R13 PERMIT APPLICATION

Mountain Valley Pipeline, LLC

Harris Compressor Station

Prepared By:

TRINITY CONSULTANTS

4500 Brooktree Road Suite 310 Wexford, PA 15090 (724)-935-2611

November 2025

TABLE OF CONTENTS

1

1.	1.1. Facility and Project Description	1
2.	EMISSION SOURCE CALCULATIONS 2.1 Turbines	3 3 4
3.	R-13 APPLICATION FORM	5
AT	TACHMENT A – CURRENT BUSINESS CERTIFICATE	
AT	TACHMENT B – MAP	
AT	TACHMENT C – INSTALLATION AND START-UP SCHEDULE	
AT	TACHMENT D – REGULATORY DISCUSSION	
AT	TACHMENT E – PLOT PLAN	
AT	TACHMENT F – PROCESS FLOW DIAGRAM	
AT	TACHMENT G – PROCESS DESCRIPTION	
AT	TACHMENT I – EMISSION UNITS TABLE	
AT	TACHMENT J – EMISSION POINTS DATA SUMMARY SHEET	
AT	TACHMENT K – FUGITIVES EMISSIONS DATA SUMMARY	
AT	TACHMENT L – EMISSIONS UNIT DATA SHEETS	
AT	TACHMENT N – SUPPORTING EMISSION CALCULATIONS	
AT	TACHMENT O – MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS	
AT	TACHMENT P – PUBLIC NOTICE	

1. INTRODUCTION

Mountain Valley Pipeline, LLC (Mountain Valley) is submitting this application to the West Virginia Department of Environmental Protection (WVDEP) for the modification of an existing natural gas transmission compressor station located in Braxton County, West Virginia (Harris Compressor Station). The Harris Compressor Station is currently authorized under Permit No. R13-3279A.

1.1. Facility and Project Description

The Harris Compressor Station is a natural gas transmission facility that will compress natural gas along the Mountain Valley Pipeline. The station has the potential to operate 24 hours per day, 7 days per week.

The facility currently includes the following permitted emission sources:

- ➤ Two Solar Titan 130 natural gas-fired turbines each rated at 20,609 horsepower (hp) at site-specific conditions (ISO rating at 20,500 hp each)¹;
- ▶ Nine Capstone C200 natural gas-fired microturbines each rated at 200 kW;
- ➤ Two natural gas-fired, fuel gas heaters each rated at 1.54 million British thermal units per hour (MMBtu/hr);
- ▶ One natural gas-fired, office building heater rated at 0.12 MMBtu/hr; and
- ▶ Two storage tanks (one for produced fluids and one for oil) with capacities less than 15,000 gallons.

There is one natural gas-fired, pipeline heater rated at 9.0 MMBtu/hr, located at an interconnect near the Harris station (i.e., within approximately ¼ mile). This unit has been included as part of the Harris Compressor Station. There are no other facilities located within ¼ mile of the Harris Compressor Station.

Mountain Valley is proposing to authorize the following equipment:

- ▶ One Solar Titan 350 natural gas-fired turbine rated at 56,590 hp at site-specific conditions (ISO rating at 52,500 hp);
- One natural gas-fired fuel gas heater rated at 1.54 MMBtu/hr;
- ▶ Four Capstone C200 natural gas-fired microturbines rated at 200 kW; and
- Associated piping, fugitive components, and equipment.

1.2. R-13 Application Organization

This R-13 permit application is organized as follows:

Section 1: Introduction

Section 2: Emission Source Calculations;
 Section 3: R-13 Application Form;
 Attachment A: Current Business Certificate;

Attachment B: Map;

¹ The existing turbine ratings are being updated based on revised site-specific conditions. No changes to the turbines or emission limits are being proposed with this application.

Attachment C: Installation and Start Up Schedule;

Attachment D: Regulatory Discussion;

Attachment E: Plot Plan;

Attachment F: Process Flow Diagram;
 Attachment G: Process Description;
 Attachment I: Emission Units Table;

Attachment J: Emission Points Data Summary Sheet;Attachment K: Fugitive Emissions Data Summary Sheet;

Attachment L: Emissions Unit Data Sheets;

► Attachment N: Supporting Emission Calculations;

Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans;

Attachment P: Public Notice; and

Application Fee

2. EMISSION SOURCE CALCULATIONS

The characteristics of air emissions from the Harris Compressor Station, along with the methodology used for calculating emissions from the proposed new equipment, are described in narrative form below. Detailed supporting calculations are also provided in Attachment N.

2.1 Turbines

Potential emissions of nitrogen oxides (NO_X), CO, VOC, and CH₄ are calculated using factors provided by the turbine manufacturer. Sulfur dioxide (SO₂) is calculated using U.S. EPA's AP-42 Section 3.1, Table 3.1-2a "Emission Factors for Criteria Pollutants and Greenhouse Gases from Stationary Gas Turbines". Potential emissions of particulate matter (PM/PM₁₀/PM_{2.5}), and formaldehyde are calculated using factors from Product Information Letters published by the turbine manufacturer. All hazardous air pollutants (HAPs), with the exception of formaldehyde, are calculated using U.S. EPA's AP-42 Section 3.1, Table 3.1-3 "Emission Factors for Hazardous Air Pollutants from Natural Gas-Fired Stationary Gas Turbines". Potential emissions of greenhouse gas pollutants (GHGs) are calculated using manufacturer's data as available (CH₄ in this case) and U.S. EPA's emission factors from 40 CFR Part 98, Subpart C for all others.

Emissions from the turbine may vary due to operational load and ambient temperature. The vendor guarantees emissions of the $SoLoNO_x$ system at and above $0^{\circ}F$. The vendor has also provided estimated emissions from subzero temperatures, which are expected to occur infrequently. To calculate potential emissions, the vendor guaranteed emission rates at $0^{\circ}F$ and maximum operating load (on a lb/hr basis) were assumed continuously (i.e., 8,760 hours per year). This calculation resulted in a more conservative (i.e., higher) annual emission rate compared to assuming nominal operations below $0^{\circ}F$ and the remainder of the year at annual average temperature.

Annual emissions also include emissions from startup and shutdown, which are calculated by multiplying emissions per startup by the number of estimated startups per year.

2.2 Heaters

Potential emissions of all criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas combustion equipment. These calculations assume a site-specific heat content. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C. Although the operation of these sources may be intermittent, potential emissions are calculated assuming continuous operation (i.e., 8,760 hours per year).

2.3 Microturbine Generator

Potential emissions of NOx, CO, VOC, methane, and CO₂ are calculated using manufacturer's emission data. Emissions of all other criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas internal combustion engines. These calculations use a site-specific heat content. Although one unit will provide backup power, potential emissions of all units are calculated assuming continuous operation (i.e., 8,760 hours per year).

2.4 Storage Tanks

Working, standing, and flash loss emissions of VOCs and HAPs from the produced fluids storage tank and used oil storage tank are calculated using BR&E ProMax software v6.0. Liquid loading emissions are calculated using EPA AP-42 emission factors.

2.5 Fugitive Emissions

Emissions from fugitive equipment leaks are calculated using site specific component counts and EPA's Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017) Table 2-4. Emissions from blowdown events are calculated using engineering estimates of the amount of gas vented during each event. Emissions from the compressors were calculated using vendor seal emission rates or New Source Performance Standard thresholds, as applicable. Site specific gas analyses were used to speciate VOCs, HAPs, and GHG emissions for both fugitive and blowdown emissions.

3. R-13 APPLICATION FORM

The WVDEP permit application forms contained in this application include all applicable R13 application forms including the required attachments.

WEST VIRGINIA DEPARTMENT OF

ENVIRONMENTAL PROTECTION

DIVISION OF AIR QUALITY

601 57th Street, SE

APPLICATION FOR NSR PERMIT **AND**

Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/dag	TITLE V PERMIT REVISION (OPTIONAL)											
(Appendix A, "Title V Permit Revision Flowchart") and ability t	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT MINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION On Guidance" in order to determine your Title V Revision options to operate with the changes requested in this Permit Application.											
Section I. General												
 Name of applicant (as registered with the WV Secretary of St Mountain Valley Pipeline, LLC 	ate's Office): 2. Federal Employer ID No. (FEIN): 61-1744744											
3. Name of facility (if different from above):	4. The applicant is the:											
Harris Compressor Station	□ OWNER □ OPERATOR ⊠ BOTH											
5A. Applicant's mailing address: 2200 Energy Drive Canonsburg, PA 15317	5B. Facility's present physical address: County Route 24/5 Flatwoods, WV 26621											
change amendments or other Business Registration Certification	Organization/Limited Partnership (one page) including any name ate as Attachment A. rity of L.L.C./Registration (one page) including any name change											
7. If applicant is a subsidiary corporation, please provide the nan	ne of parent corporation: EQT Corporation											
 8. Does the applicant own, lease, have an option to buy or other If YES, please explain: Applicant owns the site If NO, you are not eligible for a permit for this source. 	wise have control of the <i>proposed site</i> ? X YES NO											
9. Type of plant or facility (stationary source) to be constructed administratively updated or temporarily permitted (e.g., or crusher, etc.): Natural Gas Compressor Station												
	ist all current 45CSR13 and 45CSR30 (Title V) permit numbers ssociated with this process (for existing facilities only): R13-3279A											
All of the required forms and additional information can be found u	nder the Permitting Section of DAQ's website, or requested by phone.											

a	\sim	^
- 1	_	А

- For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the present location of the facility from the nearest state road;
- For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state
 road. Include a MAP as Attachment B.

From Charleston, WV take I-79 N for approximately 70 miles. Take exit 67 for US-19 toward W Virginia 15/Flatwoods. Turn right onto US-19 N (signs for Flatwoods/Sutton). Turn right onto WV-4 S. Turn left onto Days Dr then turn right to stay on Days Dr. and continue 1.1 miles. Then, turn left onto WV-15 E and continue for 6.3 miles. Next, slight left onto Airport Rd/Laurel Path Rd and continue 1.5 miles. Then continue straight onto Vernon Rd for 2.1 miles. Finally, turn left onto Co Rte 24/5 and continue for 0.6 miles. The site will be on your right.

12.B. New site address (if applicable):	12C. Nearest city or town: Flatwoods, WV 26621	12D. County: Braxton
12.E. UTM Northing (KM): 4,286.10	12F. UTM Easting (KM): 543.22	12G. UTM Zone: 17

13. Briefly describe the proposed change(s) at the facility:

Mountain Valley Pipeline, LLC is proposing to authorize a new one Solar Titan 350-52500S turbine rated at 56,590 bhp at site specific conditions (ISO rated at 52,500 bhp), one fuel gas heater, four microturbines, and updating fugitive and blowdown information for the Harris natural gas transmission compressor station as part of the Mountain Valley Pipeline (MVP).

- 14A. Provide the date of anticipated installation or change: 2027
 If this is an After-The-Fact permit application, provide the date upon which the proposed change did happen:
 14B. Date of anticipated Start-Up if a permit is granted: ASAP
- 14C. Provide a **Schedule** of the planned **Installation** of/**Change** to and **Start-Up** of each of the units proposed in this permit application as **Attachment C** (if more than one unit is involved).
- 15. Provide maximum projected **Operating Schedule** of activity/activities outlined in this application:

 Hours Per Day 24

 Days Per Week 7

 Weeks Per Year 52
- 16. Is demolition or physical renovation at an existing facility involved? ☐ YES ☑ NO
- 17. **Risk Management Plans.** If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed changes (for applicability help see www.epa.gov/ceppo), submit your **Risk Management Plan (RMP)** to U. S. EPA Region III.
- 18. **Regulatory Discussion.** List all Federal and State air pollution control regulations that you believe are applicable to the proposed process (*if known*). A list of possible applicable requirements is also included in Attachment S of this application (Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (*if known*). Provide this information as **Attachment D**.

Section II. Additional attachments and supporting documents.

- 19. Include a check payable to WVDEP Division of Air Quality with the appropriate **application fee** (per 45CSR22 and 45CSR13).
- 20. Include a Table of Contents as the first page of your application package.
- 21. Provide a **Plot Plan**, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as **Attachment E** (Refer to **Plot Plan Guidance**).
- Indicate the location of the nearest occupied structure (e.g. church, school, business, residence).
- 22. Provide a **Detailed Process Flow Diagram(s)** showing each proposed or modified emissions unit, emission point and control device as **Attachment F.**
- 23. Provide a Process Description as Attachment G.
 - Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

- 24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.
- For chemical processes, provide a MSDS for each compound emitted to the air.

25.	. Fill out the Emission Units Table and provide it as Attact	nment I.									
26.	. Fill out the Emission Points Data Summary Sheet (Tabl	e 1 and Table	2) and provide it as Attachment J.								
27.	. Fill out the Fugitive Emissions Data Summary Sheet an	d provide it as	Attachment K.								
28.	. Check all applicable Emissions Unit Data Sheets listed b	elow:									
	Bulk Liquid Transfer Operations	ssions [☐ Quarry								
	Chemical Processes		Solid Materials Sizing, Handling and Storage								
	Concrete Batch Plant		Facilities								
	Grey Iron and Steel Foundry ⊠ Indirect Heat E	xchanger ^L	☐ Storage Tanks								
\boxtimes	General Emission Unit, specify Turbines, Compressors, Blo	wdowns									
Fill	out and provide the Emissions Unit Data Sheet(s) as Atta	chment L.									
29.	. Check all applicable Air Pollution Control Device Sheets	s listed below:									
	Absorption Systems		☐ Flare								
	Adsorption Systems	r	☐ Mechanical Collector								
	Afterburner	tic Precipitator	☐ Wet Collecting System								
	Other Collectors, specify										
Fill	out and provide the Air Pollution Control Device Sheet(s	as Attachmer	nt M.								
30.	 Provide all Supporting Emissions Calculations as Attached Items 28 through 31. 	chment N, or a	ttach the calculations directly to the forms listed in								
31.	31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O .										
>	Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.										
32.	Public Notice. At the time that the application is submitted	ed, place a Clas	ss I Legal Advertisement in a newspaper of general								
	circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>										
	Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.										
33.	B. Business Confidentiality Claims. Does this application	nclude confide	ntial information (per 45CSR31)?								
	☐ YES ⊠ NO										
A	If YES , identify each segment of information on each page segment claimed confidential, including the criteria under a Notice – Claims of Confidentiality " guidance found in the	45CSR§31-4.1,	, and in accordance with the DAQ's "Precautionary								
	Section III. Certif	ication of I	Information								
34.	. Authority/Delegation of Authority. Only required when Check applicable Authority Form below:	someone other	than the responsible official signs the application.								
	Authority of Corporation or Other Business Entity	☐ Aut	thority of Partnership								
	Authority of Governmental Agency	_	thority of Limited Partnership								
Sub	bmit completed and signed Authority Form as Attachment	: R.	·								
AII	l of the required forms and additional information can be found	under the Perm	nitting Section of DAQ's website, or requested by phone.								
	A. Certification of Information. To certify this permit appli										
Cer	rtification of Truth, Accuracy, and Completeness										
app reas stat Env and bus	he undersigned Responsible Official / Authorized Replication and any supporting documents appended hereto, is a sonable inquiry I further agree to assume responsibility for the stionary source described herein in accordance with this apperionmental Protection, Division of Air Quality permit issued degulations of the West Virginia Division of Air Quality and siness or agency changes its Responsible Official or Authoritified in writing within 30 days of the official change.	strue, accurate he construction lication and any in accordance W.Va. Code §	, and complete based on information and belief after n, modification and/or relocation and operation of the y amendments thereto, as well as the Department of with this application, along with all applicable rules 22-5-1 et seq. (State Air Pollution Control Act). If the								

Compliance Certification Except for requirements identified in the Title that, based on information and belief formed a compliance with a মুক্তাগাঁও প্রচান চৰ্বালেশেনাত হ							
SIGNATURE Michael Landerbaugh	11/4/2025 10:08 AM EST DATE:						
(Please	use blue ink)	(Please use blue ink)					
35B. Printed name of signee: Mike Lauderbau	ıgh	35C. Title: Vice President, EHS					
35D. E-mail: regulatory@eqt.com	36E. Phone: 844-378-5263	36F. FAX:					
36A. Printed name of contact person (if different	36B. Title: Senior Environmental Engineer						
36C. E-mail: james.knibloe@eqt.com	36C. E-mail: james.knibloe@eqt.com 36D. Phone: 412-525-0609						
PLEASE CHECK ALL APPLICABLE ATTACHMEN	ITS INCLUDED WITH THIS PERMIT APPLICAT	ION:					
 △ Attachment A: Business Certificate △ Attachment B: Map(s) △ Attachment C: Installation and Start Up Sche △ Attachment D: Regulatory Discussion △ Attachment E: Plot Plan △ Attachment F: Detailed Process Flow Diagra △ Attachment G: Process Description ─ Attachment H: Material Safety Data Sheets (III) △ Attachment I: Emission Units Table △ Attachment J: Emission Points Data Summa 	Attachment L: Emissions dule	 △ Attachment K: Fugitive Emissions Data Summary Sheet △ Attachment L: Emissions Unit Data Sheet(s) △ Attachment M: Air Pollution Control Device Sheet(s) △ Attachment N: Supporting Emissions Calculations △ Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans △ Attachment P: Public Notice △ Attachment Q: Business Confidential Claims △ Attachment R: Authority Forms △ Attachment S: Title V Permit Revision Information △ Application Fee 					
Please mail an original and three (3) copies of the address listed on the first	e complete permit application with the signat t page of this application. Please DO NOT fax						
FOR AGENCY USE ONLY – IF THIS IS A TITLE N Forward 1 copy of the application to the Title							
☐ For Title V Administrative Amendments:	,						
☐ NSR permit writer should notify Title	V permit writer of draft permit,						
☐ For Title V Minor Modifications:							
	ropriate notification to EPA and affected state	es within 5 days of receipt,					
☐ NSR permit writer should notify Title							
For Title V Significant Modifications process	-						
 ☐ NSR permit writer should notify a Titl ☐ Public notice should reference both 4 	•						
☐ EPA has 45 day review period of a dr	• •						

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

ATTACHMENT A – CURRENT BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:
MOUNTAIN VALLEY PIPELINE, LLC
625 LIBERTY AVE, SUITE 1700
PITTSBURGH, PA 15222-0000

BUSINESS REGISTRATION ACCOUNT NUMBER:

2305-4787

This certificate is issued on:

04/8/2015

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued

This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L0521552192

ATTACHMENT B - MAP

ATTACHMENT B – AREA MAP

Figure 1 – 0.25 mile Radius Map of Harris Station and nearby WB Interconnect

UTM Northing (KM): 4,286.101 UTM Easting (KM): 543.215 Elevation: ~1,465 ft

ATTACHMENT C - INSTALLATION AND START-UP SCHEDULE

Unit	Installation Schedule	Startup Schedule
Solar Titan 350 (S021) Fuel Gas Heater (S022) Microturbines (S023-S026)	Starting 2Q 2027	June 2028

ATTACHMENT D – REGULATORY DISCUSSION

This section documents the applicability determinations made for Federal and State air quality regulations. The monitoring, recordkeeping, reporting, and testing plan is presented in Attachment O. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- Prevention of Significant Deterioration (PSD) permitting;
- ▶ Non-Attainment New Source Review (NNSR) permitting;
- ▶ Title V of the 1990 Clean Air Act Amendments;
- ▶ New Source Performance Standards (NSPS);
- ▶ National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- West Virginia State Implementation Plan (SIP) regulations.

This section summarizes applicable regulatory requirements and provides determinations of non-applicability for select regulations. The proposed project does not alter the existing regulatory applicability for the station. Accordingly, only those regulations with potential relevance to the proposed changes are discussed. Regulations that are categorically non-applicable to the station's operations (e.g., NSPS Subpart J – Standards of Performance for Petroleum Refineries) are not addressed.

PSD and NNSR Source Classification

Federal construction permitting programs regulate new and modified sources of attainment pollutants under PSD and new and modified sources of non-attainment pollutants under NNSR. PSD regulations apply when a new source is constructed in which emissions exceed PSD major source thresholds, an existing minor source undergoes a modification in which emission increases exceed PSD major source thresholds, or an existing major source undergoes a modification in which emission increases exceed PSD significant emission rates. The Harris Compressor Station will remain a minor source with respect to PSD because, as shown in Attachment N, the project will not increase the source's potential to emit above the applicable PSD threshold of 250 tons per year (typ) for any NSR-regulated pollutant. As such, PSD permitting is not triggered.

NNSR regulations apply only in areas designated as non-attainment. The Harris Compressor Station is located in Braxton County, which is designated as attainment/unclassifiable for all criteria pollutants.² Therefore, NNSR regulations do not apply to the Harris Compressor Station.

