000	0.000	0.000				
2,2,4-Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000				
Benzene	0.000	0.003	0.073	0.073	0.052	0.000				
Toluene	0.000	0.001	0.026	0.026	0.006	0.000				
Ethylbenzene	0.000	0.000	0.000	0.000	0.000	0.000				
m-Xylene	0.000	0.000	0.000	0.000	0.000	0.000				
Octane	0.000	0.000	0.000	0.000	0.000	0.000				
Water	99.882	2.409	46,995	46.995	99.942	100.000				
Lube Oil	0.000	0.000	0.000	0.000	0.000	0.000				
Lube Oil	0.000	0.000	0.000	0.000	0.000	0.000				

Emission Summary [Total]									
Component Subset	Tank Losses	Flashing Losses	Working Losses	Standing Losses	Loading Losses				
	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]				
VOCs	0.000	0.000	0.000	0.000	0.000				
HAPs	0.000	0.000	0.000	0.000	0.000				
BTEX	0.000	0.000	0.000	0.000	0.000				
H2S	0.000	-	-	-	-				

Emission Summary [Per Tank]									
Component Subset	Tank Losses	Flashing Losses	Working Losses	Standing Losses	Loading Losses				
	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]				
VOCs [C3+]	0.000	0.000	0.000	0.000	0.000				
HAPs	0.000	0.000	0.000	0.000	0.000				
BTEX	0.000	0.000	0.000	0.000	0.000				
H2S	0.000	-	-	-					

	Stream Properties										
		Tank Inlet	Flashing Losses	Working Losses	Standing Losses	Loading Losses	Residual				
Molecular Weight	[lb/lbmol]	188.000	188.000	188.000	188.000	188.000	188.000				
Net Ideal Gas Heating Value	[BTU/scf]	-	9169.961	9169.961	9169.961	9169.961	-				
Standard Vapor Volumetric Flow	[scf/d]	-	0.000	0.000	0.001	0.000	-				
Specific Gravity		0.851	-	-	-	-	0.850				
Reid Vapor Pressure	[psi]	0.150	-	-	-	-	0.150				
API Gravity		34.804	-	-	-	-	34.805				
Standard Liquid Volumetric Flow	[bbl/d]	0.205	-	-	-	-	0.205				

		Strop	m Mass Flow [Total]				
	Tank Inlet	Flashing Losses	Working Losses	Standing Losses	Loading Losses	Residual	Total Emissions
Component	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]
Carbon Dioxide	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oxygen	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Methane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ethane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Propane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Isobutane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n-Butane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
i-Pentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n-Pentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cyclopentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n-Hexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Heptane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Methylcyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2,2,4-Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Toluene	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ethylbenzene	0.000	0.000	0.000	0.000	0.000	0.000	0.000
m-Xylene	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Octane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Lube Oil	11.172	0.000	0.000	0.000	0.000	0.000	0.000

