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The science of quantum information has arisen over the last two decades centered on the manipulation of indi-
vidual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography and
quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized
later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely
powerful alternative approach to quantum information processing. This review focuses on continuous-variable
quantum information processes that rely on any combinationof Gaussian states, Gaussian operations, and Gaus-
sian measurements. Interestingly, such a restriction to the Gaussian realm comes with various benefits, since on
the theoretical side, simple analytical tools are available and, on the experimental side, optical components ef-
fecting Gaussian processes are readily available in the laboratory. Yet, Gaussian quantum information processing
opens the way to a wide variety of tasks and applications, including quantum communication, quantum cryptog-
raphy, quantum computation, quantum teleportation, and quantum state and channel discrimination. This review
reports on the state of the art in this field, ranging from the basic theoretical tools and landmark experimental
realizations to the most recent successful developments.
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I. INTRODUCTION

Quantum mechanics is the branch of physics that studies
how the universe behaves at its smallest and most fundamental
level. Quantum computers and quantum communication sys-
tems transform and transmit information using systems such
as atoms and photons whose behavior is intrinsically quan-
tum mechanical. As the size of components of computers
and the number of photons used to transmit information has
pressed downwards to the quantum regime, the study of quan-
tum information processing has potential practical relevance.
Moreover, the strange and counterintuitive features of quan-
tum mechanics translate into novel methods for information
processing that have no classical analogue. Over the past two
decades, a detailed theory of quantum information processing
has developed, and prototype quantum computers and quan-
tum communication systems have been constructed and tested
experimentally. Simple quantum algorithms have been per-
formed, and a wide variety of quantum communication proto-
cols have been demonstrated, including quantum teleportation
and quantum cryptography.

Quantum information comes in two forms,discrete and
continuous. The best-known example of discrete quantum
information is the quantum bit or ‘qubit’, a quantum sys-
tem with two distinguishable states. Examples of quan-
tum systems that can be used to register a qubit are spin
1/2 particles such as electrons and many nuclear spins, the
two lowest energy states of semiconductor quantum dots or
quantized superconducting circuits, and the two polariza-
tion states of a single photon. The best-known example
of continuous quantum information (Andersenet al., 2010;
Braunstein and Pati, 2003; Braunstein and van Loock, 2005;
Cerf et al., 2007) is the quantized harmonic oscillator, which
can be described by continuous variables such as position
and momentum (an alternative description is the discrete but
infinite-dimensional representation in terms of energy states).
Examples of continuous-variable quantum systems include
quantized modes of bosonic systems such as the different
degrees of freedom of the electromagnetic field, vibrational
modes of solids, atomic ensembles, nuclear spins in a quan-
tum dot, Josephson junctions, and Bose-Einstein condensates.
Because they supply the quantum description of the propagat-
ing electromagnetic field, continuous-variable quantum sys-
tems are particularly relevant for quantum communication
and quantum-limited techniques for sensing, detection and
imaging. Similarly, atomic or solid-state based encoding of
continuous-variable systems can be used to perform quantum
computation. Bosonic systems are not only useful in the phys-
ical modeling of qubit-based quantum computation, e.g., the
quantized vibrational modes of ions embody the medium of
communication between qubits in ion-trap quantum comput-
ers, but also allows for new approaches to quantum computa-
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tion.

A. Gaussian quantum information processing

This review reports on the state of the art of quantum in-
formation processing using continuous variables. The pri-
mary tools for analyzing continuous-variable quantum infor-
mation processing are Gaussian states and Gaussian transfor-
mations. Gaussian states are continuous-variable states that
have a representation in terms of Gaussian functions, and
Gaussian transformations are those that take Gaussian states
to Gaussian states. In addition to offering an easy description
in terms of Gaussian functions, Gaussian states and transfor-
mations are of great practical relevance. The ground state and
thermal states of bosonic systems are Gaussian, as are states
created from such states by linear amplification and loss. Fre-
quently, nonlinear operations can be approximated to a high
degree of accuracy by Gaussian transformations. For exam-
ple, squeezing is a process that decreases the variance of one
continuous variable (position or electric field, for example)
while increasing the variance of the conjugate variable (mo-
mentum or magnetic field). Linear squeezing is Gaussian, and
nonlinear squeezing can typically be approximated to first or-
der by a linear, Gaussian process. Moreover, any transforma-
tion of a continuous-variable state can be built up by Gaussian
processes together with a repeated application of a single non-
linear process such as photodetection.