Title V Operating Permit Program

Title 40 of the Code of Federal Regulations, Part 70 (40 CFR 70) establishes the Title V operating permit program. West Virginia has incorporated the federal provisions of this program into its Title V operating permit program in West Virginia 45 CSR 30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP and 100 tpy of all other regulated pollutants. Following the project, potential emissions of NO_X and CO are above the corresponding thresholds. Therefore, the Harris Compressor Station is a major source for Title V purposes. Mountain Valley will submit the Title V application within twelve months of startup in accordance with 45 CSR 30-4.1.a.2.

² U.S. EPA Greenbook, Nonattainment Areas for Criteria Pollutants (Green Book) | US EPA, as of July 31, 2025.

New Source Performance Standards

NSPS, located in 40 CFR Part 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The potential applicability of NSPS standards to the operations at the Harris Compressor Station are:

- ▶ 40 CFR Part 60 Subpart Dc Steam Generating Units;
- 40 CFR Part 60 Subpart GG Stationary Gas Turbines;
- ▶ 40 CFR Part 60 Subpart KKKK, KKKKa Stationary Combustion Turbines; and
- ▶ 40 CFR Part 60 Subpart OOOO, OOOOa, OOOOb Crude Oil and Natural Gas Facilities.

NSPS Subpart Dc – Steam Generating Units

This subpart applies to steam generating units of various sizes, all greater than 10 MMBtu/hr. The project does not include any steam generating units with a heat input greater than 10 MMBtu/hr. Therefore, the requirements of these subparts do not apply.

NSPS Subpart GG – Stationary Gas Turbines

This subpart applies to stationary gas turbines with a heat input at peak load equal to or greater than 10 MMBtu/hr, based on the lower heating value of the fuel, commencing construction after October 3, 1977. The Solar Turbines (both proposed and existing) meet this heat input threshold; however, they are subject to Subpart KKKK. Per § 60.4305(b), if stationary combustion turbines are subject to Subpart KKKK, they are exempt from the requirements outlined in Subpart GG. Therefore, this rule does not apply to either the proposed or existing units.

NSPS Subpart KKKK, KKKKa – Stationary Combustion Turbines

Subpart KKKK, Standards of Performance for Stationary Combustion Turbines, applies to stationary combustion units with a heat input at peak load equal to or greater than 10 MMBtu/hr, based on the higher heating value of the fuel, and for which construction, modification, or reconstruction commenced after February 18, 2005. As no modifications to the existing turbines are proposed with this project, they will remain subject to this rule. The proposed new microturbine is below the threshold of applicability and, as such, is not subject to this Subpart.

The proposed Solar turbine for the Harris Compressor Station will be subject to the NO_X emissions limitations in §60.4320(a). Turbines with a rated capacity of $50 < MMBtu/hr \le 850 MMBtu/hr$ at peak load are limited to NO_X emissions of 25 ppm at 15% O₂ when firing natural gas. The Solar turbines that will be installed at the station are equipped with lean pre-mix combustion technology and are guaranteed by the manufacturer to emit a maximum of 9 ppm of NO_X at 15% O₂ under variable turbine load conditions when firing natural gas. This vendor guarantee is well below the KKKK standard.

Mountain Valley will perform annual performance tests in accordance with § 60.4340(a) and § 60.4400 to demonstrate compliance with the NO_X emission limitations, or as an alternative, will continuously monitor the appropriate parameters to determine whether the turbine is operating in low-NO_X mode in accordance with §60.4340(b)(2)(ii) and §60.4355(a). The Solar turbine must also comply with the SO₂ emission limits per §60.4330. Mountain Valley will comply with the SO₂ requirements by the exclusive use of natural gas which contains total potential sulfur emissions less than 0.060 lb SO₂/MMBtu heat input in accordance with §60.4330(a)(2).

EPA recently proposed regulations to revise the NSPS for new, modified, or reconstructed combustion turbines under 40 CFR Part 60, Subpart KKKKa. Under the proposed rule, combustion turbines constructed, modified, or reconstructed after December 13, 2024, must meet more stringent NOx emission standards. EPA has announced that it will issue a final Subpart KKKKa rule in November 2025. Once the rule becomes final, Mountain Valley will evaluate its applicability.

NSPS Subpart 0000, 0000a, 0000b – Crude Oil and Natural Gas Facilities

Subpart OOOO – Standards of Performance for Crude Oil and Natural Gas Facilities, applies to affected facilities that were constructed, reconstructed, or modified after August 23, 2011, and on or before September 18, 2015. As the proposed project will be constructed outside of these applicability dates, Subpart OOOO is not applicable.

Subpart OOOOa – Standards of Performance for Crude Oil and Natural Gas Facilities, establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC), greenhouse gas (as methane), and sulfur dioxide (SO₂) emissions from affected facilities in the crude oil and natural gas source category that commence construction, modification, or reconstruction after September 18, 2015, and on or before December 6, 2022. As the proposed project will be constructed outside of these applicability dates, Subpart OOOOa is not applicable.

Subpart OOOOb applies to affected facilities in the crude oil and natural gas source category that were constructed, reconstructed, or modified after December 6, 2022. The following sections discuss the applicability of Subpart OOOOb to the proposed project. Note that EPA has recently issued an interim final rule to Subpart OOOOb extending certain compliance deadlines. EPA has also announced a future proposed rule to reconsider Subpart OOOOb. Mountain Valley will evaluate changes to applicability and requirements upon release of such rule.

Centrifugal Compressors

As part of the proposed project, one new dry seal centrifugal compressor will be subject to Subpart OOOOb. Mountain Valley will comply with the requirements as outlined in §60.5380b by either:

- ▶ Making initial and periodic measurements of volumetric flow to show it does not exceed 10 standard cubic feet per minute (scfm) per seal or changing or replacing the unit within 90 days after a measurement that exceeds 10 scfm per seal and measuring flow to confirm repair; or
- ▶ Replacing the seals on or before 8,760 hours of operation after startup, or every 8,760 hours after the previous flow rate measurement, or on or before 8,760 hours of operation after the date of the most recent dry seal replacement.

Pneumatic Controllers and Pumps

There are no natural gas driven process controllers or pumps as part of the proposed project. Therefore, Subpart OOOOb is not applicable to this equipment category for the proposed project.

Storage Vessels

The proposed project does not include construction of new tanks. Additionally, the proposed project will not result in an increase in water throughput through the existing pipeline fluids storage vessel beyond the

original potential throughput. As such, the existing storage vessels at the facility will not be modified.³ Accordingly, Subpart OOOOb requirements for storage vessels as affected facilities are not triggered.

Fugitive Components

Subpart OOOOb standards for equipment leaks at natural gas compressor stations apply to the group of all fugitive components at a natural gas compressor station. The addition of compressors will modify the existing compressor station with respect to fugitive components. Mountain Valley will monitor all fugitive emission components with an optical gas imaging (OGI) device and repair all sources of fugitive emissions in accordance with § 60.5397b. Mountain Valley will develop a monitoring plan, conduct surveys on a quarterly basis and comply with the applicable recordkeeping and reporting requirements of the rule.

National Emission Standards for Hazardous Air Pollutants

Regulatory requirements for facilities subject to NESHAP standards, otherwise known as Maximum Available Control Technology (MACT) Standards for source categories, are contained in 40 CFR Part 63. 40 CFR Part 61 NESHAP standards are defined for specific pollutants while Part 63 NESHAPs are defined for source categories where allowable emission limits are established on the basis of a MACT determination for a particular major source. A major source of HAP is defined as having potential emissions in excess of 25 tpy for total HAP or potential emissions in excess of 10 tpy for any individual HAP. Part 63 NESHAPs apply to sources in specifically regulated industrial source categories (CAA Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type.

The proposed potential HAP emissions from the Harris Compressor Station are below the major source thresholds (i.e., less than 10 tpy of individual HAP or 25 tpy of total HAP) and therefore the facility is an area source of HAP.

The potential applicability of NESHAP standards to the operations at the Harris Compressor Station are:

- ▶ NESHAP Subpart HH Oil and Natural Gas Production Facilities;
- ▶ NESHAP Subpart HHH Natural Gas Transmission and Storage Facilities:
- ▶ NESHAP Subpart YYYY Stationary Combustion Turbines;
- ▶ NESHAP Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers Area Sources

NESHAP Subpart HH – Oil and Natural Gas Production Facilities

This standard applies to sources at oil and natural gas production facilities that are major or area sources of HAP emissions. The Harris Compressor Station is a transmission facility; therefore, this facility is not subject to Subpart HH.

NESHAP Subpart HHH – Natural Gas Transmission and Storage Facilities

This standard applies to sources at natural gas transmission and storage facilities that are major sources of HAP emissions and that transport or store natural gas prior to entering the pipeline to a local distribution company or to a final end user (if there is no local distribution company). The facility is located downstream of the point of custody transfer (after processing and/or treatment in the production sector), but upstream of the distribution sector and is therefore considered part of the source category. Although the Harris

³ Note that the throughput modification definition in 60.5365b(e)(3)(ii)(D) is not effective until January 22, 2027.

Compressor Station is a transmission facility, it is an area source of HAP emissions. Therefore, it is not subject to Subpart HHH.

NESHAP Subpart YYYY – Stationary Combustion Turbines

Stationary combustion turbines located at facilities that are major sources of HAPs are potentially subject to Subpart YYYY, NESHAP for Stationary Combustion Turbines. Subpart YYYY establishes emissions and operating limitations for lean premix gas-fired, lean premix oil-fired, diffusion flame gas-fired and diffusion flame oil-fired stationary combustion turbines. The Harris Compressor Station is an area source of HAP and therefore is not subject to the requirements of this subpart.

NESHAP Subpart JJJJJJ – Industrial, Commercial, and Institutional Boilers Area Sources

This standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources of HAP. The units at the Harris Compressor Station are gas fired boilers as defined by the rule and therefore are not subject, per 63.11195(e).

West Virginia SIP Regulations

The proposed project at the station is potentially subject to regulations contained in the West Virginia Code of State Rules, Title 45. The Code of State Rules fall under two main categories: those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors

According to 45 CSR 4-3.1:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The station is generally subject to this requirement. Mountain Valley will operate all equipment in a manner as to avoid causing or contributing to an objectionable odor at any location occupied by the public.

45 CSR 13: Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, Permission to Commence Construction, and Procedures for Evaluation

This rule establishes procedures for permitting and reporting of stationary sources. Mountain Valley will comply with the requirements of this rule by complying with the applicable general provisions in the facility's construction and operating permits.

45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CFR Part 60 by reference. As noted above, the facility will comply with all applicable NSPS subparts.

45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage, and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the Harris Compressor Station, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, Mountain Valley will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

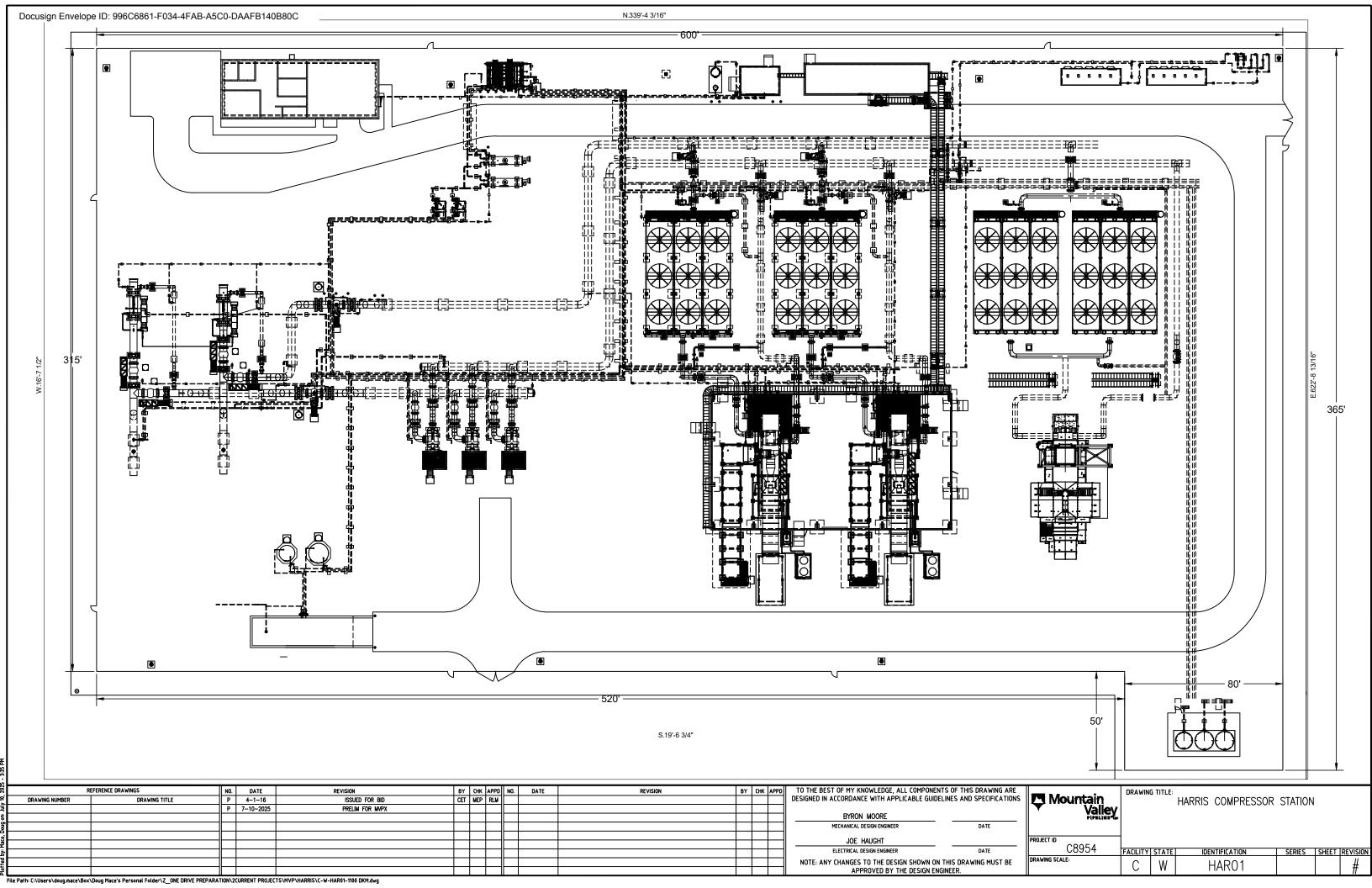
45 CSR 21: To Prevent and Control Air Pollution from the Emission of Volatile Organic Compounds

45 CSR 21 applies only to sources located in Putnam County, Kanawha County, Cabell County, Wayne County, and Wood County, West Virginia. The Harris Compressor Station is located in Braxton County. Therefore, the requirements of this section do not apply to the station.

45 CSR 22: Air Quality Management Fee Program

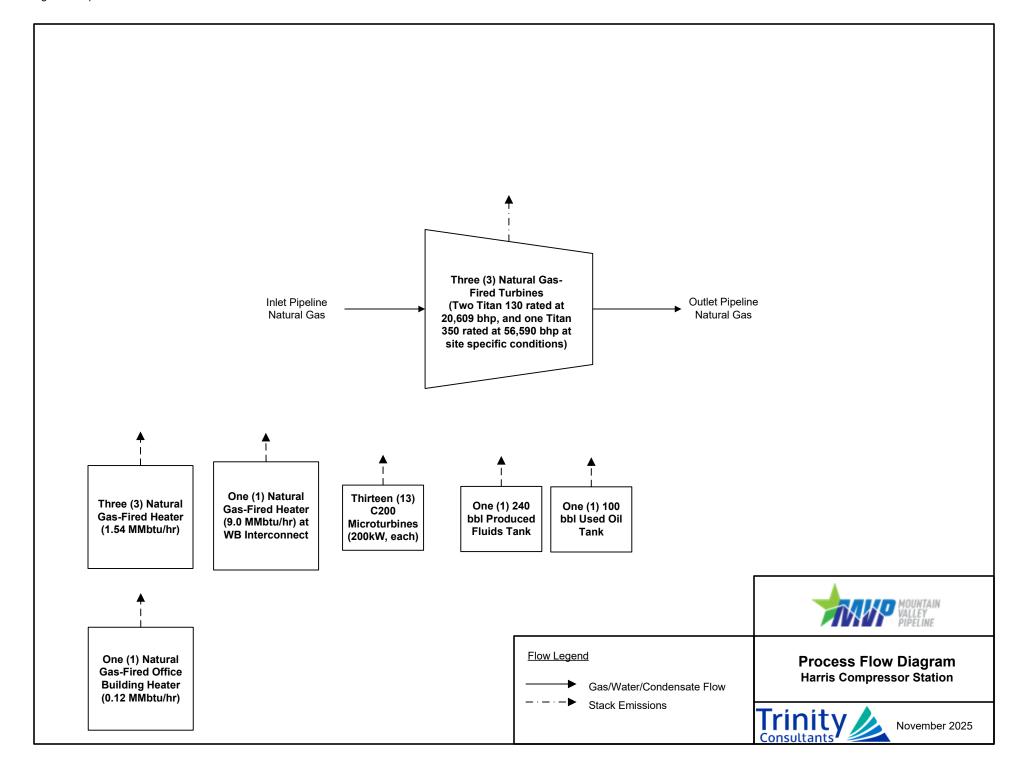
This regulation establishes a program to collect fees for certificates to operate and for permits to construct, modify or relocate sources of air pollution. Mountain Valley will comply with this rule by paying all required permitting fees.

45 CSR 34: Emissions Standards for Hazardous Air Pollutants


45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As noted above, no NESHAPs are applicable to the station.

Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the Harris Compressor station reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the station.


Docusign Envelope ID: 996C6861-F034-4FAB-A5C0-DAAFB140B80C

ATTACHMENT E – PLOT PLAN

Docusign Envelope ID: 996C6861-F034-4FAB-A5C0-DAAFB140B80C

ATTACHMENT F – PROCESS FLOW DIAGRAM

ATTACHMENT G – PROCESS DESCRIPTION

Mountain Valley Pipeline, LLC (Mountain Valley) is submitting this application for the modification of an existing natural gas transmission compressor station located in Braxton County, West Virginia (Harris Compressor Station).

Natural gas enters the station via the transmission pipeline system and is compressed using one of the three natural gas-fired turbines. The compressed natural gas flows into the pipeline to be transported further along the transmission system. The station is also equipped with three fuel gas heaters, one pipeline heater located at a nearby interconnect, one office building heater, one produced fluids storage tank, one used oil storage tank, and thirteen natural gas-fired microturbine generators (each rated at 200 kW) providing electricity to the station. Collected water from separators, filters, etc. is sent to the produced fluids tank. Once the tank is filled, the contents are loaded into trucks for transport.

A process flow diagram is included as Attachment F.