Stream Compostion									
Component	Tank Inlet	Flashing Losses	Working Losses	Standing Losses	Loading Losses	Residual			
component	[Mol%]	[Mol%]	[Mol%]	[Mol%]	[Mol%]	[Mol%]			
Carbon Dioxide	0.000	0.000	0.000	0.000	0.000	0.000			
Nitrogen	0.000	0.000	0.000	0.000	0.000	0.000			
Oxygen	0.000	0.000	0.000	0.000	0.000	0.000			
Methane	0.000	0.000	0.000	0.000	0.000	0.000			
Ethane	0.000	0.000	0.000	0.000	0.000	0.000			
Propane	0.000	0.000	0.000	0.000	0.000	0.000			
Isobutane	0.000	0.000	0.000	0.000	0.000	0.000			
n-Butane	0.000	0.000	0.000	0.000	0.000	0.000			
i-Pentane	0.000	0.000	0.000	0.000	0.000	0.000			
n-Pentane	0.000	0.000	0.000	0.000	0.000	0.000			
Cyclopentane	0.000	0.000	0.000	0.000	0.000	0.000			
n-Hexane	0.000	0.000	0.000	0.000	0.000	0.000			
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000			
Heptane	0.000	0.000	0.000	0.000	0.000	0.000			
Methylcyclohexane	0.000	0.000	0.000	0.000	0.000	0.000			
2,2,4-Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000			
Benzene	0.000	0.000	0.000	0.000	0.000	0.000			
Toluene	0.000	0.000	0.000	0.000	0.000	0.000			
Ethylbenzene	0.000	0.000	0.000	0.000	0.000	0.000			
m-Xylene	0.000	0.000	0.000	0.000	0.000	0.000			
Octane	0.000	0.000	0.000	0.000	0.000	0.000			
Water	0.000	0.000	0.000	0.000	0.000	0.000			
Lube Oil	100.000	100.000	100.000	100.000	100.000	100.000			
	Tank Inlet	Flashing Losses	Working Losses	Standing Losses	Loading Losses	Residual			
Component	[Mass%]	[Mass%]	[Mass%]	[Mass%]	[Mass%]	[Mass%]			
Carbon Dioxide	0.000	0.000	0.000	0.000	0.000	0.000			
Nitrogen	0.000	0.000	0.000	0.000	0.000	0.000			
Oxygen	0.000	0.000	0.000	0.000	0.000	0.000			
Methane	0.000	0.000	0.000	0.000	0.000	0.000			
Ethane	0.000	0.000	0.000	0.000	0.000	0.000			
Propane	0.000	0.000	0.000	0.000	0.000	0.000			
Isobutane	0.000	0.000	0.000	0.000	0.000	0.000			
	0.000	0.000	0.000	0.000	0.000	0.000			
n-Butane i-Pentane	0.000	0.000	0.000	0.000	0.000	0.000			
n-Pentane n-Pentane	0.000	0.000	0.000	0.000	0.000	0.000			
	0.000	0.000	0.000	0.000	0.000	0.000			
Cyclopentane	0.000	0.000	0.000	0.000	0.000	0.000			
n-Hexane	0.000	0.000	0.000	0.000	0.000	0.000			
Cyclohexane Heptane	0.000	0.000	0.000	0.000	0.000	0.000			
	0.000	0.000	0.000	0.000	0.000	0.000			
Methylcyclohexane	0.000	0.000	0.000	0.000	0.000	0.000			
2,2,4-Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000			
Benzene	0.000	0.000	0.000	0.000	0.000	0.000			
Toluene	0.000			0.000					
Ethylbenzene	0.000	0.000	0.000		0.000	0.000			
m-Xylene		0.000	0.000	0.000		0.000			
Octane	0.000	0.000	0.000	0.000	0.000	0.000			
Water	0.000	0.000	0.000	0.000	0.000	0.000			
Lube Oil	100.000	100.000	100.000	100.000	100.000	100.000			

ATTACHMENT O – MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS

Plan Type	Emission unit	Pollutant	Requirements	Frequency	Method of Measurement	Regulatory Reference
Monitoring, Recordkeeping	Compressor Turbines S001, S002, S021, S022	NOx	Performance test	Annual	EPA Test Methods	40 CFR 60.4400(a)
Monitoring	Compressor Turbines S001, S002, S021, S022		Amount of natural gas consumed, hours of operation	Monthly	N/A	Monitoring
Recordkeeping	Compressor Turbines S001, S002, S021, S022	NOx, CO, VOC	Rolling 12-month total emission calculations	Monthly	N/A	Recordkeeping
Recordkeeping	Blowdowns		Number of events and estimated volume per event rolling 12-month total	Monthly	N/A	Recordkeeping
Monitoring, Recordkeeping	Fugitives		Conduct Quarterly OGI surveys and monthly AVO surveys as specified in 40 CFR 60.5397b.	N/A	N/A	40 CFR 60.5397b
Monitoring, Recordkeeping	Compressor Turbines S021, S022		Monitor and replace dry seals as specified in 40 CFR 60.5380b(a)(6)-(8).	N/A	N/A	40 CFR 60.5380b(a)(6)- (8)

See Attachment D for additional information.

Describes Describes	ID.	00000004	E004	4 E A D	A F C C			40000
Docusian Envelope	ID:	99606861	-FU34-	-4FAB-	ASCU	-DAA	FBI	408800

ATTACHMENT P – PUBLIC NOTICE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Mountain Valley Pipeline, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a modification to the existing R13-3277A permit for a natural gas transmission compressor station (Stallworth Station) located on Dawson-Springdale Rd about 5 miles east of Meadow Bridge in Fayette County, West Virginia. The site latitude and longitude coordinates are: 37.86801 N, -80. 75776 W.

The applicant estimates the potential increase in the following Regulated Air Pollutants associated with the project after the installation of the proposed equipment:

Nitrogen Oxides (NO_x) = 25.54 tpy Carbon Monoxide (CO) = 23.95 tpy Volatile Organic Compound (VOC) = 5.21 tpy Particulate Matter (PM_{2.5}/PM₁₀) = 10.32 tpy Sulfur Dioxide (SO₂) = 5.74 tpy Formaldehyde (HCHO) = 4.80 tpy Hazardous Air Pollutants (HAPs) = 4.27 tpy Carbon Dioxide Equivalents (CO₂e) = 228,378 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice. Written comments will also be received via email at DEPAirQualityPermitting@WV.gov

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 41281, during normal business hours.

Dated on October 30, 2025.

By: Mountain Valley Pipeline, LLC.
Mike Lauderbaugh, Vice President, EHS
2200 Energy Drive
Canonsburg, PA 15317