In reviewing the basic facts of Gaussian quantum
information processing (Braunstein and Pati, 2003;
Braunstein and van Loock, 2005; Eisert and Plenio, 2003;
Ferraroet al., 2005) and in reporting recent developments, we
have attempted to present results in a way that is accessible
to two communities. Members of the quantum optics and
atomic physics communities are very familiar with the basic
aspects of Gaussian quantum states and transformations, but
may be less acquainted with the application of Gaussian
techniques to quantum computation, quantum cryptography,
and quantum communication. Members of the quantum
information community are familiar with quantum informa-
tion processing techniques such as quantum teleportation,
quantum algorithms, and quantum error correction, but may
have less experience in the continuous-variable versions of
these protocols, which exhibit a range of features that do not
arise in their discrete versions.

The review is self-contained in the sense that study of the
introductory material should suffice to follow the detailed
derivations of more advanced methods of Gaussian quantum
information processing presented in the body of the paper. Fi-
nally, the review supplies a comprehensive set of references
both to the foundations of the field of Gaussian quantum in-
formation processing, and to recent developments.

B. Outline of review

The large subject matter and page length limit means that
this review will take a mostly theoretical approach to Gaus-

sian quantum information. In particular, we focus onoptical

Gaussian protocols as they are the natural choice of medium
for a lot of the protocols presented in this review. How-
ever, we do make mention of Gaussian atomic ensemble pro-
tocols (Hammereret al., 2010) due to the close correspon-
dence between continuous variables for light and atomic en-
sembles. Furthermore, experiments (both optical and atomic)
will be mentioned and cited where appropriate. We also note
that fermionic Gaussian states have also been studied in the
literature (e.g., see (Bravyi, 2005; Di Vincenzo and Terhal,
2005; Eisertet al., 2010)) but are outside the scope of this
review. We limit our discussion of entanglement, quantum
teleportation, quantum cloning, and quantum dense coding as
these have all been discussed in detail previously, e.g., see
Braunstein and van Loock (2005). On the other hand, we give
a detailed account of bosonic quantum channels, continuous-
variable quantum cryptography and quantum computation.

We begin in Sec. II by introducing the fundamental theoret-
ical concepts of Gaussian quantum information. This includes
Gaussian states and their phase-space representations and
symplectic structure, along with Gaussian unitaries, which are
the simplest quantum operations transforming Gaussian states
into Gaussian states. We then give examples of both Gaussian
states and Gaussian unitaries. Multimode Gaussian states are
discussed next using powerful techniques based on the manip-
ulation of the second-order statistical moments. The quantum
entanglement of bipartite Gaussian states is presented with the
various measures associated with it. We end this section by
introducing the basic models of measurement, such as homo-
dyne detection, heterodyne detection and direct detection.

In Sec. III we begin to go more deeply into Gaussian quan-
tum information processing via the process of distinguishing
between Gaussian states. We present general bounds and mea-
sures of distinguishability, and discuss specific models for dis-
criminating between optical coherent states. In Sec. IV we in-
troduce basic Gaussian quantum information processing pro-
tocols including quantum teleportation and quantum cloning.