Docusign Envelope ID: 996C6861-F034-4FAB-A5C0-DAAFB140B80C

ATTACHMENT I – EMISSION UNITS TABLE

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

		be part of this permit application	1011011/109	и и сооб от ре		
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
S001	E001	Solar Turbine #1	2020	20,609 HP (site-specific conditions)	Existing	N/A
S002	E002	Solar Turbine #2	2020	20,609 HP (site-specific conditions)	Existing	N/A
S021	E021	Solar Turbine #3	TBD	56,590 HP (site-specific conditions)	Proposed (2028)	N/A
S003	E003	Microturbine Generator #1	2020	200 KW	Existing	N/A
S004	E004	Microturbine Generator #2	2020	200 KW	Existing	N/A
S005	E005	Microturbine Generator #3	2020	200 KW	Existing	N/A
S006	E006	Microturbine Generator #4	2020	200 KW	Existing	N/A
S007	E007	Microturbine Generator #5	2020	200 KW	Existing	N/A
S008	E008	Microturbine Generator #6	2020	200 KW	Existing	N/A
S009	E009	Microturbine Generator #7	2020	200 KW	Existing	N/A
S010	E010	Microturbine Generator #8	2020	200 KW	Existing	N/A
S011	E011	Microturbine Generator #9	2020	200 KW	Existing	N/A
S023	E023	Microturbine Generator #10	TBD	200 KW	Proposed (2028)	N/A
S024	E024	Microturbine Generator #11	TBD	200 KW	Proposed (2028)	N/A
S025	E025	Microturbine Generator #12	TBD	200 KW	Proposed (2028)	N/A
S026	E026	Microturbine Generator #13	TBD	200 KW	Proposed (2028)	N/A
S012	E012	Fuel Gas Heater	2020	1.54 MMBtu/hr	Existing	N/A
S013	E013	Fuel Gas Heater	2020	1.54 MMBtu/hr	Existing	N/A
S022	E022	Fuel Gas Heater	TBD	1.54 MMBtu/hr	Proposed (2028)	N/A
S014	E014	Office Building Heater	2020	0.12 MMBtu/hr	Existing	N/A
S015	E015	WB Pipeline Heater (at interconnect)	2020	9.0 MMBtu/hr	Existing	N/A
S016	E016	Produced Fluids Tank	2020	10,080 gallons	Existing	N/A
S017	E017	Used Oil Tank	2020	4,200 gallons	Existing	N/A
S018	E018	Fugitives	TBD	N/A	Revised Count (2028)	N/A

S019	E019	Liquid Loading	2020	126,000 gal/yr	Existing	N/A
S020	E020	Blowdowns	TBD	N/A	Revised Count (2028)	N/A

 ¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
 ² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
 ³ New, modification, removal
 ⁴ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J – EMISSION POINTS DATA SUMMARY SHEET

Attachment J EMISSION POINTS DATA SUMMARY SHEET

						T	able 1:	Emissions Da	ata						
Emission Point ID No. (Must match Emission Units Table	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
& Plot Plan)		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	conditions, Solid, Liquid or Gas/Vapor)		
S001	Upward Vertical stack	E001	Solar Turbine	NA	NA	NA	NA	NOx CO VOC SO2 PM/PM10/PM2.5 HAPs CO2e	8.90 9.03 1.03 0.53 2.32 0.49 18,339	39.01 41.86 4.61 2.30 10.17 2.17 80,458	8.90 9.03 1.03 0.53 2.32 0.49 18,339	39.01 41.86 4.61 2.30 10.17 2.17 80,458	Gas/Vapor	O ^A O ^A O ^A O ^A O ^A O ^{A,B} O ^{A,C}	
S002	Upward Vertical stack	E002	Solar Turbine	NA	NA	NA	NA	NOx CO VOC SO2 PM/PM10/PM2.5 HAPs CO2e	8.90 9.03 1.03 0.53 2.32 0.49 18,339	39.01 41.86 4.61 2.30 10.17 2.17 80,458	8.90 9.03 1.03 0.53 2.32 0.49 18,339	39.01 41.86 4.61 2.30 10.17 2.17 80,458	Gas/Vapor	O ^A O ^A O ^A O ^A O ^A O ^{A,B} O ^{A,C}	
S021	Upward Vertical stack	E021	Solar Turbine	NA	NA	NA	NA	NOx CO VOC SO2 PM/PM10/PM2.5 HAPs CO2e	12.81 13.00 1.49 1.30 3.82 1.22 45,164	56.13 57.38 6.70 5.69 16.74 5.35 197,951	12.81 13.00 1.49 1.30 3.82 1.22 45,164	56.13 57.38 6.70 5.69 16.74 5.35 197,951	Gas/Vapor	O ^A O ^A O ^A O ^A O ^A O ^{A,B} O ^{A,C}	
S003	Upward Vertical Stack	E003	Microturbine	NA	NA	NA	NA	NOx CO VOC SO2 PM/PM10/PM2.5 HAPs CO2e	0.08 0.22 0.02 0.01 0.02 <0.01 266	0.35 0.96 0.09 0.03 0.07 0.01 1,166	0.08 0.22 0.02 0.01 0.02 <0.01 266	0.35 0.96 0.09 0.03 0.07 0.01 1,166	Gas/Vapor	O ^A O ^A O ^D O ^D O ^D O ^D O ^{A,C}	
S004	Upward Vertical Stack	E004	Microturbine	NA	NA	NA	NA	NOx CO VOC SO2 PM/PM10/PM2.5 HAPs CO2e	0.08 0.22 0.02 0.01 0.02 <0.01 266	0.35 0.96 0.09 0.03 0.07 0.01 1,166	0.08 0.22 0.02 0.01 0.02 <0.01 266	0.35 0.96 0.09 0.03 0.07 0.01 1,166	Gas/Vapor	O ^A O ^A O ^D O ^D O ^D O ^{A,C}	

S005	Howard	E005	Microturbino	NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O ^A	
5005	Upward Vertical	E005	Microturbine					CO VOC	0.22	0.96	0.22	0.96		O ^A	
	Stack							VOC	0.02	0.09	0.02	0.09		O ^A	
	Stack							SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O_D	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07	, ,	O_D	
								HAPs	< 0.01	0.01	< 0.01	0.01		O_D	
								CO2e	266	1,166	266	1,166		O ^{A,C}	
S006	Upward	E006	Microturbine	NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O ^A	
3000	Vertical	L000	Microtarbine					CO	0.22	0.96	0.22	0.96		O ^A	
	Stack							VOC	0.02	0.09	0.02	0.09		O ^A	
	Stack							SO2	0.01	0.03	0.01	0.03	Gas/Vapor	OD	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07		O_D	
								HAPs	< 0.01	0.01	< 0.01	0.01		O_D	
								CO2e	266	1,166	266	1,166		O ^{A,C}	
S007	Upward	E007	Microturbine	NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O ^A	
3007	Vertical	2007	1 iici otai bii ic					CO	0.22	0.96	0.22	0.96		O ^A	
	Stack							VOC	0.02	0.09	0.02	0.09		O ^A	
	Stack							SO2	0.01	0.03	0.01	0.03	Gas/Vapor	OD	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07		OD	
								HAPs	< 0.01	0.01	< 0.01	0.01		OD	
								CO2e	266	1,166	266	1,166		O ^{A,C}	
S008	Upward	E008	Microturbine	NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O ^A	
3000	Vertical	2000	1 iici otai bii ic					CO	0.22	0.96	0.22	0.96		O ^A	
	Stack							VOC	0.02	0.09	0.02	0.09		O ^A	
	Stack							SO2	0.01	0.03	0.01	0.03	Gas/Vapor	OD	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07		OD	
								HAPs	< 0.01	0.01	< 0.01	0.01		OD	
								CO2e	266	1,166	266	1,166		O ^{A,C}	
S009	Upward	E009	Microturbine	NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O ^A	
3003	Vertical	2003	1 iici otai bii ic					CO	0.22	0.96	0.22	0.96		O ^A	
	Stack							VOC	0.02	0.09	0.02	0.09		O ^A	
	Stack							SO2 PM/PM10/PM2.5	0.01	0.03	0.01	0.03	Gas/Vapor	OD	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07		OD	
								HAPs	< 0.01	0.01	< 0.01	0.01		OD	
								CO2e	266	1,166	266	1,166		O ^{A,C}	
S010	Upward	E010	Microturbine	NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O ^A	
3010	Vertical		. IICI OCUI DIIIC					CO	0.22	0.96	0.22	0.96		O ^A	
	Stack							VOC	0.02	0.09	0.02	0.09		O ^A	
	Stack							SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O _D	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07		O _D	
		1						HAPs	< 0.01	0.01	<0.01	0.01		O _D	
								CO2e	266	1,166	266	1,166		O ^{A,C}	
S011	Upward	E011	Microturbine	NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O ^A	
	Vertical		c. oca. biric					CO	0.22	0.96	0.22	0.96		O ^A	
	Stack							VOC	0.02	0.09	0.02	0.09		O ^A	
	Juck							SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O _D	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07		O ^D	
								HAPs	< 0.01	0.01	< 0.01	0.01		O _D	
		1						CO2e	266	1,166	266	1,166		O ^{A,C}	

S023	Upward	E023	Microturbine	NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O ^A	
3023	Vertical	E023	Microturbine					CO	0.22	0.96	0.22	0.96		O ^A	
								VOC	0.02	0.09	0.02	0.09		O ^A	
	Stack							SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O_D	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07	545, 1445	O_D	
								HAPs	< 0.01	0.01	< 0.01	0.01		OD	
								CO2e	266	1,166	266	1,166		O ^{A,C}	
S024	Upward	E024	Microturbine	NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O ^A	
3024	Vertical	LUZT	Pilciotarbine					CO	0.22	0.96	0.22	0.96		O ^A	
	Stack							VOC	0.02	0.09	0.02	0.09		O ^A	
	Stack							SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O_D	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07	545, 1445	O_D	
								HAPs	< 0.01	0.01	< 0.01	0.01		O_D	
								CO2e	266	1,166	266	1,166		O ^{A,C}	
S025	Upward	E025	Microturbine	NA	NA	NA	NA	NOx	0.08	0.35	0.08	0.35		O ^A	
3023	Vertical	L023	1 licrotarbine					CO	0.22	0.96	0.22	0.96		O ^A	
	Stack							VOC	0.02	0.09	0.02	0.09		O ^A	
	Stack							SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O_D	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07	545, 1445	O_D	
								HAPs	< 0.01	0.01	< 0.01	0.01		O_D	
								CO2e	266	1,166	266	1,166		O ^{A,C}	
S026	Upward	E026	Microturbine	NA	NA	NA	NA	NOx	80.0	0.35	0.08	0.35		O ^A	
3020	Vertical	L020	Microtarbine					CO	0.22	0.96	0.22	0.96		O ^A	
	Stack							VOC	0.02	0.09	0.02	0.09		O ^A	
	Stack							SO2	0.01	0.03	0.01	0.03	Gas/Vapor	O_D	
								PM/PM10/PM2.5	0.02	0.07	0.02	0.07	, ,	O_D	
								HAPs	< 0.01	0.01	< 0.01	0.01		OD	
								CO2e	266	1,166	266	1,166		O ^{A,C}	
S012	Upward	E012	Fuel Gas	NA	NA	NA	NA	NOx	0.15	0.64	0.15	0.64		O ^F	
3312	Vertical		Heater					CO	0.12	0.54	0.12	0.54		O ^F	
	stack							VOC	0.01	0.04	0.01	0.04	Gas/Vapor	O ^F	
	Stack							SO2	< 0.01	< 0.01	<0.01	< 0.01	Gas/ vapoi	O ^F	
								PM/PM10/PM2.5	0.01	0.05	0.01	0.05		O ^F	
								CO2e	180	789	180	789		Oc	
S013	Upward	E013	Fuel Gas	NA	NA	NA	NA	NOx	0.15	0.64	0.15	0.64		O ^F	
5015	Vertical	2013	Heater					CO	0.12	0.54	0.12	0.54		O ^F	
	stack		l leater					VOC	0.01	0.04	0.01	0.04	Coollings	O ^F	
	Stack							SO2	< 0.01	< 0.01	<0.01	< 0.01	Gas/Vapor	O ^F	
								PM/PM10/PM2.5	0.01	0.05	0.01	0.05		O ^F	
								CO2e	180	789	180	789		O _C	
S022	Upward	E022	Fuel Gas	NA	NA	NA	NA	NOx	0.15	0.64	0.15	0.64		O ^F	
1	Vertical		Heater					CO	0.12	0.54	0.12	0.54		O ^F	
	stack							VOC	0.01	0.04	0.01	0.04	Gas/Vapor	O ^F	
								SO2	< 0.01	< 0.01	<0.01	< 0.01	Gas/ vapor	O ^F	
								PM/PM10/PM2.5	0.01	0.05	0.01	0.05		O ^F	
								CO2e	180	789	180	789		O ^C	
S014	Upward	E014	Office	NA	NA	NA	NA	NOx	0.01	0.05	0.01	0.05		O ^F	
	Vertical		Building					СО	0.01	0.04	0.01	0.04		O ^F	
	stack		Heater					VOC	< 0.01	< 0.01	< 0.01	< 0.01	CacMance	O ^F	
	3.2.3.							SO2	< 0.01	< 0.01	< 0.01	< 0.01	Gas/Vapor	O ^F	
								PM/PM10/PM2.5	< 0.01	< 0.01	< 0.01	< 0.01		O ^F	
								CO2e	14	62	14	62		Oc	

				NA	NA	NA	NA	NOx	0.86	3.75	0.86	3.75		O ^F	
S015	Upward Vertical stack	E015	WB Pipeline Heater (at interconnect					CO VOC SO2 PM/PM10/PM2.5	0.72 0.05 0.01 0.07	3.15 0.21 0.02 0.28	0.72 0.05 0.01 0.07	3.15 0.21 0.02 0.28	Gas/Vapor	O ^F O ^F O ^F	
)					CO2e	1,054	4,617	1,054	4,617		Oc	
S016	Upward Vertical Stack	E016	Produced Fluids Storage Tank	NA	NA	NA	NA	VOC HAP CO2e	<0.01 <0.01 3	<0.01 <0.01 14	<0.01 <0.01 3	<0.01 <0.01 14	Gas/Vapor	OE	
S017	Upward Vertical Stack	E017	Used Oil Storage Tank	NA	NA	NA	NA	VOC HAP	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	Gas/Vapor	OE	
S018	Fugitives	E018	Fugitives including Haul Roads	NA	NA	NA	NA	VOC PM/PM10/PM2.5 HAP CO2e	0.10 0.01 <0.01 238	0.45 0.04 <0.01 1044	0.10 0.01 <0.01 238	0.45 0.04 <0.01 1044	Gas/Vapor	О _с О _н О _е	
S019	Liquid Loading	E019	Liquid Loading	NA	NA	NA	NA	VOC	0.01	0.05	0.01	0.05	Gas/Vapor	O _I	
S020	Blowdowns	E020	Blowdowns including Pigging	NA	NA	NA	NA	VOC HAP CO2e	2.95 <0.01 6,859	12.92 0.02 30,044	2.95 <0.01 6,859	12.92 0.02 30,044	Gas/Vapor	О _с О _н О _с	

A- Manufacturer's specific pollutant emission factor

B- AP-42 Section 3.1, Table 3.1-3 "Emission Factors for HAPs from Natural Gas Fired Stationary Gas Turbines", April 2000, except for Formaldehyde which is manufacturer's spec. C- 40 CFR 98, Subpart C for natural gas fired combustion.

D- AP-42 Section 3.1 Table 3.1-2a

E- BR&E ProMax software

F- AP-42 Section 1.4 Tables 1.4-1, 1.4-2 and 1.4-3, July 1998.
G- EPA Leak Protocol, Table 2-4, 40 CFR 98 Subpart W & Site-Specific Gas Analysis H- AP-42 Table 13.2.2-2 (Final, 11/06)
I- AP-42 Section 5.2 Table 5.2-1

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- ¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- ² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- ³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.
- ⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- ⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).
- Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mq/m^3) at standard conditions (68 °F and 29.92 inches Hq) (see 45CSR7). If the pollutant is SO_2 , use units of ppmv (See 45CSR10).

ATTACHMENT K – FUGITIVES EMISSIONS DATA SUMMARY

ATTACHMENT K – FUGITIVE EMISSIONS SUMMARY SHEET									
	Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary.								
Source/Equipm	ent: Fugitiv	e Emissions	ıs						
Leak Detection	Leak Detection Method Used □ Audible, visual, and olfactory (AVO) inspections □ Infrared (FLIR) cameras □ Other (please describe)						□ None required		
Is the facility s	ubject to qua	rterly LDA	AR mon	itoring under 40CFR60 Su	bpart OOOOa? ⊠ Yes □ No	. If no, why?			
Component	Closed			Source (of Leak Factors	Stream type	Estir	nated Emissio	ns (tpy)
Туре	Vent System	Count	t		other (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (CO ₂ e)
Pumps	□ Yes ⊠ No				N/A	⊠ Gas □ Liquid □ Both			
Valves	□ Yes ⊠ No	728		Protocol for Equipment Le (EPA-453	⊠ Gas □ Liquid ⊠ Both	0.37	< 0.01	863.06	
Safety Relief Valves	□ Yes □ No				⊠ Gas □ Liquid □ Both				
Open Ended Lines	□ Yes ⊠ No	21		Protocol for Equipment Leak Emission Estimates. Table 2-4. (EPA-453/R-95-017, 1995).		⊠ Gas □ Liquid □ Both	<0.01	<0.01	11.06
Sampling Connections	□ Yes □ No			N/A		☐ Gas ☐ Liquid ☐ Both			
Connections (Not sampling)	□ Yes ⊠ No	2,100)	Protocol for Equipment Leak Emission Estimates. Table 2-4. (EPA-453/R-95-017, 1995).		⊠ Gas □ Liquid □ Both	0.05	<0.01	110.65
Compressors	☐ Yes ☐ No			N/A		☐ Gas ☐ Liquid ☐ Both			
Flanges	□ Yes ⊠ No	578		Protocol for Equipment Leak Emission Estimates. Table 2-4. (EPA-453/R-95-017, 1995).		⊠ Gas □ Liquid □ Both	0.03	<0.01	59.39
Other ¹	□ Yes □ No			□ I		☐ Gas ☐ Liquid ☐ Both			
¹ Other equipm	ent types ma	y include c	compres	ssor seals, relief valves, di	aphragms, drains, meters, etc.				
Please indicate	if there are a	any closed	vent by	passes (include componen	t):				
Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.)									

ATTACHMENT L - EMISSIONS UNIT DATA SHEETS

ATTACHMENT L – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S012	E012	Fuel Gas Heater	2020	Existing	1.54	1052
S013	E013	Fuel Gas Heater	2020	Existing	1.54	1052
S022	E022	Fuel Gas Heater	2028	New	1.54	1052

- Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- 5 ENTER THE FUEL HEATING VALUE IN BTU/STANDARD CUBIC FOOT.

ATTACHMENT L - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. Generator(s) and microturbine generator(s) shall also use this form.

3		•					
Emission Unit ID#1		S023-S026					
Engine Manufacturer/Model		Capstone					
Manufacturers Rated bhp/rpm		268.2					
Source Status ²		N	S				
Date Installed/ Modified/Remov	ved/Relocated ³	20	28				
Engine Manufac		20	28				
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		Microturbine					
APCD Type ⁷		NA					
Fuel Type ⁸		PQ					
H ₂ S (gr/100 scf))	neg					
Operating bhp/r	pm	268.2					
BSFC (BTU/bhp-hr)							
Hourly Fuel Thi	oughput	2167 ft ³ /hr gal/hr			/hr l/hr		/hr l/hr
Annual Fuel Throughput (Must use 8,760 hrs/yr unless emergency generator)		19 MMft ³ /gal	/yr /yr	MMft³/yr gal/yr		MMft³/yr gal/yr	
Fuel Usage or H Operation Meter		Yes ⊠	No □	Yes □	No □	Yes □	No □
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
MD	NO _x	0.08	0.35				
MD	СО	0.22	0.96				
MD	VOC	0.02	0.09				
AP	SO ₂	0.01	0.03				
AP	PM ₁₀	0.02	0.07				
AP	Formaldehyde	< 0.01	0.01				
AP	Total HAPs	< 0.01	0.01				
AP	GHG (CO ₂ e)	266	1,166				

2 Enter the Source Status using the following codes:

 NS
 Construction of New Source (installation)
 ES
 Existing Source

 MS
 Modification of Existing Source
 RS
 Relocated Source

 REM
 Removal of Source

¹ Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

³ Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.

- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being permitted.

6 Enter the Engine Type designation(s) using the following codes:

2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn

4SLB Four Stroke Lean Burn

7 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers PSC Prestratified Charge LEC Low Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Catalyst

SCR Lean Burn & Selective Catalytic Reduction

8 Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas / Production Gas D Diesel

9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.

MD Manufacturer's Data AP AP-42

GR GRI-HAPCalcTM OT Other (please list)

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

ATTACHMENT L – CENTRIFUGAL COMPRESSOR DATA SHEET

Are there any centrifugal compressor construction, modification or reconstrution before September 1981	ction after August 23, 2011, and on or

Please list:

Emission Unit ID#	Compressor Description

Are there any centrifugal compressors at this facility that commenced construction, modification or reconstruction after September 18, 2015?

⊠ Yes □ No

Please list:

Emission Unit ID#	Compressor Description
S001	C45-3
S002	C45-3
S021	C71-3

ATTACHMENT L – BLOWDOWN AND PIGGING OPERATIONS DATA SHEET

Will there be any blowdown and pigging operations that occur at this facility?