In Sec. V we review bosonic communication channels
which is one of the fundamental areas of research in quan-
tum information. Bosonic channels include communication
by electromagnetic waves (e.g., radio waves, microwaves, and
visible light), with Gaussian quantum channels being the most
important example. These channels represent the standard
model of noise in many quantum information protocols as
well as being a good approximation to current optical telecom-
munication schemes. We begin by first reviewing the gen-
eral formalisms and chief properties of bosonic channels, and
specifically, those of Gaussian channels. This naturally leads
to the study of the important class of one-mode Gaussian
channels. The established notions of Gaussian channel ca-
pacity, both the classical and quantum versions, are presented
next. Next up is entanglement-assisted classical capacitywith
quantum dense coding being a well-known example. This is
followed by the concepts of entanglement distribution over
noisy Gaussian channels and secret-key capacities. Finally,
we end with the discrimination of quantum channels and the
protocols of quantum illumination and quantum reading.

The state of the art in the burgeoning field of continuous-
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variable quantum cryptography is presented in Sec. VI. We
begin by introducing how a generic quantum cryptographic
scheme works followed by examples of the most commonly
studied protocols. We then consider aspects of their security
including what it means to be secure along with the main types
of eavesdropping attacks. We continue with the practical sit-
uation of finite-size keys and the optimality and full charac-
terization of collective Gaussian attacks before derivingthe
secret-key rates for the aforementioned protocols. We con-
clude with a discussion on the future avenues of research in
continuous-variable quantum cryptography.

In Sec. VII we review the most recent of the continuous-
variable quantum information protocols, namely, quantum
computation using continuous-variable cluster states. Webe-
gin by listing the most commonly used continuous-variable
gates and by discussing the Lloyd-Braunstein criterion which
provides the necessary and sufficient conditions for gates to
form a universal set. The basic idea of one-way quantum
computation using continuous variables is discussed next with
teleportation providing an elegant way of understanding how
computations can be achieved using only measurements. A
common and convenient way of describing cluster states, via
graph states and the nullifier formalism, is presented. Next,
we consider the practical situations of Gaussian computa-
tional errors along with the various optical implementations of
Gaussian cluster states. This leads into a discussion on howto
incorporate universal quantum computation and quantum er-
ror correction into the framework of continuous-variable clus-
ter state quantum computation. We end by introducing two
quantum computational algorithms and provide directions for
future research. In Sec. VIII, we offer perspectives and con-
cluding remarks.

C. Further readings

For additional readings, perhaps the first place to start for
an overview of continuous-variable quantum information is
the well-known review article by Braunstein and van Loock
(2005). Furthermore, there is also the recent review by
Andersenet al. (2010) as well as two edited books on
the subject by Braunstein and Pati (2003) and Cerfet al.

(2007). On Gaussian quantum information specifically
there is the review article by Wanget al. (2007) and the
lecture notes of Ferraroet al. (2005). For a quantum
optics (Bachor and Ralph, 2004; Gerry and Knight, 2005;
Leonhardt, 2010) approach to quantum information see
the textbooks by Walls and Milburn (2008), Kok and Lovett
(2010) and Furusawa and van Loock (2011) (who provide a
joint theoretical and experimental point of view). Whilst,
the current state of the art of continuous variables using
atomic ensembles can be found in the review article of
Hammereret al. (2010). For a detailed treatment of Gaus-
sian systems see the textbook by Holevo (2011). An overview
of Gaussian entanglement is presented in the review of
Eisert and Plenio (2003). For an elementary introduction to
Gaussian quantum channels, see Eisert and Wolf (2007), and
for continuous-variable quantum cryptography, see the re-

views of Scaraniet al. (2009) and Cerf and Grangier (2007).
Cluster state quantum computation using continuous vari-
ables is treated in the books of Kok and Lovett (2010) and
Furusawa and van Loock (2011).