⊠ Yes □ No

Please list:

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	VOC weight fraction	VOC emissions (ton/yr)
Unit Shutdown	48	170,000	17.6	182.95	0.011	1.95
Compressor Startup	NA	NA	NA	NA	NA	NA
Station ESD Vent	4	1,100,000	17.6	98.65	0.011	1.05
Pig Venting	16	Varies	17.6	7.61	0.011	0.08
Main Gas Filter Changes	36	91,000	17.6	73.45	0.011	0.78

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	HAP weight fraction	HAP emissions (ton/yr)
Unit Shutdown	48	170,000	17.6	182.95	<0.01	< 0.01
Compressor Startup	NA	NA	NA	NA	NA	NA
Station ESD Vent	4	1,100,000	17.6	98.65	< 0.01	< 0.01
Pig Venting	16	Varies	17.6	7.61	< 0.01	< 0.01
Main Gas Filter Changes	36	91,000	17.6	73.45	<0.01	<0.01

Attachment L **EMISSIONS UNIT DATA SHEET GENERAL**

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on <i>Equipment List Form</i>): S021
Name or type and model of proposed affected source:
Natural Gas-Fired Solar Titan 350 Turbine - Rated 56,590 HP at site-specific conditions. ISO rating is 52,500 HP
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
NA
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Does not produce any materials. The turbines compress natural gas.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
External combustion of natural gas
External compustion of natural gas

The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	. Combustion Data (if applicable):					
	(a) Type and amount in ap	propriate units of fu	el(s) to be bu	rned:		
Ν	Natural gas – 374,665 scf/hr					
	(b) Chemical analysis of prant ash:	roposed fuel(s), exc	luding coal, in	cluding maxim	um percent sulfur	
N	atural gas with negligible H					
	(c) Theoretical combustion	n air requirement (A	CF/unit of fue	l):		
	@		°F and		psia.	
	(d) Percent excess air:					
3:	(e) Type and BTU/hr of bu	gas turbine				
	(f) If coal is proposed as a coal as it will be fired:	source of fuel, ider	itify supplier a	ind seams and	give sizing of the	
N	A					
	(g) Proposed maximum de	esign heat input:	354.92	(LHV)	× 10 ⁶ BTU/hr.	
7.	Projected operating sched	ule:		ı		
Но	urs/Day 24	Days/Week	7	Weeks/Year	52	

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:				
@	Unknown	°F and		psia	
a.	NO _X	See Emission Calculations in Attachment N	lb/hr	grains/ACF	
b.	SO ₂		lb/hr	grains/ACF	
C.	СО		lb/hr	grains/ACF	
d.	PM ₁₀		lb/hr	grains/ACF	
e.	Hydrocarbons		lb/hr	grains/ACF	
f.	VOCs		lb/hr	grains/ACF	
g.	Pb		lb/hr	grains/ACF	
h.	Specify other(s)	 			
	НАР		lb/hr	grains/ACF	
			lb/hr	grains/ACF	
			lb/hr	grains/ACF	
			lb/hr	grains/ACF	

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
REPORTING Submit report of initial compliance testing in accordance with 40 CFR 60.4375(b) within 60 days of the performance test	TESTING Annual performance testing in accordance with 40 CFR 60.4340(a) to demonstrate compliance with NOx emission limitations
PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE. POSED RECORDKEEPING THAT WILL ACCOMPANY THE
MONITORING.	
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to

Customer		
EQT		
Job ID		
MVPx - Harris CS		
Inquiry Number		
PI18-89660		
Run By	Date Run	
Marr Cameron H	27-Jun-25	

Engine Model TITAN 350-52500S CS/MD 59F MATCH	
Fuel Type	Water Injection
CHOICE GAS	NO
Engine Emissions Data	

				,					
		NOX EMISSIONS CO EMISSIONS		IONS	UHC EN	MISSIONS			
] [
1	27889 HP 50	.0% Load Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	-20.0 Deg. F		
Р	PMvd at 15% O2	9.00		15.00		1:	5.00		
	ton/yr	39.59		40.17		23	3.01		
Ibm/MI	MBtu (Fuel LHV)	0.036		0.037		0.	021		
	lbm/(MW-hr)	0.43		0.44		0).25		
(gas t	turbine shaft pwr) Ibm/hr	9.04		9.17		5	5.25		
2	27471 HP 50	0.0% Load Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	0 Deg. F		
Р	PMvd at 15% O2	9.00		15.00		15	5.00		
	ton/yr	38.26		38.82		22	2.23		
lbm/MI	MBtu (Fuel LHV)	0.036		0.037		0.	021		
	lbm/(MW-hr)	0.43		0.43		0.25			
(gas t	turbine shaft pwr) Ibm/hr	8.73		8.86		5	5.08		
3	26190 HP 50	.0% Load Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	20.0 Deg. F		
P	PMvd at 15% O2	9.00	9.00			1:	5.00		
	ton/yr	36.34	36.34		36.87		36.87		1.12
lbm/M	MBtu (Fuel LHV)	0.036		0.037		0.021			
	lbm/(MW-hr)	0.42		0.43		0.25			
(gas t	turbine shaft pwr)					1			
	Ibm/hr 2 8.30			8.42] [4	.82		

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Customer EQT		
Job ID		
MVPx - Harris CS		
Inquiry Number		
PI18-89660		
Run By	Date Run	
Marr Cameron H	27-Jun-25	

Engine Model TITAN 350-52500S CS/MD 59F MATCH	
Fuel Type	Water Injection
CHOICE GAS	NO
Engine Emissions Data REV. 0.1	

NOx EMISSIONS	CO EMISSIONS	UHC EMISSIONS

4 24524 HP	50.0% Load	Elev.	1455 ft	Rel. Humidity	60.0%	Те	mperature	40.0 Deg. F
PPMvd at 15%	6 O2	9.00		15.00		7 [1:	5.00
to	on/yr	34.15		34.65		7	19	9.85
Ibm/MMBtu (Fuel L	bm/MMBtu (Fuel LHV) 0.036			0.036		7 I	0.021	
lbm/(MW	/-hr)	0.43		.43 0.43] [0	.25
(gas turbine shaft	t pwr)					 - r		
lbı	m/hr´	7.80		7.91		Jl	4	.53

- 1. For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

PREDICTED ENGINE PERFORMANCE

Customer		
EQT		
Job ID MVPx - Harris CS		
Run By	Date Run	
Marr Cameron H	27-Jun-25	
Engine Performance Code	Engine Performance Data	
REV. 4.20.2.28.14	REV. 1.0	

Model TITAN 350-52500S	
Package Type CS/MD	
Match 59F MATCH	
Fuel System GAS	
Fuel Type CHOICE GAS	

DATA FOR MINIMUM PERFORMANCE

2

0

60.0

5465

869

3

20.0

60.0

5380

891

40.0

60.0

5272

913

Elevation Inlet Loss	feet in H2O	1455 4.0
Exhaust Loss Accessory on GP Shaft	in H2O HP	10.0 55.0
		1
Engine Inlet Temperature	deg F	-20.0
Relative Humidity	%	60.0

Specified Load	HP	50.0%	50.0%	50.0%	50.0%
Net Output Power	HP	27889	27471	26190	24524
Fuel Flow	mmBtu/hr	263.95	255.11	242.54	228.32
Heat Rate	Btu/HP-hr	9464	9287	9261	9310
Therm Eff	%	26.885	27.399	27.476	27.330
Engine Exhaust Flow	lbm/hr	788550	752800	710425	665428
PT Exit Temperature	deg F	912	917	927	941

RPM

deg F

5496

849

Fuel Gas Composition (Volume Percent)

Exhaust Temperature

Driven Equipment Speed

Methane (CH4)	93.83
Ethane (C2H6)	5.18
Propane (C3H8)	0.33
I-Butane (C4H10)	0.02
N-Butane (C4H10)	0.03
I-Pentane (C5H12)	0.0037
N-Pentane (C5H12)	0.0021
Heptane (C7H16)	0.0001
Carbon Monoxide (CO)	0.24
Carbon Dioxide (CO2)	0.36
Oxygen (O2)	0.0027
Sulfur Dioxide (SO2)	0.0001
I-Hexene (C6H12)	0.0006
Cyclopentane (C5H10)	0.0002
MethylCycloHexane (C7H14)	0.0001
Benzene (C6H6)	0.0000
Toluene (C7H8)	0.0000

es	LHV (Btu/Scf)	947.3 S	pecific Gravity	0.5875	Wobbe Index at 60F	1235.9	
----	---------------	---------	-----------------	--------	--------------------	--------	--

Customer		
EQT		
LQI		
Job ID		
MVPx - Harris CS		
INVI X - Harris CO		
Inquiry Number		
PI18-89660		
1110-03000		
Run By	Date Run	
Marr Cameron H	27-Jun-25	
,a • a•. •		

Engine Model TITAN 350-52500S CS/MD 59F MATCH	
Fuel Type	Water Injection
CHOICE GAS	NO
Engine Emissions Data	
REV 01	

man van					V		
		NOx EMISSIO	ONS	CO EMISS	IONS	UHC E	MISSIONS
1	41833 HP 75	i.0% Load Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	-20.0 Deg. F
Р	PMvd at 15% O2	9.00		15.00		1:	5.00
	ton/yr	48.26		48.97		28	8.05
lbm/M	MBtu (Fuel LHV)	0.036		0.037		0.	.021
	lbm/(MW-hr)	0.35		0.36).21
(gas t	turbine shaft pwr) Ibm/hr	11.02		11.18			5.40
2	41207 HP 75	5.0% Load Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	0 Deg. F
Р	PMvd at 15% O2	9.00		15.00		19	5.00
	ton/yr	46.56		47.24		2	7.06
Ibm/M	MBtu (Fuel LHV)	0.036		0.037		0.	021
	lbm/(MW-hr)	0.35		0.35			0.20
(gas t	turbine shaft pwr) Ibm/hr	10.63		10.79			5.18
3	39286 HP 75	i.0% Load Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	20.0 Deg. F
Р	PMvd at 15% O2	9.00		15.00		19	5.00
	ton/yr	44.02		44.67		2:	5.59
Ibm/M	MBtu (Fuel LHV)	0.036		0.037		0.	.021
	lbm/(MW-hr)	0.34		0.35	0.35).20
(gas t	turbine shaft pwr) lbm/hr	10.05		10.20] [5	5.84

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Customer EQT		
Job ID		
MVPx - Harris CS		
Inquiry Number		
PI18-89660		
Run By	Date Run	
Marr Cameron H	27-Jun-25	

Engine Model TITAN 350-52500S CS/MD 59F MATCH	
Fuel Type	Water Injection
CHOICE GAS	NO
Engine Emissions Data REV. 0.1	

NOx EMISSIONS	CO EMISSIONS	UHC EMISSIONS

4	36787 HP	75.0% Load	Elev.	1455 ft	Rel. Humidity	60.0%	Te	emperature	40.0 Deg. F
PPMvd at 15% O2 9.00			15.00		1	1:	5.00		
	ton/y	r ·	41.24		41.84		1	23	3.97
Ibm/MMBtu (Fuel LHV)		()	0.036		0.036		1	0.021	
lbm/(MW-hr)		r)	0.34		0.35			0	.20
(gas tı	urbine shaft pv	vr)					_		
.5	lbm/h	r´	9.42		9.55		╛	5	5.47

- 1. For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

PREDICTED ENGINE PERFORMANCE

Customer	
EQT	
Job ID MVPx - Harris CS	
Run By	Date Run
Marr Cameron H	27-Jun-25
Engine Performance Code	Engine Performance Data
REV. 4.20.2.28.14	REV. 1.0

Model TITAN 350-52500S	
Package Type CS/MD	
Match 59F MATCH	
Fuel System GAS	
Fuel Type CHOICE GAS	

DATA FOR MINIMUM PERFORMANCE

Elevation	feet	1455
Inlet Loss	in H2O	4.0
Exhaust Loss	in H2O	10.0
Accessory on GP Shaft	HP	55.0
-		

		1	2	3	4
Engine Inlet Temperature	deg F	-20.0	0	20.0	40.0
Relative Humidity	%	60.0	60.0	60.0	60.0
Driven Equipment Speed	RPM	6002	5992	5924	5836
Specified Load	НР	75.0%	75.0%	75.0%	75.0%
Net Output Power	HP	41833	41207	39286	36787
Fuel Flow	mmBtu/hr	314.24	303.25	287.01	269.34
Heat Rate	Btu/HP-hr	7512	7359	7306	7322
Therm Eff	%	33.873	34.574	34.828	34.752
Engine Exhaust Flow	lbm/hr	885758	852143	807499	760734
PT Exit Temperature	deg F	838	842	851	864
Exhaust Temperature	deg F	824	834	847	861

Fuel Gas Composition (Volume Percent)

Methane (CH4)	93.83
Ethane (C2H6)	5.18
Propane (C3H8)	0.33
I-Butane (C4H10)	0.02
N-Butane (C4H10)	0.03
I-Pentane (C5H12)	0.0037
N-Pentane (C5H12)	0.0021
Heptane (C7H16)	0.0001
Carbon Monoxide (CO)	0.24
Carbon Dioxide (CO2)	0.36
Oxygen (O2)	0.0027
Sulfur Dioxide (SO2)	0.0001
I-Hexene (C6H12)	0.0006
Cyclopentane (C5H10)	0.0002
MethylCycloHexane (C7H14)	0.0001
Benzene (C6H6)	0.0000
Toluene (C7H8)	0.0000

Fu

uel Gas Properties LHV (Btu/Scf) 947	7.3 Specific Gravity	0.5875 Wobbe Index at 60F 1235.9
--------------------------------------	----------------------	----------------------------------

Customer EQT Job ID MVPx - Harris CS Inquiry Number PI18-89660 Run By Date Run Marr Cameron H 27-Jun-25

Engine Model TITAN 350-52500S CS/MD 59F MATCH	
Fuel Type	Water Injection
CHOICE GAS	NO
Engine Emissions Data	

Wall Cal	neron n		21-3ui	11-23			0.1		
			NOx E	EMISSIC	ONS	CO EMISS	IONS	UHC EI	MISSIONS
1	55777 HP	100	.0% Load	Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	-20.0 Deg. F
Р	PMvd at 15%	02		9.00		15.00		1:	5.00
	ton	/yr		57.07		57.90		3:	3.16
lbm/M	MBtu (Fuel LH	IV)		0.036		0.037		0.	.021
	lbm/(MW-I	hr)		0.31		0.32).18
(gas t	turbine shaft բ lbm/	owr) /hr		13.03		13.22			7.57
2	54942 HP	100	.0% Load	Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	0 Deg. F
Р	PMvd at 15%	02		9.00		15.00		1:	5.00
	ton	/yr		56.11		56.94		3:	2.61
Ibm/M	MBtu (Fuel LH	iV)		0.036		0.037		0.	.021
	lbm/(MW-I	hr)		0.31		0.32).18
(gas t	turbine shaft p lbm/	owr) /hr		12.81		13.00		7	7.45
3	52381 HP	100	.0% Load	Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	20.0 Deg. F
Р	PMvd at 15%	02		9.00		15.00		1:	5.00
	ton	/yr	;	53.77		54.56		3	1.25
lbm/M	MBtu (Fuel LH	IV)		0.036		0.037		0.021	
	lbm/(MW-I	hr)		0.31		0.32).18
(gas t	turbine shaft p Ibm/	owr) /hr		12.28		12.46		7	7.13

- 1. For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Customer		
EQT		
· ·		
Job ID		
MVPx - Harris CS		
Inquiry Number		
PI18-89660		
Run By	Date Run	
Marr Cameron H	27-Jun-25	

Engine Model TITAN 350-52500S CS/MD 59F MATCH	
Fuel Type	Water Injection
CHOICE GAS	NO
Engine Emissions Data	
REV. 0.1	

NOx EMISSIONS	CO EMISSIONS	UHC EMISSIONS
NOX EIVIISSIONS	CO EIVISSIONS	UNC EMISSIONS

4	49049 HP 100).0% Load	Elev.	1455 ft	Rel. Humidity	60.0%	Ten	nperature	40.0 Deg. F
PF	PMvd at 15% O2		9.00		15.00		7 Г	15	5.00
	ton/yr	n/yr 50.84 5		51.59		7 Г	29	9.55	
lbm/MN	/IBtu (Fuel LHV)		0.036		0.037	.037		0.	021
	lbm/(MW-hr)		0.32		0.32		0	.18	
(gas tı	urbine shaft pwr)								
	lbm/hr´		11.61		11.78		J L	6	5.75

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

PREDICTED ENGINE PERFORMANCE

Customer		
EQT		
Job ID		
MVPx - Harris CS		
Run By	Date Run	
Marr Cameron H	27-Jun-25	
Engine Performance Code	Engine Performance Data	
REV. 4.20.2.28.14	REV. 1.0	

Model TITAN 350-52500S	
Package Type CS/MD	
Match 59F MATCH	
Fuel System GAS	
Fuel Type CHOICE GAS	

DATA FOR MINIMUM PERFORMANCE

Elevation	feet	1455
Inlet Loss	in H2O	4.0
Exhaust Loss	in H2O	10.0
Accessory on GP Shaft	HP	55.0
-		

		1	2	3	4
Engine Inlet Temperature	e deg F	-20.0	0	20.0	40.0
Relative Humidity	%	60.0	60.0	60.0	60.0
Driven Equipment Speed	RPM	6337	6407	6404	6348
Specified Load	HP	FULL	FULL	FULL	FULL
Net Output Power	HP	55777	54942	52381	49049
Fuel Flow	mmBtu/hr	360.83	354.92	340.41	322.48
Heat Rate	Btu/HP-hr	6469	6460	6499	6575
Therm Eff	%	39.332	39.388	39.152	38.701
Engine Exhaust Flow	lbm/hr	932589	909345	875996	837957
PT Exit Temperature	deg F	848	872	889	904
Exhaust Temperature	deg F	848	872	889	904

Fuel Gas Composition (Volume Percent)

Methane (CH4)	93.83
Ethane (C2H6)	5.18
Propane (C3H8)	0.33
I-Butane (C4H10)	0.02
N-Butane (C4H10)	0.03
I-Pentane (C5H12)	0.0037
N-Pentane (C5H12)	0.0021
Heptane (C7H16)	0.0001
Carbon Monoxide (CO)	0.24
Carbon Dioxide (CO2)	0.36
Oxygen (O2)	0.0027
Sulfur Dioxide (SO2)	0.0001
I-Hexene (C6H12)	0.0006
Cyclopentane (C5H10)	0.0002
MethylCycloHexane (C7H14)	0.0001
Benzene (C6H6)	0.0000
Toluene (C7H8)	0.0000
-	

Fu

	uel Gas Properties	LHV (Btu/Scf)	947.3	Specific Gravity	y 0.5875	Wobbe Index at 60F	1235.9
--	--------------------	---------------	-------	------------------	----------	--------------------	--------

Customer		
EQT		
Job ID		
MVPx - Harris CS		
Inquiry Number		
PI18-89660		
Run By	Date Run	_
Marr Cameron H	27-Jun-25	

Engine Model TITAN 350-52500S CS/MD 59F MATCH	
Fuel Type	Water Injection
CHOICE GAS	NO
Engine Emissions Data	
REV 01	

		NOx EMISSIO	ONS	CO EMISS	IONS	UHC EI	MISSIONS
1	22779 HP 5	0.0% Load Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	60.0 Deg. F
PI	PMvd at 15% O2	9.00		15.00		19	5.00
	ton/yr	32.08		32.55			B.64
lbm/MI	MBtu (Fuel LHV)	0.036		0.036		→	.021
	lbm/(MW-hr)	0.43		0.44		→ 	0.25
(gas t	urbine shaft pwr)						
(0	lbm/hr ´	7.32		7.43		4	l.26
						_	
2	20801 HP 5	0.0% Load Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	80.0 Deg. F
Pi	PMvd at 15% O2	9.00		15.00		19	5.00
	ton/yr	29.85		30.29		17	7.35
lbm/MI	MBtu (Fuel LHV)	0.036		0.036		0.	.021
	lbm/(MW-hr)	0.44		0.45		C).26
(gas t	urbine shaft pwr) lbm/hr	6.82		6.92]3	3.96
3	19808 HP 5	0.0% Load Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	90.0 Deg. F
PI	PMvd at 15% O2	9.00		15.00		19	5.00
	ton/yr	28.73		29.15		10	6.70
lbm/MI	MBtu (Fuel LHV)	0.035		0.036		0.	.021
	lbm/(MW-hr)	0.44		0.45).26
(gas t	urbine shaft pwr) lbm/hr	6.56		6.66			3.81

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Customer EQT		
Job ID		
MVPx - Harris CS		
Inquiry Number		
PI18-89660		
Run By	Date Run	
Marr Cameron H	27-Jun-25	

Engine Model TITAN 350-52500S CS/MD 59F MATCH	
Fuel Type	Water Injection
CHOICE GAS	NO
Engine Emissions Data REV. 0.1	

CO EMISSIONS	UHC EMISSIONS
	CO EMISSIONS

4 18870 HP 50).0%	lev. 1455 f	t Rel. Hum	idity 60.0	% Te	emperature 100.0 Deg. F
PPMvd at 15% O2	9.	00		15.00		15.00
ton/yr	27.	62		28.02		16.05
Ibm/MMBtu (Fuel LHV)	0.0	35		0.036		0.020
lbm/(MW-hr)	0.	45		0.45		0.26
(gas turbine shaft pwr)						
lbm/hr´	6.	31		6.40		3.66

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

PREDICTED ENGINE PERFORMANCE

Customer		
EQT		
Job ID		
MVPx - Harris CS		
Run By	Date Run	
Marr Cameron H	27-Jun-25	
Engine Performance Code	Engine Performance Data	
REV. 4.20.2.28.14	REV. 1.0	

Model TITAN 350-52500S	
Package Type CS/MD	
Match 59F MATCH	
Fuel System GAS	
Fuel Type CHOICE GAS	

DATA FOR MINIMUM PERFORMANCE

Elevation	feet	1455
Inlet Loss	in H2O	4.0
Exhaust Loss	in H2O	10.0
Accessory on GP Shaft	HP	55.0
-		
		4