D. Comment on notation

Throughout this review, the variance of the vacuum noise
is normalized to1. Such a normalization is commonly and
conveniently thought of as setting Planck’s constant~ to a
particular value, in our case~ = 2. Currently, in continuous-
variable quantum information there is no general consensus
about the value of the variance of the vacuum, with common
choices being either1/4 (~ = 1/2), 1/2 (~ = 1) or 1. This
is important to point out to the reader who, when referring to
the many references in this review, should be aware that dif-
ferent papers use different choices of normalization. Another
nomenclature issue in the literature is the notation used tode-
fine the quadrature operators (and the corresponding eigen-
values). Here we define the ‘position’ quadrature byq̂ and the
‘momentum’ quadrature bŷp. In this review, the logarithm
(log) can be taken to be base 2 for bits or ln for nats.I repre-
sents the identity matrix which may be2×2 (for one mode) or
2N × 2N (for arbitrary N modes). The correct dimensions, if
not specified, can be deducted from the context. Since we deal
with continuous variables, we can have both discrete and con-
tinuous ensembles of states, measurement operators, etcetera.
In order to keep the notation as simple as possible, in some
parts we consider discrete ensembles. It is understood thatthe
extension to continuous ensembles involves the replacement
of sums by integrals. Finally, integrals are taken from−∞ to
+∞ unless otherwise stated.

II. ELEMENTS OF GAUSSIAN QUANTUM INFORMATION
THEORY

A. Bosonic systems in a nutshell

A quantum system is called acontinuous-variable system

when it has an infinite-dimensional Hilbert space described
by observables with continuous eigenspectra. The prototype
of a continuous-variable system is represented byN bosonic
modes, corresponding toN quantized radiation modes of the
electromagnetic field, i.e.,N quantum harmonic oscillators.
In general,N bosonic modes are associated with a tensor-
product Hilbert spaceH⊗N = ⊗N

k=1Hk and correspond-
ing N pairs of bosonic field operators{âk, â†k}Nk=1, which
are called the annihilation and creation operators, respec-
tively. These operators can be arranged in a vectorial operator
b̂ := (â1, â

†
1, · · · , âN , â†N)T , which must satisfy the bosonic

commutation relations

[b̂i, b̂j] = Ωij , (i, j = 1, · · · , 2N) (1)
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whereΩij is the generic element of the2N × 2N matrix

Ω :=

N⊕

k=1

ω =






ω

. . .
ω




 ω :=

(
0 1
−1 0

)

, (2)

known as the symplectic form. The Hilbert space of this sys-
tem is separable and infinite-dimensional. This is because the
single-mode Hilbert spaceH is spanned by a countable ba-
sis{|n〉}∞n=0, called the Fock or number state basis, which is
composed by the eigenstates of the number operatorn̂ := â†â,
i.e., n̂ |n〉 = n |n〉. Over these states the action of the bosonic
operators is well-defined, being determined by the bosonic
commutation relations. In particular, we have

â |0〉 = 0, â |n〉 = √
n |n− 1〉 (for n ≥ 1), (3)

and

â† |n〉 =
√
n+ 1 |n+ 1〉 (for n ≥ 0). (4)

Besides the bosonic field operators, the bosonic system may
be described by another kind of field operators. These are the
quadrature field operators{q̂k, p̂k}Nk=1, formally arranged in
the vector

x̂ := (q̂1, p̂1, . . . , q̂N , p̂N)T . (5)

These operators derive from the cartesian decomposition of
the bosonic field operators, i.e.,âk := 1

2 (q̂k + ip̂k) or equiva-
lently,

q̂k := âk + â†k, p̂k := i(â†k − âk). (6)

The quadrature field operators represent dimensionless canon-
ical observables of the system and act like the position and
momentum operators of the quantum harmonic oscillator. In
fact, they satisfy the canonical commutation relations in natu-
ral units (~ = 2)

[x̂i, x̂j ] = 2iΩij , (7)

which are easily derivable from the bosonic commutator rela-
tions of Eq. (1). In the following, we will use both kinds of
field operators, the bosonic field operators and the quadrature
field operators.