Linginie innet Temperature	ueg i	00.0	00.0	30.0	100.0
Relative Humidity	%	60.0	60.0	60.0	60.0
Driven Equipment Speed	RPM	5152	5025	4964	4906
Specified Load	HP	50.0%	50.0%	50.0%	50.0%
Net Output Power	HP	22779	20801	19808	18870
Fuel Flow	mmBtu/hr	215.24	201.68	195.13	188.90
Heat Rate	Btu/HP-hr	9449	9696	9851	10011
Therm Eff	%	26.928	26.243	25.830	25.417
Engine Exhaust Flow	lbm/hr	626723	588079	568919	549988
PT Exit Temperature	deg F	956	973	983	993
Exhaust Temperature	deg F	932	952	963	973

Fuel Gas Composition (Volume Percent)

Engine Inlet Temperature

Methane (CH4)	93.83
Ethane (C2H6)	5.18
Propane (C3H8)	0.33
I-Butane (C4H10)	0.02
N-Butane (C4H10)	0.03
I-Pentane (C5H12)	0.0037
N-Pentane (C5H12)	0.0021
Heptane (C7H16)	0.0001
Carbon Monoxide (CO)	0.24
Carbon Dioxide (CO2)	0.36
Oxygen (O2)	0.0027
Sulfur Dioxide (SO2)	0.0001
I-Hexene (C6H12)	0.0006
Cyclopentane (C5H10)	0.0002
MethylCycloHexane (C7H14)	0.0001
Benzene (C6H6)	0.0000
Toluene (C7H8)	0.0000

Fuel Gas P	roperties
------------	-----------

el Gas Properties	LHV (Btu/Scf)	947.3	Specific Gravity	0.5875	Wobbe Index at 60F	1235.9
-------------------	---------------	-------	------------------	--------	--------------------	--------

Customer EQT Job ID MVPx - Harris CS Inquiry Number PI18-89660 Run By Date Run Marr Cameron H 27-Jun-25

Engine Model TITAN 350-52500S CS/MD 59F MATCH	
Fuel Type	Water Injection
CHOICE GAS	NO
Engine Emissions Data REV. 0.1	

Mari Gan		27 0411 20			0.1		
		NOx EMISSIONS		CO EMISSIONS		UHC EMISSIONS	
1	34168 HP 75	5.0% Load Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	60.0 Deg. F
Pi	PMvd at 15% O2	9.00		15.00		1:	5.00
	ton/yr	38.51		39.07		22	2.38
lbm/MI	MBtu (Fuel LHV)	0.036		0.036		0.	021
	lbm/(MW-hr)	0.35		0.35		0	0.20
(gas t	turbine shaft pwr) Ibm/hr	8.79		8.92		5	5.11
2	31201 HP 75	5.0% Load Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	80.0 Deg. F
Pi	PMvd at 15% O2	9.00		15.00		1:	5.00
	ton/yr	35.60		36.12		20.69	
lbm/Mi	MBtu (Fuel LHV)	0.036		0.036		0.021	
	lbm/(MW-hr)	0.35		0.35		0	0.20
(gas t	turbine shaft pwr) lbm/hr	8.13		8.25		4	.72
3	29712 HP 75	5.0% Load Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	90.0 Deg. F
PI	PMvd at 15% O2	9.00		15.00		15.00	
	ton/yr	34.23		34.73		19	9.89
lbm/MI	MBtu (Fuel LHV)	0.035		0.036		0.	021
	lbm/(MW-hr)	0.35		0.36		0).20
(gas t	turbine shaft pwr)						
	lbm/hr´	7.81		7.93		4	1.54

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Marr Cameron H

PREDICTED EMISSION PERFORMANCE

Customer EQT		
Job ID MVPx - Harris CS		
Inquiry Number PI18-89660		
Run By	Date Run	

27-Jun-25

Water Injection
NO

NOx EMISSIONS		CO EMISSIONS			UHC EMISSIONS			
5.0% Load	Elev.	1455 ft	Rel. Humidity	60.0%	Ten	nperature	100.0 Deg. I	F

4	28305 HP	75.0% Load	Elev.	1455 ft	Rel. Humidity	60.0%	Te	emperature 100.0 Deg. F
PF	PMvd at 15% O	2	9.00		15.00		7	15.00
	ton/y	r :	33.02		33.50]	19.19
lbm/MN	/IBtu (Fuel LHV	')	0.035		0.036]	0.020
	lbm/(MW-hı	·)	0.36		0.36			0.21
(gas tı	urbine shaft py	vr)					_	
	lbm/h	r	7.54		7.65		╛	4.38

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

PREDICTED ENGINE PERFORMANCE

Customer	
EQT	
Job ID MVPx - Harris CS	
Run By	Date Run
Marr Cameron H	27-Jun-25
Engine Performance Code	Engine Performance Data
REV. 4.20.2.28.14	REV. 1.0

Model TITAN 350-52500S	
Package Type CS/MD	
Match 59F MATCH	
Fuel System GAS	
Fuel Type CHOICE GAS	

DATA FOR MINIMUM PERFORMANCE

Elevation	feet	1455
Inlet Loss	in H2O	4.0
Exhaust Loss	in H2O	10.0
Accessory on GP Shaft	HP	55.0
		1

	00.0 60.0
Relative Humidity % 60.0 60.0 60.0 6	60.0
76 00.0 00.0 00.0	
Driven Equipment Speed RPM 5730 5595 5534 5	5473
2	· · · · ·
Specified Load HP 75.0% 75.0% 75.0% 75.0%	5.0%
Net Output Power HP 34168 31201 29712 28	8305
Fuel Flow mmBtu/hr 252.43 234.97 227.10 220	0.60
Heat Rate Btu/HP-hr 7388 7531 7643 7	7794
Therm Eff % 34.440 33.788 33.290 32.	.647
Engine Exhaust Flow Ibm/hr 715650 666954 642333 619	9361
PT Exit Temperature deg F 879 900 914	932
Exhaust Temperature deg F 878 899 914	932

Fuel Gas Composition (Volume Percent)

93.83
5.18
0.33
0.02
0.03
0.0037
0.0021
0.0001
0.24
0.36
0.0027
0.0001
0.0006
0.0002
0.0001
0.0000
0.0000

Fuel Gas P	roperties
------------	-----------

s Properties	LHV (Btu/Scf)	947.3 Specific Gravity	0.5875	Wobbe Index at 60F	1235.9
--------------	---------------	------------------------	--------	--------------------	--------

Customer		
EQT		
Job ID		
MVPx - Harris CS		
Inquiry Number		
PI18-89660		
Run By	Date Run	
Marr Cameron H	27-Jun-25	

Engine Model TITAN 350-52500S CS/MD 59F MATCH	
Fuel Type	Water Injection
CHOICE GAS	NO
Engine Emissions Data	
REV. 0.1	

		NOx I	EMISSIC	ONS	CO EMISS	IONS	UHC EN	MISSIONS
1	45557 HP 1	00.0% Load	Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	60.0 Deg. F
PI	PMvd at 15% O2		9.00		15.00		1!	5.00
• •	ton/yr		47.80		48.50		↓ ├ ───	7.78
Ibm/MI	MBtu (Fuel LHV)		0.036		0.036		┥ ├───	021
	lbm/(MW-hr)		0.32		0.33		4 -).19
(gas t	urbine shaft pwi lbm/hr	')	10.91		11.07			5.34
2	41602 HP 1	00.0% Load	Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	80.0 Deg. F
PI	PMvd at 15% O2		9.00		15.00		1:	5.00
	ton/yr		44.33		44.98		25	5.76
lbm/MI	MBtu (Fuel LHV)		0.036		0.036		0.	021
	lbm/(MW-hr)		0.33		0.33]).19
(gas t	urbine shaft pwi lbm/hr	.)	10.12		10.27		5	5.88
3	39616 HP 1	00.0% Load	Elev.	1455 ft	Rel. Humidity	60.0%	Temperature	90.0 Deg. F
PI	PMvd at 15% O2		9.00		15.00		1:	5.00
	ton/yr		42.58		43.21		24	4.75
lbm/MI	MBtu (Fuel LHV)		0.035		0.036		0.	021
	lbm/(MW-hr)		0.33		0.33).19
(gas t	urbine shaft pwi lbm/hr	·)	9.72		9.86		5	5.65

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Customer		
FOT		
EQT		
Job ID		
MV/D H		
MVPx - Harris CS		
Inquiry Number		
1 ' '		
PI18-89660		
Run By	Date Run	
Marr Cameron H	27-Jun-25	
I Wall Callieron n	21-Jun-23	

Engine Model TITAN 350-52500S CS/MD 59F MATCH	
Fuel Type	Water Injection
CHOICE GAS	NO
Engine Emissions Data REV. 0.1	

NOx EMISSIONS	CO EMISSIONS		UHC EMISSIONS
		•	

4 37740 HP 100	.0% Load Elev.	1455 ft	Rel. Humidity	60.0%	Te	emperature 100.0 Deg. F			
PPMvd at 15% O2	PPMvd at 15% O2 9.00		15.00			15.00			
ton/yr	on/yr 40.91		41.51			23.78			
Ibm/MMBtu (Fuel LHV)	0.035		0.036]	0.020			
lbm/(MW-hr)	0.33		0.34		1	0.19			
(gas turbine shaft pwr)					_				
lbm/hr´	9.34		9.48		╛	5.43			

- For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
- 2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F or -20 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
- 6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

PREDICTED ENGINE PERFORMANCE

Customer	
EQT	
Job ID MVPx - Harris CS	
Run By	Date Run
Marr Cameron H	27-Jun-25
Engine Performance Code	Engine Performance Data
REV. 4.20.2.28.14	REV. 1.0

Model TITAN 350-52500S	
Package Type CS/MD	
Match 59F MATCH	
Fuel System GAS	
Fuel Type CHOICE GAS	

4

DATA FOR MINIMUM PERFORMANCE

2

Elevation	feet	1455
Inlet Loss	in H2O	4.0
Exhaust Loss	in H2O	10.0
Accessory on GP Shaft	HP	55.0
		1 1

Engine Inlet Temperature Relative Humidity	deg F %	60.0 60.0	80.0 60.0	90.0 60.0	100.0 60.0
Driven Equipment Speed	RPM	6281	6173	6115	6054
Specified Load	HP	FULL	FULL	FULL	FULL
Net Output Power	HP	45557	41602	39616	37740
Fuel Flow	mmBtu/hr	304.29	284.11	274.37	265.46
Heat Rate	Btu/HP-hr	6679	6829	6926	7034
Therm Eff	%	38.094	37.257	36.740	36.173
Engine Exhaust Flow	lbm/hr	796909	746651	720774	696123
PT Exit Temperature	deg F	923	945	958	972
Exhaust Temperature	deg F	923	945	958	972

Fuel Gas Composition (Volume Percent)

Methane (CH4)	93.83
Ethane (C2H6)	5.18
Propane (C3H8)	0.33
I-Butane (C4H10)	0.02
N-Butane (C4H10)	0.03
I-Pentane (C5H12)	0.0037
N-Pentane (C5H12)	0.0021
Heptane (C7H16)	0.0001
Carbon Monoxide (CO)	0.24
Carbon Dioxide (CO2)	0.36
Oxygen (O2)	0.0027
Sulfur Dioxide (SO2)	0.0001
I-Hexene (C6H12)	0.0006
Cyclopentane (C5H10)	0.0002
MethylCycloHexane (C7H14)	0.0001
Benzene (C6H6)	0.0000
Toluene (C7H8)	0.0000

Fuel G

Gas Properties LHV (Btu/Scf) 947.3 Specific Gravity 0.5875 Wobbe Index at 60F 1235.9
--

ATTACHMENT N – SUPPORTING EMISSION CALCULATIONS

Company Name: Mountain Valley Pipeline, LLC Facility Name: Harris Compressor Station **Project Description:** R13 Permit Application

TABLE 1. Potential Atmospheric Emissions from Each Source at the Facility

	Pollutants																	
Source	V	ОС	N	o _x	C	:0	PN	1 ₁₀	PN	N _{2.5}	SC	02	НС	НО	Total	HAPs	GHG	(CO ₂ e)
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Turbine 1 (S001)	1.03	4.61	8.90	39.01	9.03	41.86	2.32	10.17	2.32	10.17	0.53	2.30	0.45	1.95	0.49	2.17	18,339	80,458
Turbine 2 (S002)	1.03	4.61	8.90	39.01	9.03	41.86	2.32	10.17	2.32	10.17	0.53	2.30	0.45	1.95	0.49	2.17	18,339	80,458
Turbine 3 (S021)	1.49	6.70	12.81	56.13	13.00	57.38	3.82	16.74	3.82	16.74	1.30	5.69	1.10	4.82	1.22	5.35	45,164	197,951
Microturbine 1 (S003)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 2 (S004)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 3 (S005)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 4 (S006)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 5 (S007)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 6 (S008)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 7 (S009)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 8 (S010)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 9 (S011)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 10 (S023)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 11 (S024)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 12 (S025)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Microturbine 13 (S026)	0.02	0.09	0.08	0.35	0.22	0.96	0.02	0.07	0.02	0.07	0.01	0.03	0.00	0.01	0.00	0.01	266	1,166
Fuel Gas Heater (S012)	0.01	0.04	0.15	0.64	0.12	0.54	0.01	0.05	0.01	0.05	0.00	0.00	0.00	0.00	0.00	0.01	180	789
Fuel Gas Heater (S013)	0.01	0.04	0.15	0.64	0.12	0.54	0.01	0.05	0.01	0.05	0.00	0.00	0.00	0.00	0.00	0.01	180	789
Fuel Gas Heater (S022)	0.01	0.04	0.15	0.64	0.12	0.54	0.01	0.05	0.01	0.05	0.00	0.00	0.00	0.00	0.00	0.01	180	789
Office Building Heater (S014)	0.00	0.00	0.01	0.05	0.01	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14	62
WB Pipeline Heater (S015)	0.05	0.21	0.86	3.75	0.72	3.15	0.07	0.28	0.07	0.28	0.01	0.02	0.00	0.00	0.02	0.07	1,054	4,617
Produced Fluids Tank (S016)	0.00	0.00		-				-				-			0.00	0.00	3	14
Used Oil Tank (S017)	0.00	0.00	-	-	-		-	-		-	-	-		-	0.00	0.00		
Fugitive Leaks (S018)	0.10	0.45		-			0.01	0.04	0.00	0.00		-			0.00	0.00	238	1,044
Liquid Loading (S019)	0.01	0.05		-				-			-	-			-	-		
Blowdowns (S020)	2.95	12.92	-	-	-	-	-	-	-	-	-	-	-	-	0.00	0.02	6,859	30,044
Total	6.96	30.79	32.96	144.42	35.02	158.42	8.77	38.41	8.76	38.37	2.46	10.78	2.01	8.82	2.27	9.94	94,012	412,175

- $\frac{\text{Notes:}}{\text{1. PM}_{10}} \text{ and PM}_{2.5} \text{ emissions are filterable + condensable.}$
- 2. Fugitive emissions include haul road emissions.
- 3. Global Warming Potential (40 CFR 98 Subpart A Table A-1).

 CO_2 CH₄ 28 N_2O 265

Mountain Valley Pipeline, LLC
Harris Compressor Station
R13 Permit Application

TABLE 2. Turbine Emissions Calculations

Turbine Information:

Source ID:	S001-S002
Manufacturer:	Solar
Model No.:	Titan 130 - 20502S
Fuel Used:	Natural Gas
Design Basis Fuel Lower Heating Value (Btu/scf):	979
Rated Horsepower (bhp at site conditions) ¹ :	20,609
Maximum Fuel Consumption at 100% Load (scf/hr):	151,731
Heat Input (MMBtu/hr)	148.59
Control Device:	SoloNOx Technology

Operational Details:

Potential Annual Hours of Operation (hr/yr):	8,760
Potential Fuel Consumption (MMscf/yr):	1,329.16
Potential Startup/Shutdown Events (per year):	12

Manufacturer Specific Pollutant Emission Factors:

Pollutant	Emission Factors	Units	Emission Factor Source
NO _X	8.900	lb/hr	Manufacturer
CO	9.030	lb/hr	Manufacturer
SO ₂	3.54E-03	lb/MMBtu	AP-42, Table 3.1-2a
PM ₁₀	0.016	lb/MMBtu	Manufacturer, PIL 171 Rev 5
PM _{2.5}	0.016	lb/MMBtu	Manufacturer, PIL 171 Rev 5
VOC	1.034	lb/hr	20% of UHC per Manufacturer
Formaldehyde	0.003	lb/MMBtu	Manufacturer, PIL 168
CO ₂	122.58	lb/MMBtu	40 CFR 98, Subpart C, Table C-1
CH ₄	4.136	lb/hr	80% of UHC per Manufacturer
N ₂ O	2.3E-04	lb/MMBtu	40 CFR 98, Subpart C, Table C-2

*Emission factors from AP-42 and Subpart C are based on HHV. To calculate a LHV emission factor, emissions are multiplied by (HHV/LHV). For AP-42 HHV is 1020 Btu/scf, for Subpart C HHV is 1026 Btu/scf. PM and HCHO emission factors are provided in HHV in the specifications and were converted to LHV using a HHV value of 1020 Btu/scf.

Pollutant Emission Rates:

	Potential Emissions				
Pollutant	(lb/hr) ²	(tpy) ³			
NO _X	8.90	39.01			
co	9.03	41.86			
SO ₂	0.53	2.30			
PM ₁₀	2.32	10.17			
PM _{2.5}	2.32	10.17			
VOC	1.03	4.61			
Formaldehyde	0.45	1.95			
CO ₂	18,214	79,790			
CH ₄	4.14	22.40			
N ₂ O	0.03	0.15			
GHG (CO2e)	18,339	80,458			

^{*}Annual emissions shown above include startup/shutdown events.

Mountain Valley Pipeline, LLC
Harris Compressor Station
R13 Permit Application

TABLE 2. Turbine Emissions Calculations

Hazardous Air Pollutant (HAP) Emission Rates:

	Emission Factor	Potential Emissions	
Pollutant	(lb/MMBtu) ⁴	(lb/hr) ²	(tpy) ^{3,5}
HAPs:			
Acetaldehyde	4.17E-05	6.19E-03	2.71E-02
Acrolein	6.67E-06	9.90E-04	4.34E-03
Benzene	1.25E-05	1.86E-03	8.13E-03
1,3-Butadiene	4.48E-07	6.65E-05	2.91E-04
Propylene Oxide	2.90E-05	4.31E-03	1.89E-02
Ethylbenzene	3.33E-05	4.95E-03	2.17E-02
Toluene	1.35E-04	2.01E-02	8.81E-02
Xylene	6.67E-05	9.90E-03	4.34E-02
Naphthalene	1.35E-06	2.01E-04	8.81E-04
PAH	2.29E-06	3.40E-04	1.49E-03
Total HAP (Including HCHO)		0.49	2.17

- 1. The existing turbine ratings are being updated based on revised site-specific conditions. No changes to the turbines or emission limits are being proposed with this application.
- 2. Emission Rate (lb/hr) = Rated Capacity (MMBtu/hr) × Emission Factor (lb/MMBtu)
- 3. Emission Rate (tpy) = Emission Rate (lb/hr) × Hours of Operation (hr/yr) / 2000 (tons/lb) + SU/SD emissions, as applicable
- 4. Emission factors from AP-42 Section 3.1, Table 3.1-3 "Emission Factors for HAPs from Natural Gas Fired Stationary Gas Turbines", April 2000. Factors are based on HHV of 1020. Therefore, they were converted to LHV by multiplying by (HHV/LHV).
- 5. Emission calculations are based on maximum operating load of 100% load, ambient temperature 0°F and site elevation. The turbine ratings can vary with ambient conditions. Each Turbine is ISO rated at 20,500 HP

Startup/Shutdown Combustion Emission Factors:

Pollutant	Startup Emissions ^a (lbs/event)	Shutdown Emissions ^a (lbs/event)	Emission Factor Source
NO _X	1.9	2.4	Manufacturer
co	176.9	207.6	Manufacturer
VOC	2.0	2.38	20% of UHC per Manufacturer
CO ₂	1161	1272	Manufacturer

a. Each startup and shutdown event is estimated to last approximately 10 minutes, per manufacturer. Emissions are using the highest value from PIL 170 Revision 5.

Pneumatic Start Venting Emissions				
Natural Gas Purged During Startup	4500	scfm		
Duration of Normal Purge	4.0	min		
Total Gas Purged (Per Startup)	18000	scf		
VOC Purged (Per Startup)	9	lbs/startup		
CO ₂ Purged (Per Startup)	5	lbs/startup		
CH ₄ Purged (Per Startup)	715	lbs/startup		

Density of natural gas: 0.04 lb/ft³

^{*}Current design includes electric motor starts, but pneumatic starts have been included as a conservative measure.

Mountain Valley Pipeline, LLC
Harris Compressor Station
R13 Permit Application

TABLE 3. Turbine Emissions Calculations

Turbine Information:

Source ID:	S021
Manufacturer:	Solar
Model No.:	Titan 350 - 52500S
Fuel Used:	Natural Gas
Design Basis Fuel Lower Heating Value (Btu/scf):	947
Rated Horsepower (bhp at site conditions):	56590
Maximum Fuel Consumption at 100% Load (scf/hr):	374,665
Heat Input (MMBtu/hr)	354.92
Control Device:	SoloNOx Technology

Operational Details:

Potential Annual Hours of Operation (hr/yr):	8,760
Potential Fuel Consumption (MMscf/yr):	3,282.06
Potential Startup/Shutdown Events (per year):	12

Manufacturer Specific Pollutant Emission Factors:

Pollutant	Emission Factors	Units	Emission Factor Source
NO _X	12.810	lb/hr	Manufacturer
CO	13.000	lb/hr	Manufacturer
SO ₂	3.66E-03	lb/MMBtu	AP-42, Table 3.1-2a
PM ₁₀	0.011	lb/MMBtu	Manufacturer, PIL 171 Rev 11
PM _{2.5}	0.011	lb/MMBtu	Manufacturer, PIL 171 Rev 11
VOC	1.490	lb/hr	20% of UHC per Manufacturer
Formaldehyde	0.003	lb/MMBtu	Manufacturer, PIL 168
CO ₂	126.72	lb/MMBtu	40 CFR 98, Subpart C, Table C-1
CH ₄	5.960	lb/hr	80% of UHC per Manufacturer
N_2O	2.4E-04	lb/MMBtu	40 CFR 98, Subpart C, Table C-2

^{*}Emission factors from AP-42 and Subpart C are based on HHV. To calculate a LHV emission factor, emissions are multiplied by (HHV/LHV). For AP-42 HHV is 1020 Btu/scf, for Subpart C HHV is 1026 Btu/scf. PM and HCHO emission factors are provided in HHV in the specifications and were converted to LHV using a HHV value of 1020 Btu/scf.

Pollutant Emission Rates:

	Potential Emissions	
Pollutant	(lb/hr) ¹	(tpy) ²
NO _X	12.81	56.13
co	13.00	57.38
SO ₂	1.30	5.69
PM ₁₀	3.82	16.74
PM _{2.5}	3.82	16.74
VOC	1.49	6.70
Formaldehyde	1.10	4.82
CO ₂	44,974	197,001
CH ₄	5.96	30.39
N ₂ O	0.08	0.37
GHG (CO2e)	45,164	197,951

^{*}Annual emissions shown above include startup/shutdown events.

Mountain Valley Pipeline, LLC
Harris Compressor Station
R13 Permit Application

TABLE 3. Turbine Emissions Calculations

Hazardous Air Pollutant (HAP) Emission Rates:

	Emission Factor	Potential Emissions	
Pollutant	(Ib/MMBtu) ³	(lb/hr) ¹	(tpy) ^{2,4}
HAPs:			
Acetaldehyde	4.31E-05	1.53E-02	6.70E-02
Acrolein	6.89E-06	2.45E-03	1.07E-02
Benzene	1.29E-05	4.59E-03	2.01E-02
1,3-Butadiene	4.63E-07	1.64E-04	7.20E-04
Propylene Oxide	2.90E-05	1.03E-02	4.51E-02
Ethylbenzene	3.45E-05	1.22E-02	5.36E-02
Toluene	1.40E-04	4.97E-02	2.18E-01
Xylene	6.89E-05	2.45E-02	1.07E-01
Naphthalene	1.40E-06	4.97E-04	2.18E-03
PAH	2.37E-06	8.41E-04	3.68E-03
Total HAP (Including HCHO)		1.22	5.35

- 1. Emission Rate (lb/hr) = Rated Capacity (MMBtu/hr) × Emission Factor (lb/MMBtu)
- 2. Emission Rate (tpy) = Emission Rate (lb/hr) × Hours of Operation (hr/yr) / 2000 (tons/lb) + SU/SD emissions, as applicable
- 3. Emission factors from AP-42 Section 3.1, Table 3.1-3 "Emission Factors for HAPs from Natural Gas Fired Stationary Gas Turbines", April 2000. Factors are based on HHV of 1020. Therefore, they were converted to LHV by multiplying by (HHV/LHV).
- 4. Emission calculations are based on maximum operating load of 100% load, ambient temperature 0°F and site elevation. The turbine ratings can vary with ambient conditions. Each Turbine is ISO rated at 52,500 HP

Startup/Shutdown Combustion Emission Factors:

Pollutant	Startup Emissions ^a (lbs/event)	Shutdown Emissions ^a (lbs/event)	Emission Factor Source
NO _x	2.0	2	Manufacturer
co	37.0	36	Manufacturer
VOC	10.0	10	20% of UHC per Manufacturer
CO ₂	1172	1036	Manufacturer

a. Each startup and shutdown event is estimated to last approximately 10 minutes, per manufacturer. Emissions are using the highest value from PIL 170 Revision 11. Conservatively used highest values of all start up / shut down emissions, since T350 units are not incorporated into the PIL

Pneumatic Start Venting Emissions			
Natural Gas Purged During Startup	4500	scfm	
Duration of Normal Purge	4.0	min	
Total Gas Purged (Per Startup)	18000	scf	
VOC Purged (Per Startup)	9	lbs/startup	
CO ₂ Purged (Per Startup)	5	lbs/startup	
CH ₄ Purged (Per Startup)	715	lbs/startup	
Deneity of natural gae:	0.04	lh/ft ³	

*Current design includes electric motor starts, but pneumatic starts have been included as a conservative measure.

Docusign Envelope ID: 996C6861-F034-4FAB-A5C0-DAAFB140B80C

 Company Name:
 Mountain Valley Pipeline, LLC

 Facility Name:
 Harris Compressor Station

 Project Description:
 R13 Permit Application

TABLE 4. Microturbine Emissions Calculations

Microturbine Unit Information:

Engine ID:	S003-S011, S023-S026				
Manufacturer:	Capstone				
Model No.:	C200				
Number of Units:	13				

Microturbine Fuel Information:

	Per Unit
Fuel Type:	Natural Gas
Rated Electrical Power Output (kW):	200
Rated Electrical Power Output (MW):	0.2
Rated Horsepower (bhp):	268.2
Heat Input (MMBtu/hr)	2.28
Potential Fuel Consumption (MMBtu/yr):	19,973
Max. Annual Hours of Operation (hr/yr):	8,760

Microturbine Emissions Data:

Pollutant	Emission Factors	Units		ntial Emissions Unit	Estimation Basis / Emission Factor Source	
			lbs/hr	tpy		
NO_X	0.40	lb/MWhe	0.08	0.35	Manufacturer's Specifications	
VOC	0.10	lb/MWhe	0.02	0.09	Manufacturer's Specifications	
CO	1.10	lb/MWhe	0.22	0.96	Manufacturer's Specifications	
SO _X	0.0034	lb/MMBtu	0.01	0.03	AP-42, Table 3.1-2a (Apr-2000)	
PM ₁₀	0.0066	lb/MMBtu	0.02	0.07	AP-42, Table 3.1-2a (Apr-2000)	
PM _{2.5}	0.0066	lb/MMBtu	0.02	0.07	AP-42, Table 3.1-2a (Apr-2000)	
GHG (CO₂e)	See Table	See Table Below		1,166	Manufacturer's Specifications / 40 CFR 98, Table C-2	
Other (Total HAP)	See Table	See Table Below		0.01	AP-42, Table 3.1-3 (Apr-2000)	

- 1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).
- 2. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 28) + N₂O (GWP = 265).
- 3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this engine type.

Docusign Envelope ID: 996C6861-F034-4FAB-A5C0-DAAFB140B80C

 Company Name:
 Mountain Valley Pipeline, LLC

 Facility Name:
 Harris Compressor Station

 Project Description:
 R13 Permit Application

TABLE 4. Microturbine Emissions Calculations

Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:

Pollutant	Emission Factor	Units	Maximum Potential Emissions Per Unit		Estimation Basis / Emission Factor Source
			lbs/hr	tpy	
GHGs:					
CO ₂	1330	lb/MWhe	266	1,165	Manufacturer's Specifications
CH₄	0.001	kg/MMBtu	0.01	0.02	40 CFR 98, Tables C-1 & C-2
N ₂ O	0.0001	kg/MMBtu	0.00	0.00	40 CFR 98, Tables C-1 & C-2
GHG (CO ₂ e)	\		266	1,166	
HAPs:					
1,3-Butadiene	4.3E-07	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)
Acetaldehyde	4.0E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)
Acrolein	6.4E-06	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)
Benzene	1.2E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)
Ethylbenzene	3.2E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)
Formaldehyde	7.1E-04	lb/MMBtu	0.00	0.01	AP-42, Table 3.1-3 (Apr-2000)
Naphthalene	1.3E-06	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)
PAH	2.2E-06	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)
Propylene oxide	2.9E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)
Toluene	1.3E-04	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)
Kylene	6.4E-05	lb/MMBtu	0.00	0.00	AP-42, Table 3.1-3 (Apr-2000)
Total HAP			0.002	0.010	

Docusign Envelope ID: 996C6861-F034-4FAB-A5C0-DAAFB140B80C

Company Name: Mountain Valley Pipeline, LLC
Facility Name: Harris Compressor Station
Project Description: R13 Permit Application

TABLE 5. Fuel Gas Heater Emissions Calculations

Fuel Gas Heater Information:

Source ID:	S012-S013, S022
Number of Units:	3

Fuel Gas Heater Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,052
Heat Input (MMBtu/hr)	1.54
Potential Fuel Consumption (MMBtu/yr):	13,477
Max. Fuel Consumption (MMscf/hr):	0.0015
Max. Fuel Consumption (MMscf/yr):	12.8
Max. Annual Hours of Operation (hr/yr):	8,760

Fuel Gas Heater Emissions:

Pollutant	Emission Factor Units	Units		ntial Emissions Unit	Estimation Basis / Emission Factor Source
Foliutarit	Ellission Factor	Units	lbs/hr	tpy	Estimation Basis / Emission Factor Source
NO _X	100	lb/MMScf	0.15	0.64	AP-42, Table 1.4-1 (Jul-1998)
VOC	5.5	lb/MMScf	0.01	0.04	AP-42, Table 1.4-2 (Jul-1998)
CO	84	lb/MMScf	0.12	0.54	AP-42, Table 1.4-1 (Jul-1998)
SO _X	0.6	lb/MMScf	0.00	0.00	AP-42, Table 1.4-2 (Jul-1998)
PM ₁₀	7.6	lb/MMScf	0.01	0.05	AP-42, Table 1.4-2 (Jul-1998)
PM _{2.5}	7.6	lb/MMScf	0.01	0.05	AP-42, Table 1.4-2 (Jul-1998)
Formaldehyde (HCHO)	0.08	lb/MMScf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
GHG (CO ₂ e)	See Table Below		180	789	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tab	le Below	0.00	0.01	AP-42, Tables 1.4-3 & 1.4-4 (Jul-1998)

- 1. PM₁₀ and PM_{2.5} are total values (filterable + condensable).
- 2. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 28) + N₂O (GWP = 265).
- 3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

TABLE 5. Fuel Gas Heater Emissions Calculations

Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:

Pollutant			Maximum Potential Emissions Per Unit		
	Emission Factor	Units			Estimation Basis / Emission Factor Source
			lbs/hr	tpy	
GHGs:			_	T	
CO ₂	53.06	kg/MMBtu	180.00	788	40 CFR 98, Table C-1
CH ₄	0.001	kg/MMBtu	0.00	0.01	40 CFR 98, Table C-2
N_2O	0.0001	kg/MMBtu	0.00	0.00	40 CFR 98, Table C-2
GHG (CO ₂ e)	 		180	789	1
Organic HAPs:					
2-Methylnaphthalene	2.40E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
3-Methylchloranthrene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
7,12-Dimethylbenz(a)anthracene	1.60E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Acenapthene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Acenapthylene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Anthracene	2.40E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Benz(a)anthracene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Benzene	2.10E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Benzo(a)pyrene	1.20E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Benzo(b)fluoranthene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Benzo(g,h,i)perylene	1.20E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Benzo(k)fluoranthene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Chrysene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Dibenzo(a,h)anthracene	1.20E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Dichlorobenzene	1.20E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Fluoranthene	3.00E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Fluorene	2.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
n-Hexane	1.80E+00	lb/MMscf	0.00	0.01	AP-42, Table 1.4-3 (Jul-1998)
Indeno(1,2,3-c,d)pyrene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Naphthalene	6.10E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Phenanthrene	1.70E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Pyrene	5.00E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Toluene	3.40E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Metal HAPs:					,
Arsenic	2.00E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Beryllium	4.40E-03	lb/MMscf	0.00	0.00	AP-42. Table 1.4-4 (Jul-1998)
Cadmium	1.10E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Chromium	1.40E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Cobalt	8.40E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Lead	5.00E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-2 (Jul-1998)
Manganese	3.80E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Mercury	2.60E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Nickel	2.10E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Selenium	2.40E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Total HAP			0.003	0.01	1

TABLE 6. Office Building Heater Emissions Calculations

Office Building Heater Information:

Source ID:	S014
Number of Units:	1

Office Building Heater Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,052
Heat Input (MMBtu/hr)	0.12
Potential Fuel Consumption (MMBtu/yr):	1,051
Max. Fuel Consumption (MMscf/hr):	0.0001
Max. Fuel Consumption (MMscf/yr):	1.0
Max. Annual Hours of Operation (hr/yr):	8,760

Office Building Heater Emissions:

Pollutant	Emission Factor Units		ntial Emissions Unit	Estimation Basis / Emission Factor Source	
			lbs/hr	tpy	
NO _X	100	lb/MMScf	0.01	0.05	AP-42, Table 1.4-1 (Jul-1998)
VOC	5.5	lb/MMScf	0.00	0.00	AP-42, Table 1.4-2 (Jul-1998)
CO	84	lb/MMScf	0.01	0.04	AP-42, Table 1.4-1 (Jul-1998)
SO _X	0.6	lb/MMScf	0.00	0.00	AP-42, Table 1.4-2 (Jul-1998)
PM ₁₀	7.6	lb/MMScf	0.00	0.00	AP-42, Table 1.4-2 (Jul-1998)
PM _{2.5}	7.6	lb/MMScf	0.00	0.00	AP-42, Table 1.4-2 (Jul-1998)
Formaldehyde (HCHO)	0.08	lb/MMScf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
GHG (CO ₂ e)	See Table Below		14	62	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tab	le Below	0.00	0.00	AP-42, Tables 1.4-3 & 1.4-4 (Jul-1998)

- 1. PM₁₀ and PM_{2.5} are total values (filterable + condensable).
- 2. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 28) + N₂O (GWP = 265).
- 3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

TABLE 6. Office Building Heater Emissions Calculations

Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:

Pollutant	Emission Factor	Units	Maximum Potential Emissions Per Unit		Estimation Basis / Emission Factor Source
			lbs/hr	tpy	
GHGs:					·
CO ₂	53.06	kg/MMBtu	14.04	61	40 CFR 98, Table C-1
CH ₄	0.001	kg/MMBtu	0.00	0.00	40 CFR 98, Table C-2
N ₂ O	0.0001	kg/MMBtu	0.00	0.00	40 CFR 98, Table C-2
GHG (CO ₂ e)			14	62	
Organic HAPs:					
2-Methylnaphthalene	2.40E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
3-Methylchloranthrene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
7,12-Dimethylbenz(a)anthracene	1.60E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Acenapthene	1.80E-06	Ib/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Acenapthylene	1.80E-06	Ib/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Anthracene	2.40E-06	Ib/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Benz(a)anthracene	2.40E-06 1.80E-06	Ib/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
. (-)			0.00	0.00	AP-42, Table 1.4-3 (Jul-1996) AP-42, Table 1.4-3 (Jul-1998)
Benzene	2.10E-03	lb/MMscf	****		, , ,
Benzo(a)pyrene	1.20E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Benzo(b)fluoranthene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Benzo(g,h,i)perylene	1.20E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Benzo(k)fluoranthene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Chrysene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Dibenzo(a,h)anthracene	1.20E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Dichlorobenzene	1.20E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Fluoranthene	3.00E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Fluorene	2.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
n-Hexane	1.80E+00	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Indeno(1,2,3-c,d)pyrene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Naphthalene	6.10E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Phenanthrene	1.70E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Pyrene	5.00E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Toluene	3.40E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Metal HAPs:					
Arsenic	2.00E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Beryllium	4.40E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Cadmium	1.10E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Chromium	1.40E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Cobalt	8.40E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Lead	5.00E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-2 (Jul-1998)
Manganese	3.80E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Mercury	2.60E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Nickel	2.10E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Selenium	2.40E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Total HAP			0.000	0.00	_ L

TABLE 7. WB Interconnect Line Heater (off station)

WB Line Heater Information:

Source ID:	S015
Number of Units:	1

WB Line Heater Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,052
Heat Input (MMBtu/hr)	9.00
Potential Fuel Consumption (MMBtu/yr):	78,840
Max. Fuel Consumption (MMscf/hr):	0.0086
Max. Fuel Consumption (MMscf/yr):	74.9
Max. Annual Hours of Operation (hr/yr):	8,760

WB Line Heater Emissions:

Pollutant	Emission Factor Units		ntial Emissions Unit	Estimation Basis / Emission Factor Source	
			lbs/hr	tpy	
NO _X	100	lb/MMScf	0.86	3.75	AP-42, Table 1.4-1 (Jul-1998)
VOC	5.5	lb/MMScf	0.05	0.21	AP-42, Table 1.4-2 (Jul-1998)
CO	84	lb/MMScf	0.72	3.15	AP-42, Table 1.4-1 (Jul-1998)
SO _X	0.6	lb/MMScf	0.01	0.02	AP-42, Table 1.4-2 (Jul-1998)
PM ₁₀	7.6	lb/MMScf	0.07	0.28	AP-42, Table 1.4-2 (Jul-1998)
PM _{2.5}	7.6	lb/MMScf	0.07	0.28	AP-42, Table 1.4-2 (Jul-1998)
Formaldehyde (HCHO)	0.08	lb/MMScf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
GHG (CO ₂ e)	See Table Below		1,054	4,617	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tab	le Below	0.02	0.07	AP-42, Tables 1.4-3 & 1.4-4 (Jul-1998)

- 1. PM₁₀ and PM_{2.5} are total values (filterable + condensable).
- 2. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 28) + N₂O (GWP = 265).
- 3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

TABLE 7. WB Interconnect Line Heater (off station)

Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:

Pollutant	Emission Factor	Units	Maximum Potential Emissions Per Unit		Estimation Basis / Emission Factor Source
			lbs/hr	tpy	
GHGs:					
CO ₂	53.06	kg/MMBtu	1052.98	4,612	40 CFR 98, Table C-1
CH ₄	0.001	kg/MMBtu	0.02	0.09	40 CFR 98, Table C-2
N ₂ O	0.0001	kg/MMBtu	0.00	0.01	40 CFR 98, Table C-2
GHG (CO ₂ e)			1,054	4,617	
Organic HAPs:					
2-Methylnaphthalene	2.40E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
3-Methylchloranthrene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
7,12-Dimethylbenz(a)anthracene	1.60E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Acenapthene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Acenapthylene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Anthracene	2.40E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Benz(a)anthracene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Benzene	2.10E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Benzo(a)pyrene	1.20E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Benzo(b)fluoranthene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Benzo(g,h,i)perylene	1.20E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Benzo(k)fluoranthene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Chrysene	1.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Dibenzo(a,h)anthracene	1.20E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Dichlorobenzene	1.20E-00	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Fluoranthene	3.00E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Fluorene	2.80E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
n-Hexane	1.80E+00	lb/MMscf	0.02	0.07	AP-42, Table 1.4-3 (Jul-1998)
Indeno(1,2,3-c,d)pyrene	1.80E-06	lb/MMscf	0.02	0.00	AP-42, Table 1.4-3 (Jul-1998)
Naphthalene	6.10E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Phenanthrene	1.70E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
	5.00E-06	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Pyrene Toluene	3.40E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-3 (Jul-1998)
Metal HAPs:	0. 1 0L-03	ID/IVIIVISCI	0.00	0.00	71 42, 14510 1.4 0 (041 1550)
	2.00E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Arsenic Beryllium	2.00E-04 4.40E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1996) AP-42, Table 1.4-4 (Jul-1998)
Cadmium	4.40E-03 1.10E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998) AP-42, Table 1.4-4 (Jul-1998)
					AP-42, Table 1.4-4 (Jul-1998) AP-42, Table 1.4-4 (Jul-1998)
Chromium	1.40E-03	lb/MMscf	0.00	0.00	, , ,
Cobalt	8.40E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Lead	5.00E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-2 (Jul-1998)
Manganese	3.80E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Mercury	2.60E-04	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Nickel	2.10E-03	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Selenium	2.40E-05	lb/MMscf	0.00	0.00	AP-42, Table 1.4-4 (Jul-1998)
Total HAP			0.016	0.07	