Now it is important to note that the quadrature operators
are observables with continuous eigenspectra. In fact the two
quadrature operatorŝq (position) andp̂ (momentum) have
eigenstates1

q̂ |q〉 = q |q〉 , p̂ |p〉 = p |p〉 , (8)

1 Strictly speaking,|q〉 and|p〉 areimproper eigenstates since they are non-
normalizable, thus lying outside the Hilbert space. Correspondingly,q and
p are improper eigenvalues. In the remainder we take this mathematical
subtlety for granted.

with continuous eigenvaluesq ∈ R and p ∈ R. The two
eigensets{|q〉}q∈R and{|p〉}p∈R identify two bases which are
connected by a Fourier transform

|q〉 = 1

2
√
π

∫

dpe−iqp/2 |p〉 , |p〉 = 1

2
√
π

∫

dqeiqp/2 |q〉 .
(9)

In general, for theN -mode Hilbert space we can write

x̂
T |x〉 = x

T |x〉 , (10)

with x ∈ R2N and |x〉 := (|x1〉 , . . . , |x2N 〉)T . Here the
quadrature eigenvaluesx can be used as continuous variables
to describe the entire bosonic system. This is possible by in-
troducing the notion of phase-space representation.

1. Phase-space representation and Gaussian states

All the physical information about theN -mode bosonic
system is contained in its quantum state. This is represented
by a density operator̂ρ, which is a trace-one positive operator
acting on the corresponding Hilbert space, i.e.,ρ̂ : H⊗N →
H⊗N . We denote byD(H⊗N ) the space of the density oper-
ators, also called the state space. Wheneverρ̂ is a projector
(ρ̂2 = ρ̂) we say that̂ρ is pure and the state can be represented
as ρ̂ = |ϕ〉 〈ϕ| where|ϕ〉 ∈ H⊗N . Now it is important to
note that any density operator has an equivalent representation
in terms of a quasi-probability distribution (Wigner function)
defined over a real symplectic space (phase space). In fact, let
us introduce the Weyl operator

D(ξ) := exp(ix̂T
Ωξ), (11)

whereξ ∈ R2N . Then, an arbitrarŷρ is equivalent to a Wigner
characteristic function

χ(ξ) = Tr [ρ̂D(ξ)] , (12)

and, via Fourier transform, to a Wigner function

W (x) =

∫

R2N

d2Nξ

(2π)2N
exp

(
−ixT

Ωξ
)
χ(ξ), (13)

which is normalized to one but generally non-positive (quasi-
probability distribution). In Eq. (13) the continuous variables
x ∈ R2N are the eigenvalues of quadratures operatorsx̂.
These variables span a real symplectic spaceK := (R2N ,Ω)
which is called thephase space. Thus, an arbitrary quantum
stateρ̂ of aN -mode bosonic system is equivalent to a Wigner
functionW (x) defined over a2N -dimensional phase space
K.

The most relevant quantities that characterize the Wigner
representations (χ or W ) are the statistical moments of the
quantum state. In particular, the first moment is called the
displacement vector or, simply, the mean value

x̄ := 〈x̂〉 = Tr(x̂ρ̂), (14)
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and the second moment is called the covariance matrixV,
whose arbitrary element is defined by

Vij :=
1
2 〈{∆x̂i,∆x̂j}〉 , (15)

where∆x̂i := x̂i − 〈x̂i〉 and{, } is the anti-commutator. In
particular, the diagonal elements of the covariance matrixpro-
vide the variances of the quadrature operators, i.e.,

Vii = V (x̂i), (16)

whereV (x̂i) = 〈(∆x̂i)2〉 = 〈x̂2i 〉 − 〈x̂i〉2. The covariance
matrix is a2N × 2N , real and symmetric matrix which must
satisfy the uncertainty principle (Simonet al., 1994)

V + iΩ ≥ 0, (17)

directly coming from the commutation relations of Eq. (7),
and implying the positive definitenessV > 0. From the diag-
onal terms in Eq. (17), one can easily derive the usual Heisen-
berg relation for position and momentum

V (q̂k)V (p̂k) ≥ 1. (18)

For a particular class of states the first two moments are
sufficient for a complete characterization, i.e., we can write
ρ̂ = ρ̂(x̄,V). This is the case of theGaussian states (Holevo,
1975, 2011). By definition, these are bosonic states whose
Wigner representation (χ orW ) is Gaussian, i.e.,

χ(ξ) = exp

[

−1

2
ξT
(

ΩVΩ
T
)

ξ − i (Ωx̄)
T
ξ

]

, (19)

W (x) =
exp

[
− 1

2 (x− x̄)TV−1(x− x̄)
]

(2π)N
√
detV

. (20)

It is interesting to note that a pure state is Gaussian, if and
only if, its Wigner function is non-negative (Hudson, 1974;
Mandilaraet al., 2009; Sotoet al., 1983).