TABLE 8. Storage Tank Emissions Calculations - Produced Fluids Tank

Storage Tank Information:

Source ID:	S016
Tank Capacity (gallons):	10,080
Tank Contents:	Produced Water
Annual Throughput (gallons/year):	126,000
Daily Throughput (bbl/day)	8.22
Control Type:	None
Control Efficiency:	N/A
Max. Annual Hours of Operation (hr/yr):	8,760

Tank Emissions Data:

D.H. C. C	Uncontrolled Emissions		Controlled Emissions		Endada a Edda da Mallad	
Pollutant	lbs/hr	tpy	lbs/hr	tpy	Emissions Estimation Method	
VOC	0.00	0.00	0.00	0.00	ProMax	
HAPs	0.00	0.00	0.00	0.00	ProMax	
GHG (CO2e)	3.13	13.72	3.13	13.72	ProMax	

Notes:

1. GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 28) + N₂O (GWP = 265).

Promax Tanks Emissions Data:

Pollutant	Total Emission	Total Emissions (Working + Breathing + Flashing)			Total Emissions		
	lbs/hr	lbs/yr	tpy	lbs/hr	lbs/yr	tpy	
voc	0.00	8.11	0.00	0.00	8.11	0.00	
HAPs	0.00	0.18	0.00	0.00	0.18	0.00	
Carbon Dioxide	0.02	132.41	0.07	0.02	132.41	0.07	
Methane	0.11	974.99	0.49	0.11	974.99	0.49	
GHG (CO ₂ e)	3.13	27,432.10	13.72	3.13	27,432.10	13.72	

Notes:

1. Emissions estimated using BR&E ProMax software.

TABLE 9. Storage Tank Emissions Calculations - Used Oil Tank

Storage Tank Information:

Source ID:	S017
Tank Capacity (gallons):	4,200
Tank Contents:	Used Oil
Annual Throughput (gallons/year):	3,150
Control Type:	None
Control Efficiency:	N/A
Max. Annual Hours of Operation (hr/yr):	8,760

Tank Emissions Data:

Pollutant	Uncontrolle	d Emissions	Emissions Estimation Method	
Poliulani	lbs/hr	tpy	Emissions Estimation Method	
voc	1.16E-05	5.09E-05	ProMax	
HAPs	1.16E-05	5.09E-05	ProMax	
GHG (CO ₂ e)	N/A	N/A	N/A	

ProMax Emissions Data - Used Oil Tank:

Pollutant	Working Losses	Breathing Losses	Flashing Losses	Flashing Losses Total Emissions		
Foliutalit	tpy	tpy	tpy	lbs/hr	lbs/yr	tpy
voc	9.18E-07	4.99E-05	N/A	0.00	0.10	5.09E-05
HAPs	9.18E-07	4.99E-05	N/A	0.00	0.10	5.09E-05

- 1. Emissions estimated using ProMax software.
- 2. This tank does not contain hydrocarbons that would be expected to be flashed off at tank operating conditions.

TABLE 10. Liquid Loading Emissions Calculations

Liquid Loading Information:

Parameter	Value	Description
S	1.45	saturation factor for splash loading (AP-42 Table 5.2-1)
Collection Efficiency	0.0%	
Control Efficiency	0%	
Р	0.21	true vapor pressure of liquid loaded (psia) - assume octane
M	114.23	molecular weight of vapors (lb/lb-mol) - assume octane
T	516.4	temperature of liquids loaded (deg R) - TANKS Data

Description	Loading Losses	Maximum Throughput ² VOC Emissions		nissions
	(lb/10 ³ gal) ¹	(gal)	(lb/hr)	(tpy)
Liquids Hauling	0.8	126,000	0.01	0.05

Notes:

1. Uncontrolled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T

2. Hourly emissions assume continuous operation (i.e., 8760 hr/yr).

TABLE 11. Fugitive Emissions Calculations

Fugitive Component Information:

Component Type	Estimated Component Count	Gas Leak Emission Factor		Average Gas Leak Rate	Max Gas Leak Rate	Potential VOC Emissions	Potential HAP Emissions
	Component Count	(lb/hr/component)	Factor Source	(lb/hr)	(tpy)	(tpy)	(tpy)
Connectors	2,100	0.0004	Table 2-4	0.93	4.46	0.05	0.00
Flanges	578	0.0009	Table 2-4	0.50	2.39	0.03	0.00
Open-Ended Lines	21	0.0044	Table 2-4	0.09	0.45	0.00	0.00
Pump Seals	0	0.0053	Table 2-4	0.00	0.00	0.00	0.00
Valves	728	0.0099	Table 2-4	7.22	34.80	0.37	0.00
Other	0	0.0194	Table 2-4	0.00	0.00	0.00	0.00
Total				8.74	42.10	0.45	0.00

Notes:

- 1. "Other" equipment types include compressor seals, relief valves, diaphragms, drains, meters, etc.
- 2. The component count is based on the current design of the station plus 50% for the addition of a new turbine
- 3. Conservatively assumed that maximum leak rate is 10% greater than measured average leak rate for the purposes of establishing PTE.
- 4. VOC and HAP emissions are based on fractions of these pollutants in the site-specific gas analysis.
- 5. Emission factors are from EPA's Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017)

GHG Fugitive Emissions from Component Leaks:

Component Type	Estimated Component Count	Estimated Gas Leak Emission Factor Component Count		Average Gas Leak Rate	Max Gas Leak Rate	Potential CH ₄ Emissions	Potential CO ₂ Emissions	Potential CO₂e Emissions
	Component Count	(lb/hr/component)	Factor Source	(lb/hr)	(tpy)	(tpy)	(tpy)	(tpy)
Connectors	2,100	0.0004	Table 2-4	0.93	4.46	3.95	0.03	110.65
Flanges	578	0.0009	Table 2-4	0.50	2.39	2.12	0.01	59.39
Open-Ended Lines	21	0.0044	Table 2-4	0.09	0.45	0.40	0.00	11.06
Pump Seals	0	0.0053	Table 2-4	0.00	0.00	0.00	0.00	0.00
Valves	728	0.0099	Table 2-4	7.22	34.80	30.82	0.21	863.06
Other	0	0.0194	Table 2-4	0.00	0.00	0.00	0.00	0.00
Total				8.74	42.10	37.28	0.26	1044.16

Notes:

- 1. "Other" equipment types include compressor seals, relief valves, diaphragms, drains, meters, etc.
- 2. The component count is based on the current design of the station plus 50% for the addition of a new turbine
- 3. Conservatively assumed that maximum leak rate is 10% greater than measured average leak rate for the purposes of establishing PTE.
- 4. CO2 and CH4 emissions are based on fractions of these pollutants in the site-specific gas analysis.
- 5. Emission factors are from EPA's Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017)

Fugitive Component Emissions Data:

Pollutant	Atmospheric Emissions			
	lbs/hr	tpy		
voc	0.10	0.45		
HAPs	0.00	0.00		
GHG (CO₂e)	238	1,044		

TABLE 12. Haul Road Emission Calculations

Unpaved Road Information:

Unpaved Roads: E (lb/VMT) = $k(s/12)^a(W/3)^b)^*[(365-p)/365]$

·	PM	PM ₁₀	$PM_{2.5}$	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
а	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile/trip)	Trips Per Year	Mileage Per Year	Control (%)	PM	Emissions (tpy) PM ₁₀	PM _{2.5}
Service Truck	4	4	4	0.25	365	91	0	0.08	0.02	0.00
Liquids Hauling - Vendor Fluid	12	20	16	0.25	2	1	0	0.00	0.00	0.00
Liquids Hauling - Produced Fluid	20	32	26	0.25	32	8	0	0.02	0.00	0.00
Employee Vehicles	2	2	2	0.25	365	91	0	0.06	0.01	0.00
Total Potential Emissions	•							0.15	0.04	0.00

TABLE 13. Blowdown Emission Calculations

¹Mole fractions of CH₄,VOC, HAP and CO₂ based on gas analysis:

CH_{4:} 93.83% CO₂: 0.24% VOC 0.39% HAP 0.00%

²Weight fractions of CH₄ , VOC, HAP and CO₂ based on gas analysis:

CH_{4:} 88.56% CO₂: 0.61% VOC 1.07% HAP 0.00%

³ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

Carbon Dioxide (CO₂):

Methane (CH₄):

Emissions from Compressor Seal:

Number of Compressors ^{1,2}	Number of Seals Per Compressor	Leak Rate (scf/hr/compressor)	Total Volume NG Emitted (scf/yr)	Potential VOC Emissions (tpy)	Potential HAP Emissions (tpy)	Potential CO ₂ Emissions (tpy)	Potential CH ₄ Emissions (tpy)	Potential CO ₂ e Emissions (tpy)
2	-	1560	27,331,200	6.54	0.01	3.73	542.75	15,201
1	2	600	10,512,000	2.51	0.00	1.44	208.75	5,846
Total				9.05	0.01	5.17	751.50	21,047

^{1.} Leak rate for existing units and seal information from Solar Turbines PIL 251. Conservatively used C45 compressor at 1500 psig suction pressure (highest leak rate).

Sample calculation: Volume vented (scf/yr) x density of natural gas (lb/scf) x wt % VOC / 2000 lb/ton

4. GHG emissions calculated in accordance with Equations W-35 and W-36 in Subpart W of 40 CFR 98.

Sample calculation: Volume vented (scf/yr) x density of GHG (kg/scf) x mol % VOC x 2.2 lb/kg / 2000 lb/ton

VOC and HAP Vented Blowdown Emissions

Blowdown Emissions Sources	Vented Gas Volume Per Blowdown Event (scf)	Number of Blowdown Events per year	Total Volume NG Emitted (scf/yr)	Potential VOC Emissions (tpy)	Potential HAP Emissions (tpy)
Station ESD Vent	1,100,000	4	4,400,000	1.05	0.00
Unit Shutdown	170,000	48	8,160,000	1.95	0.00
Main Gas Filter Changes	91,000	36	3,276,000	0.78	0.00
Total	3.79	0.01			

^{1.} Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton) Sample calculation: Volume vented (scf/yr) x density of natural gas (lb/scf) x wt % VOC / 2000 lb/ton

GHG Vented Blowdown Emissions

Blowdown Emissions Sources	Vented Gas Volume Per Blowdown Event (scf)	Number of Blowdown Events per year	Total Volume NG Emitted (scf/yr)	Potential CH ₄ Emissions ¹ (tpy)	Potential CO ₂ Emissions ¹ (tpy)	Potential CO ₂ e Emissions (tpy)
Station ESD Vent	1,100,000	4	4,400,000	87.38	0.60	2447.15
Unit Shutdown	170,000	48	8,160,000	162.04	1.11	4538.34
Main Gas Filter Changes	91,000	36	3,276,000	65.06	0.45	1822.01
Total				314.5	2.16	8808

^{1.} Calculated in accordance with Equations W-35 and W-36 in Subpart W of 40 CFR 98.

^{2.} Leak rate for the new unit was estimated by using the max dry seal compressor leak rate from NSPS OOOOb.

^{3.} Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP + 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

TABLE 13. Blowdown Emission Calculations

Pigging Emissions:

Segment Name	Pigging Events (#/yr)	Diameter (in)	Length of pipeline (ft)	Volume of Gas Occupied in Pipeline (acf)	Pipeline Operating Pressure (psig)	Event Duration ¹ (hr/event)	Total Gas Volume per Event (scf/event)	Gas Volume to Atmosphere per Year (scf/yr)
Pig Receiver 42"	4	42	20.5	197	1,480	0.017	20,014	80,057
Pig Receiver 48"	4	48	22	276	1,480	0.017	28,054	112,215
Pig Launcher 42"	4	42	9.5	91	1,480	0.017	9,275	37,100
Pig Launcher 48"	4	48	21.6	271	1,480	0.017	27,544	110,175
Total							84,887	339,547

¹ Assumes pigging event duration of approximately 1 minute.

VOC and HAP Vented Pigging Emissions

Blowdown Emissions Sources	Vented Gas Volume Per Blowdown Event (scf)	Number of Blowdown Events per year	Total Volume NG Emitted (scf/yr)	Potential VOC Emissions (tpy)	Potential HAP Emissions (tpy)
Pig Receiver 42"	20,014	4	80,057	0.02	0.00
Pig Receiver 48"	28,054	4	112,215	0.03	0.00
Pig Launcher 42"	9,275	4	37,100	0.01	0.00
Pig Launcher 48"	27,544	4	110,175	0.03	0.00
Total				0.08	0.00

GHG Vented Pigging Emissions

Segment Name	Vented Gas Volume Per Pigging Event (scf)	Number of Blowdown Events per year	Total Volume NG Emitted (scf/yr)	Potential CH ₄ Emissions ¹ (tpy)	Potential CO ₂ Emissions ¹ (tpy)	Potential CO₂e Emissions (tpy)
Pig Receiver 42"	20,014	4	80,057	1.59	0.01	45
Pig Receiver 48"	28,054	4	112,215	2.23	0.02	62
Pig Launcher 42"	9,275	4	37,100	0.74	0.01	21
Pig Launcher 48"	27,544	4	110,175	2.19	0.02	61
Total				6.7	0.05	189

^{1.} Calculated in accordance with Equations W-35 and W-36 in Subpart W of 40 CFR 98.

Total Blowdown/Venting Emissions Data:

Pollutant	Pollutant Atmospheric Emissions		Emissions Estimation Method
Foliutarit	lbs/hr	tpy	Emissions Estimation Metriod
voc	2.95	12.92	Engineering Estimates, Manufacturer Data, and Site-Specific Gas Analysis
HAPs	0.00	0.02	Engineering Estimates, Manufacturer Data, and Site-Specific Gas Analysis
GHG (CO ₂ e)	6,859	30,044	Engineering Estimates, Manufacturer Data, and Site-Specific Gas Analysis

Hourly emissions are annualized (i.e., assume 8,760 hours per year).

TABLE 14. Site-Specific Gas Analysis

Sample Location:MVP PipelineHHV (Btu/scf):1,052.08

Constituent	Natural Gas Stream Speciation (Vol. %)	Natural Gas Stream Speciation (Wt. %)	Molar Weight
Nitrogen	0.356	0.587	0.100
Oxygen	0.003	0.005	0.001
Methane	93.831	88.558	15.050
Carbon Dioxide	0.235	0.610	0.104
Ethane	5.184	9.172	1.559
Propane	0.335	0.869	0.148
Isobutane	0.020	0.067	0.011
n-Butane	0.029	0.100	0.017
Isopentane	0.004	0.016	0.003
n-Pentane	0.002	0.009	0.002
Cyclopentane	0.000	0.001	0.000
Isohexane	0.000	0.002	0.000
n-Hexane	0.000	0.001	0.000
Benzene	0.000	0.000	0.000
Cyclohexane	0.000	0.000	0.000
Isoheptanes	0.000	0.000	0.000
Heptanes	0.000	0.000	0.000
Toluene	0.000	0.000	0.000
Methylcyclohexane	0.000	0.001	0.000
2,2,4 Trimethylpentane	0.000	0.000	0.000
Octanes	0.000	0.000	0.000
Ethylbenzene	0.000	0.000	0.000
Xylenes	0.000	0.000	0.000
Isononanes	0.000	0.000	0.000
n-Nonane	0.000	0.000	0.000
Isodecanes	0.000	0.000	0.000
n-Decane	0.000	0.000	0.000
Isoundecanes+	0.000	0.000	0.000
Totals	100.000	100.000	16.995

TOC (Total)	99.41	98.80
VOC (Total)	0.39	1.07
HAP (Total)	0.00	0.00

Simulation Report

Client Name: EQT
Location: Harris
Job: R13 Application

ProMax Filename: 2025-0728 Harris PWT v0.2

ProMax Version: 6.0.24302.0 Property Stencil Name: PWT Property Stencil Flowsheet: Flowsheet1

Emission Summary [Total]					
Component Subset	Tank Losses	Flashing Losses	Working Losses	Standing Losses	Loading Losses
Component Subset	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]
VOCs	0.004	0.004	0.000	0.000	0.000
HAPs	0.000	0.000	0.000	0.000	0.000
BTEX	0.000	0.000	0.000	0.000	0.000
H2S	0.000	-	-	-	-
Methane	0.487	0.478	0.002	0.008	0.000

Bryan Research & Engineering, LLC

Chemical Engineering Consultants P.O. Box 4747 Bryan, Texas 77805 Office: (979) 776-5220 FAX: (979) 776-4818 mailto:sales@bre.com http://www.bre.com/

Report Navigator can be activated via the ProMax Navigator Toolbar.

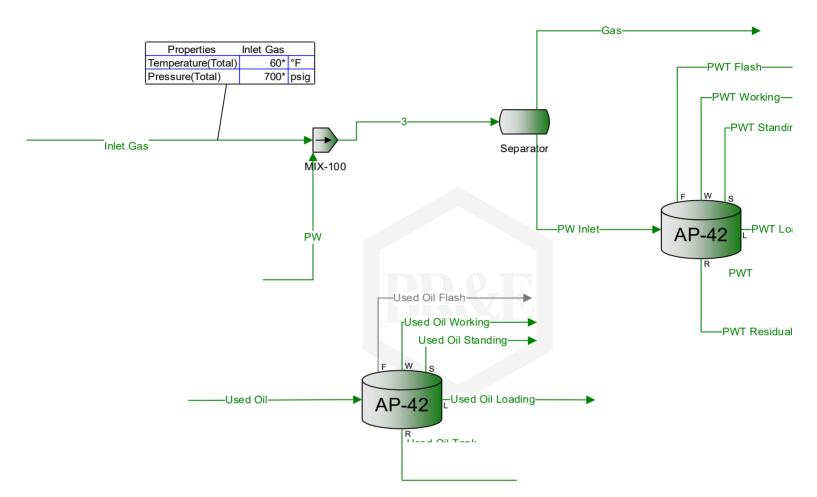
Simulation Report

Client Name: EQT
Location: Harris
Job: R13 Application

ProMax Filename: 2025-0728 Harris PWT v0.2

ProMax Version: 6.0.24302.0 Property Stencil Name: Used Oil Tank Property Stencil Flowsheet: Flowsheet1

Emission Summary [Total]					
Component Subset	Tank Losses	Flashing Losses	Working Losses	Standing Losses	Loading Losses
Component subset	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]
VOCs	0.000	0.000	0.000	0.000	0.000
HAPs	0.000	0.000	0.000	0.000	0.000
BTEX	0.000	0.000	0.000	0.000	0.000
H2S	0.000	-	-	-	-
Methane	0.000	0.000	0.000	0.000	0.000


Bryan Research & Engineering, LLC

Chemical Engineering Consultants
P.O. Box 4747 Bryan, Texas 77805
Office: (979) 776-5220
FAX: (979) 776-4818
mailto:sales@bre.com
http://www.bre.com/

Report Navigator can be activated via the ProMax Navigator Toolbar.

Flowsheet1

Harris Storage Tank Emissions

Inlet Stream Summary					
Stream Name Inlet Gas PW Used C					
Stream Flowsheet		Flowsheet1	Flowsheet1		
Temperature	°F	60.000	60.000	60.000	
Pressure	psig	700.000	685.304	0.000	
Standard Vapor Volumetric Flow	MSCFD	2121455.046	958.785	0.124	
Standard Liquid Volumetric Flow	bbl/d	880858.273	129.987	0.205	
Vapor Fraction	(%)	100.000	0.000	0.000	
Component		[Mol%]	[Mol%]	[Mol%]	
Carbon Dioxide		0.235	0.000	0.000	
Nitrogen		0.356	0.000	0.000	
Oxygen		0.003	0.000	0.000	
Methane		93.831	0.000	0.000	
Ethane		5.184	0.000	0.000	
Propane	Propane		0.000	0.000	
Isobutane		0.020	0.000	0.000	
n-Butane		0.029	0.000	0.000	
i-Pentane		0.004	0.000	0.000	
n-Pentane		0.002	0.000	0.000	
Cyclopentane		0.000	0.000	0.000	
n-Hexane		0.001	0.000	0.000	
Cyclohexane		0.000	0.000	0.000	
Heptane		0.000	0.000	0.000	
Methylcyclohexane		0.000	0.000	0.000	
2,2,4-Trimethylpentane		0.000	0.000	0.000	
Benzene		0.000	0.000	0.000	
Toluene		0.000	0.000	0.000	
Ethylbenzene		0.000	0.000	0.000	
m-Xylene		0.000	0.000	0.000	
Octane	Octane		0.000	0.000	
Water		0.000	100.000	0.000	
Lube Oil		0.000	0.000	100.000	

Flowsheet Information				
Tank Losses Block Name	PWT			
Tank Losses Block Inlet Stream	PW Inlet			

Tank Characteristics					
Tank Type		Vertical Cylinder			
Time Frame		Year			
Material Category		Light Organics			
Number of Tanks		1			
Shell Height	[ft]	24.000			
Diameter [ft]	[ft]	12.000			
Maximum Liquid Height	[%] [ft]	90.000	21.600		
Average Liquid Height	[%] [ft]	50.000	12.000		
Minimum Liquid Height	[%] [ft]	10.000	2.400		
Sum of Increases in Liquid Level	[ft/yr]	148.974			
Tank Volume	[gal] [bbl]	20304.644	483.444		
Insulation	Uninsulated				
Bolted or Riveted Construction	d or Riveted Construction False				
Vapor Balanced Tank		False			
Paint Characteristics					
Shell Color		Dark Green			
Shell Paint Condition		Average			
Roof Color		Dark Green			
Roof Paint Condition		Average			
	Roof Characteristics				
Туре		Cone			
Diameter	[ft]	-			
Slope	[ft/ft]	0.063			
	Breather Vent Settings				
Breather Vacuum Pressure	[psig]	-0.030			
Breather Vent Pressure	[psig]	0.030			

Loading Loss Parameters				
Cargo Carrier	Tank Truck or Rail Tank Car			
Land Based Mode of Operation	Splash Loading: Dedicated Service			
Marine Based Mode of Operation	-			
Control Efficiency [%]	0.000			
Truck Annual Leak Test Passed	None			
Overall Reduction Efficiency [%]	0.000			

	Meteorological Data			
Location		Charleston, WV		
Average Atmospheric Pressure	[psia]	14.160		
Maximum Average Temperature	[°F]	65.400		
Minimum Average Temperature	[°F]	45.500		
Solar Insolation	[BTU/ft^2*day]	1237.000		
Average Wind Speed	[mph]	4.000		
	Tank Conditions			
Flashing Temperature	[°F]	69.981		
Maximum Liquid Surface Temperature	[°F]	69.981		
Average Liquid Surface Temperature	[°F]	61.485		
Known Liquid Bulk Temperature?		False		
Bulk Liquid Temperature	[°F]	58.790		
Net Throughput	[bbl/day] [bbl/yr]	8.222	3001.173	
Net Throughput Per Tank	[bbl/day] [bbl/yr]	8.222	3001.173	
Annual Turnovers Per Tank		7.759		
Residual Liquid	[bbl/day]	8.220		
Residual Liquid Per Tank	[bbl/day]	8.220		
Raoult's Law Used for Vapor Pressure Calc?		False		
Vapor Pressure @ Minimum Liquid Surface Temperature	[psia]	12.263		
Vapor Pressure @ Maximum Liquid Surface Temperature	[psia]	14.160		
Vapor Pressure @ Average Daily Liquid Surface Temperature	[psia]	13.204		
	Tank Conditions	_		
Heated Tank?		-		

Flowsheet Information	
Tank Losses Block Name	Used Oil Tank
Tank Losses Block Inlet Stream	Used Oil

Tank Characteristics					
Tank Type		Vertical Cylinder			
Time Frame		Year			
Material Category		Heavy Crude			
Number of Tanks		1			
Shell Height	[ft]	24.000			
Diameter [ft]	[ft]	12.000			
Maximum Liquid Height	[%] [ft]	90.000	21.600		
Average Liquid Height	[%] [ft]	50.000	12.000		
Minimum Liquid Height	[%] [ft]	10.000	2.400		
Sum of Increases in Liquid Level	[ft/yr]	3.710			
Tank Volume	[gal] [bbl]	20304.644	483.444		
Insulation	Uninsulated				
Bolted or Riveted Construction	Bolted or Riveted Construction False				
Vapor Balanced Tank False		False			
Paint Characteristics					
Shell Color		White			
Shell Paint Condition		Average			
Roof Color		White			
Roof Paint Condition		Average			
	Roof Characteristics				
Туре		Cone			
Diameter	[ft]	-			
Slope	[ft/ft]	0.063			
	Breather Vent Settings				
Breather Vacuum Pressure	[psig]	-0.030			
Breather Vent Pressure	[psig]	0.030			

Loading Loss Parameters				
Cargo Carrier Tank Truck or Rail Tank Car				
Land Based Mode of Operation	9	Submerged Loading of a Clean Cargo Tank		
Marine Based Mode of Operation	-	-		
Control Efficiency [%]	(0.000		
Truck Annual Leak Test Passed	1	None		
Overall Reduction Efficiency [%]	(0.000		

	Meteorological Data							
Location		Pittsburgh, PA						
Average Atmospheric Pressure	[psia]	14.100						
Maximum Average Temperature	[°F]	60.400						
Minimum Average Temperature	[°F]	42.800						
Solar Insolation	[BTU/ft^2*day]	1170.000						
Average Wind Speed	[mph]	7.800						
Tank Conditions								
Flashing Temperature	[°F]	58.118						
Maximum Liquid Surface Temperature	[°F]	58.118						
Average Liquid Surface Temperature	[°F]	53.186						
Known Liquid Bulk Temperature?		False						
Bulk Liquid Temperature	[°F]	52.478						
Net Throughput	[bbl/day] [bbl/yr]	0.205	74.748					
Net Throughput Per Tank	[bbl/day] [bbl/yr]	0.205	74.748					
Annual Turnovers Per Tank		0.193						
Residual Liquid	[bbl/day]	0.205						
Residual Liquid Per Tank	[bbl/day]	0.205						
Raoult's Law Used for Vapor Pressure Calc?		False						
Vapor Pressure @ Minimum Liquid Surface Temperature	[psia]	0.000						
Vapor Pressure @ Maximum Liquid Surface Temperature	[psia]	0.000						
Vapor Pressure @ Average Daily Liquid Surface Temperature	[psia]	0.000						
	Tank Conditions							
Heated Tank?		-						

Emission Summary [Total]									
Component Subset	Tank Losses	Flashing Losses	Working Losses	Standing Losses	Loading Losses				
component subset	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]				
VOCs	0.004	0.004	0.000	0.000	0.000				
HAPs	0.000	0.000	0.000	0.000	0.000				
BTEX	0.000	0.000	0.000	0.000	0.000				
H2S	0.000	-	-	-					

Emission Summary [Per Tank]										
Component Subset	Tank Losses	Flashing Losses	Working Losses	Standing Losses	Loading Losses					
Component subset	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]					
VOCs [C3+]	0.004	0.004	0.000	0.000	0.000					
HAPs	0.000	0.000	0.000	0.000	0.000					
BTEX	0.000	0.000	0.000	0.000	0.000					
H2S	0.000	-	-	-	-					

	Stream Properties									
Tank Inlet Flashing Losses Working Losses Standing Losses Loading Losses Re							Residual			
Molecular Weight	[lb/lbmol]	18.016	17.901	22.075	22.075	18.023	18.015			
Net Ideal Gas Heating Value	[BTU/scf]	-	902.372	239.283	239.283	0.433	-			
Standard Vapor Volumetric Flow	[scf/d]	-	70.445	1.420	4.448	1.122	-			
Specific Gravity		0.999	-	-	-	-	0.999			
Reid Vapor Pressure	[psi]	1.095	-	-	-	-	1.030			
API Gravity		10.110	-	-	-	-	9.998			
Standard Liquid Volumetric Flow	[bbl/d]	8.250	-	-	-	-	8.220			

		Strea	m Mass Flow [Total]				
	Tank Inlet	Flashing Losses	Working Losses	Standing Losses	Loading Losses	Residual	Total Emissions
Component	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]
Carbon Dioxide	0.066	0.046	0.005	0.015	0.000	0.000	0.066
Nitrogen	0.002	0.002	0.000	0.000	0.000	0.000	0.002
Oxygen	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Methane	0.487	0.478	0.002	0.008	0.000	0.000	0.487
Ethane	0.063	0.061	0.000	0.001	0.000	0.000	0.063
Propane	0.003	0.003	0.000	0.000	0.000	0.000	0.003
Isobutane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n-Butane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
i-Pentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n-Pentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cyclopentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n-Hexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Heptane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Methylcyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2,2,4-Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Toluene	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ethylbenzene	0.000	0.000	0.000	0.000	0.000	0.000	0.000
m-Xylene	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Octane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	525.342	0.016	0.007	0.023	0.010	525.296	0.046
Lube Oil	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Stream Compostion									
Component	Tank Inlet	Flashing Losses	Working Losses	Standing Losses	Loading Losses	Residual			
Component	[Mol%]	[Mol%]	[Mol%]	[Mol%]	[Mol%]	[Mol%]			
Carbon Dioxide	0.005	3.102	16.070	16.070	0.000	0.000			
Nitrogen	0.000	0.190	0.023	0.023	0.000	0.000			
Oxygen	0.000	0.003	0.001	0.001	0.000	0.000			
Methane	0.104	87.871	21.926	21.926	0.000	0.000			
Ethane	0.007	6.006	2.303	2.303	0.000	0.000			
Propane	0.000	0.227	0.062	0.062	0.000	0.000			
Isobutane	0.000	0.009	0.002	0.002	0.000	0.000			
n-Butane	0.000	0.015	0.004	0.004	0.000	0.000			
i-Pentane	0.000	0.001	0.000	0.000	0.000	0.000			
n-Pentane	0.000	0.000	0.000	0.000	0.000	0.000			
Cyclopentane	0.000	0.000	0.000	0.000	0.000	0.000			
n-Hexane	0.000	0.000	0.000	0.000	0.000	0.000			
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000			
Heptane	0.000	0.000	0.000	0.000	0.000	0.000			
Methylcyclohexane	0.000	0.000	0.000	0.000	0.000	0.000			
2,2,4-Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000			
Benzene	0.000	0.001	0.021	0.021	0.011	0.000			
Toluene	0.000	0.000	0.006	0.006	0.001	0.000			
Ethylbenzene	0.000	0.000	0.000	0.000	0.000	0.000			
m-Xylene	0.000	0.000	0.000	0.000	0.000	0.000			
Octane	0.000	0.000	0.000	0.000	0.000	0.000			
Water	99.883	2.576	59.583	59.583	99.988	100.000			
Lube Oil	0.000	0.000	0.000	0.000	0.000	0.000			
	Tank Inlet	Flashing Losses	Working Losses	Standing Losses	Loading Losses	Residual			
Component	[Mass%]	[Mass%]	[Mass%]	[Mass%]	[Mass%]	[Mass%]			
Carbon Dioxide	0.013	7.626	32.037	32.037	0.000	0.000			
Nitrogen	0.000	0.297	0.029	0.029	0.000	0.000			
Oxygen	0.000	0.005	0.001	0.001	0.000	0.000			
Methane	0.093	78.747	15.934	15.934	0.000	0.000			
Ethane	0.012	10.088	3.136	3.136	0.000	0.000			
Propane	0.001	0.558	0.123	0.123	0.000	0.000			
Isobutane	0.000	0.028	0.004	0.004	0.000	0.000			
n-Butane	0.000	0.047	0.010	0.010	0.000	0.000			
i-Pentane	0.000	0.004	0.001	0.001	0.000	0.000			
n-Pentane	0.000	0.001	0.000	0.000	0.000	0.000			
Cyclopentane	0.000	0.000	0.000	0.000	0.000	0.000			
n-Hexane	0.000	0.000	0.000	0.000	0.000	0.000			
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000			
Heptane	0.000	0.000	0.000	0.000	0.000	0.000			
Methylcyclohexane	0.000	0.000	0.000	0.000	0.000	0.000			
2,2,4-Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000			
Benzene	0.000	0.004	0.073	0.073	0.048	0.000			
Toluene	0.000	0.001	0.026	0.026	0.004	0.000			
Ethylbenzene	0.000	0.000	0.000	0.000	0.000	0.000			
m-Xylene	0.000	0.000	0.000	0.000	0.000	0.000			
Octane	0.000	0.000	0.000	0.000	0.000	0.000			
Water	99.882	2.593	48,625	48.625	99.948	100.000			
Lube Oil	0.000	0.000	0.000	0.000	0.000	0.000			
Labe on									

Emission Summary [Total]									
Component Subset	Tank Losses	Flashing Losses	Working Losses	Standing Losses	Loading Losses				
component subset	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]				
VOCs	0.000	0.000	0.000	0.000	0.000				
HAPs	0.000	0.000	0.000	0.000	0.000				
BTEX	0.000	0.000	0.000	0.000	0.000				
H2S	0.000	-	-	-					

Emission Summary [Per Tank]									
Component Subset	Tank Losses	Flashing Losses	Working Losses	Standing Losses	Loading Losses				
Component subset	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]				
VOCs [C3+]	0.000	0.000	0.000	0.000	0.000				
HAPs	0.000	0.000	0.000	0.000	0.000				
BTEX	0.000	0.000	0.000	0.000	0.000				
H2S	0.000	-	-	-					

	Stream Properties									
	Tank Inlet Flashing Losses Working Losses Standing Losses Loading Losses Residual									
Molecular Weight	[lb/lbmol]	188.000	188.000	188.000	188.000	188.000	188.000			
Net Ideal Gas Heating Value	[BTU/scf]	-	9169.961	9169.961	9169.961	9169.961	-			
Standard Vapor Volumetric Flow	[scf/d]	-	0.000	0.000	0.001	0.000	-			
Specific Gravity		0.851	-	-	-	-	0.852			
Reid Vapor Pressure	[psi]	0.150	-	-	-	-	0.150			
API Gravity		34.804	-	-	-	-	34.805			
Standard Liquid Volumetric Flow	[bbl/d]	0.205	-	-	-	-	0.205			

		Strop	m Mass Flow [Total]				
	Tank Inlet	Flashing Losses	Working Losses	Standing Losses	Loading Losses	Residual	Total Emissions
Component	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]	[ton/yr]
Carbon Dioxide	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oxygen	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Methane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ethane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Propane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Isobutane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n-Butane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
i-Pentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n-Pentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cyclopentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n-Hexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Heptane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Methylcyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2,2,4-Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Toluene	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ethylbenzene	0.000	0.000	0.000	0.000	0.000	0.000	0.000
m-Xylene	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Octane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Lube Oil	11.172	0.000	0.000	0.000	0.000	0.000	0.000

Stream Compostion									
Component	Tank Inlet	Flashing Losses	Working Losses	Standing Losses	Loading Losses	Residual			
Component	[Mol%]	[Mol%]	[Mol%]	[Mol%]	[Mol%]	[Mol%]			
Carbon Dioxide	0.000	0.000	0.000	0.000	0.000	0.000			
Nitrogen	0.000	0.000	0.000	0.000	0.000	0.000			
Oxygen	0.000	0.000	0.000	0.000	0.000	0.000			
Methane	0.000	0.000	0.000	0.000	0.000	0.000			
Ethane	0.000	0.000	0.000	0.000	0.000	0.000			
Propane	0.000	0.000	0.000	0.000	0.000	0.000			
Isobutane	0.000	0.000	0.000	0.000	0.000	0.000			
n-Butane	0.000	0.000	0.000	0.000	0.000	0.000			
i-Pentane	0.000	0.000	0.000	0.000	0.000	0.000			
n-Pentane	0.000	0.000	0.000	0.000	0.000	0.000			
Cyclopentane	0.000	0.000	0.000	0.000	0.000	0.000			
n-Hexane	0.000	0.000	0.000	0.000	0.000	0.000			
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000			
Heptane	0.000	0.000	0.000	0.000	0.000	0.000			
Methylcyclohexane	0.000	0.000	0.000	0.000	0.000	0.000			
2,2,4-Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000			
Benzene	0.000	0.000	0.000	0.000	0.000	0.000			
Toluene	0.000	0.000	0.000	0.000	0.000	0.000			
Ethylbenzene	0.000	0.000	0.000	0.000	0.000	0.000			
m-Xylene	0.000	0.000	0.000	0.000	0.000	0.000			
Octane	0.000	0.000	0.000	0.000	0.000	0.000			
Water	0.000	0.000	0.000	0.000	0.000	0.000			
Lube Oil	100.000	100.000	100.000	100.000	100.000	100.000			
	Tank Inlet	Flashing Losses	Working Losses	Standing Losses	Loading Losses	Residual			
Component	[Mass%]	[Mass%]	[Mass%]	[Mass%]	[Mass%]	[Mass%]			
Carbon Dioxide	0.000	0.000	0.000	0.000	0.000	0.000			
Nitrogen	0.000	0.000	0.000	0.000	0.000	0.000			
Oxygen	0.000	0.000	0.000	0.000	0.000	0.000			
Methane	0.000	0.000	0.000	0.000	0.000	0.000			
Ethane	0.000	0.000	0.000	0.000	0.000	0.000			
Propane	0.000	0.000	0.000	0.000	0.000	0.000			
Isobutane	0.000	0.000	0.000	0.000	0.000	0.000			
n-Butane	0.000	0.000	0.000	0.000	0.000	0.000			
i-Pentane	0.000	0.000	0.000	0.000	0.000	0.000			
n-Pentane	0.000	0.000	0.000	0.000	0.000	0.000			
Cyclopentane	0.000	0.000	0.000	0.000	0.000	0.000			
n-Hexane	0.000	0.000	0.000	0.000	0.000	0.000			
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000			
Heptane	0.000	0.000	0.000	0.000	0.000	0.000			
Methylcyclohexane	0.000	0.000	0.000	0.000	0.000	0.000			
2,2,4-Trimethylpentane	0.000	0.000	0.000	0.000	0.000	0.000			
Benzene	0.000	0.000	0.000	0.000	0.000	0.000			
Toluene	0.000	0.000	0.000	0.000	0.000	0.000			
Ethylbenzene	0.000	0.000	0.000	0.000	0.000	0.000			
m-Xylene	0.000	0.000	0.000	0.000	0.000	0.000			
Octane	0.000	0.000	0.000	0.000	0.000	0.000			
Water	0.000	0.000	0.000	0.000	0.000	0.000			
Lube Oil	100.000	100.000	100.000	100.000	100.000	100.000			
Labe on									

ATTACHMENT O – MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS

Plan Type	Emission unit	Pollutant	Requirements	Frequency	Method of Measurement	Regulatory Reference
Monitoring, Recordkeeping	Compressor Turbine S021	NOx	Performance test	Annual	EPA Test Methods	40 CFR 60.4400(a)
Monitoring	Compressor Turbine S021		Amount of natural gas consumed, hours of operation	Monthly	N/A	Monitoring
Recordkeeping	Compressor Turbine S021	NOx, CO, VOC	Rolling 12-month total emission calculations	Monthly	N/A	Recordkeeping
Recordkeeping	Blowdowns		Number of events and estimated volume per event rolling 12-month total	Monthly	N/A	Recordkeeping
Monitoring, Recordkeeping	Fugitives		Conduct Quarterly OGI surveys and monthly AVO surveys as specified in 40 CFR 60.5397b.	N/A	N/A	40 CFR 60.5397b
Monitoring, Recordkeeping	Compressor Turbines S021		Monitor and replace dry seals as specified in 40 CFR 60.5380b(a)(6)-(8).	N/A	N/A	40 CFR 60.5380b(a)(6)- (8)

See Attachment D for additional information.

Descripe Forcelose	ID.	00000001	E004	4 E A D	A F C C	$\square \wedge \wedge$		140000	~
Docusian Envelope	ID:	99606861	-FU34-	-4FAB-	ASCU	-DAA	LR.	140B80	JL

ATTACHMENT P – PUBLIC NOTICE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Mountain Valley Pipeline, LLC. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a modification to the existing R13-2397A permit for a natural gas transmission compressor station (Harris Compressor Station) located on County Route 24/5 eight miles east of Flatwoods in Braxton County, West Virginia. The site latitude and longitude coordinates are: 38.72251 N, - 80.50286 W.

The applicant estimates the potential increase in the following Regulated Air Pollutants associated with the project:

Volatile Organic Compounds (VOC) = 5.59 tpy Nitrogen Oxides (NO_x) = 57.70 tpy Carbon Monoxide (CO) = 61.37 tpy Particulate Matters (PM_{2.5}/PM₁₀) = 17.01 tpy Sulfur Dioxides (SO₂) = 5.83 tpy Formaldehyde (HCHO) = 4.85 tpy Hazardous Air Pollutants (HAPs) = 4.33 tpy Carbon Dioxide Equivalents (CO₂e) = 223,981 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice. Written comments will also be received via email at DEPAirQualityPermitting@WV.gov

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 41281, during normal business hours.

Dated on October 30, 2025.

By: Mountain Valley Pipeline, LLC
Mike Lauderbaugh, Vice President, EHS
2200 Energy Drive
Canonsburg, PA 15317