2. Gaussian unitaries

Since Gaussian states are easy to characterize, it turns
out that a large class of transformations acting on these
states are easy to describe too. In general, a quantum
state undergoes a transformation called a quantum opera-
tion (Nielsen and Chuang, 2000). This is a linear mapE :
ρ̂ → E(ρ̂) which is completely positive and trace-decreasing,
i.e., 0 ≤ Tr [E(ρ̂)] ≤ 1. A quantum operation is then
called a quantum channel when it is trace-preserving, i.e.,
Tr [E(ρ̂)] = 1. The simplest quantum channels are the ones
which are reversible. These are represented by unitary trans-
formationsU−1 = U †, which transform a state according to
the ruleρ̂ → Uρ̂U † or, simply, |ϕ〉 → U |ϕ〉, if the state is
pure.

Now we say that a quantum operation is Gaussian when
it transforms Gaussian states into Gaussian states. Clearly,
this definition applies to the specific cases of quantum chan-
nels and unitary transformations. Thus, Gaussian channels
(unitaries) are those channels which preserve the Gaussian

character of a quantum state. Gaussian unitaries are gener-
ated viaU = exp(−iĤ/2) from HamiltoniansĤ which are
second-order polynomials in the field operators. In terms of
the annihilation and creation operatorsâ := (â1, · · · , âN )T

andâ† := (â†1, · · · , â†N ) this means that

Ĥ = i(â†α+ â
†
Fâ+ â

†
Gâ

†T ) + h.c. , (21)

whereα ∈ CN andF,G areN × N complex matrices and
h.c. stands for ‘Hermitian conjugate’. In the Heisenberg pic-
ture, this kind of unitary corresponds to a linear unitary Bo-
goliubov transformation

â → U †
âU = Aâ+Bâ

† +α , (22)

where theN ×N complex matricesA andB satisfyAB
T =

BA
T andAA

† = BB
† + I with I being the identity matrix.

In terms of the quadrature operators, a Gaussian unitary is
more simply described by an affine map

(S,d) : x̂ → Sx̂+ d, (23)

whered ∈ R2N andS is a2N × 2N real matrix. This trans-
formation must preserve the commutation relations of Eq. (7),
which happens when the matrixS is symplectic, i.e.,

SΩS
T = Ω . (24)

Clearly the eigenvaluesx of the quadrature operatorŝx must
follow the same rule, i.e.,(S,d) : x → Sx+ d. Thus, an
arbitrary Gaussian unitary is equivalent to an affine symplec-
tic map(S,d) acting on the phase space, and can be denoted
byUS,d. In particular, we can always writeUS,d = D(d)US,
where the canonical unitaryUS corresponds to a linear sym-
plectic mapx → Sx, and the Weyl operatorD(d) to a phase-
space translationx → x+ d. Finally, in terms of the statisti-
cal moments,̄x andV, the action of a Gaussian unitaryUS,d

is characterized by the following transformations

x̄ → Sx̄+ d , V −→ SVS
T . (25)

Thus the action of a Gaussian unitaryUS,d over a Gaussian
stateρ̂(x̄,V) is completely characterized by Eq. (25).

B. Examples of Gaussian states and Gaussian unitaries

Here we introduce some elementary Gaussian states that
play a major role in continuous-variable quantum informa-
tion. We also introduce the simplest and most common Gaus-
sian unitaries and discuss their connection with basic Gaus-
sian states. In these examples we first consider one and then
two bosonic modes with the general case (arbitraryN ) dis-
cussed in Sec. II.C.

1. Vacuum states and thermal states

The most important Gaussian state is the one with zero pho-
tons (̄n = 0), i.e., thevacuum state |0〉. This is also the
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eigenstate with zero eigenvalue of the annihilation operator
(â |0〉 = 0). The covariance matrix of the vacuum is just the
identity, which means that position and momentum operators
have noise-variances equal to one, i.e.,V (q̂) = V (p̂) = 1.
According to Eq. (18), this is the minimum variance which
is reachable symmetrically by position and momentum. It is
also known asvacuum noise or quantum shot-noise.

As we will soon see, every Gaussian state can be decom-
posed intothermal states. From this point of view, a ther-
mal state can be thought of as the most fundamental Gaussian
state. By definition, we call thermal a bosonic state which
maximizes the von Neumann entropy

S := −Tr(ρ̂ ln ρ̂) , (26)

for fixed energyTr(ρ̂â†â) = n̄, wheren̄ ≥ 0 is the mean
number of photons in the bosonic mode. Explicitly, its
number-state representation is given by

ρ̂th(n̄) =
+∞∑

n=0

n̄n

(n̄+ 1)n+1
|n〉 〈n| . (27)

One can easily check that its Wigner function is Gaussian,
with zero mean and covariance matrixV = (2n̄+ 1)I where
I is the2× 2 identity matrix.

2. Displacement and coherent states

The first Gaussian unitary we introduce is thedisplacement

operator, which is just the complex version of the Weyl opera-
tor. The displacement operator is generated by a linear Hamil-
tonian and is defined by

D(α) := exp(αâ† − α∗â) , (28)

whereα = (q + ip)/2 is the complex amplitude. In the
Heisenberg picture, the annihilation operator is transformed
by the linear unitary Bogoliubov transformationâ → â + α,
and the quadrature operatorsx̂ = (q̂, p̂)T by the translation
x̂ → x̂+dα, wheredα = (q, p)T . By displacing the vacuum
state, we generate coherent states|α〉 = D(α) |0〉. They have
the same covariance matrix of the vacuum (V = I) but dif-
ferent mean values (x̄ = dα). Coherent states are the eigen-
states of the annihilation operatorâ |α〉 = α |α〉 and can be
expanded in number states as

|α〉 = exp
(
− 1

2 |α|2
)

∞∑

n=0

αn

√
n!

|n〉 . (29)

Furthermore, they form an overcomplete basis, since they are
non-orthogonal. In fact, given two coherent states|α〉 and|β〉,
the modulus squared of their overlap is given by

|〈β |α〉 |2 = exp(−|β − α|2) . (30)

3. One-mode squeezing and squeezed states

When we pump a nonlinear crystal with a bright laser, some
of the pump photons with frequency2ω are split into pairs

of photons with frequencyω. Whenever the matching condi-
tions for a degenerate optical parametric amplifier (OPA) are
satisfied (Walls and Milburn, 2008), the outgoing mode is ide-
ally composed of a superposition of even number states (|2n〉).
The interaction Hamiltonian must then contain aâ†2 term to
generate pairs of photons and a termâ2 to ensure hermiticity.
The corresponding Gaussian unitary is the one-mode squeez-
ing operator, which is defined as

S(r) := exp[r(â2 − â†2)/2] , (31)

wherer ∈ R is called the squeezing parameter. In the Heisen-
berg picture, the annihilation operator is transformed by the
linear unitary Bogoliubov transformation̂a → (cosh r)â −
(sinh r)â† and the quadrature operatorsx̂ = (q̂, p̂)T by the
symplectic map̂x → S(r)x̂, where

S(r) :=

(
e−r 0
0 er

)

. (32)

Applying the squeezing operator to the vacuum we generate a
squeezed vacuum state (Yuen, 1976),

|0, r〉 = 1√
cosh r

∞∑

n=0

√

(2n)!

2nn!
tanh rn |2n〉 . (33)

Its covariance matrix is given byV = S(r)S(r)T = S(2r)
which has different quadrature noise-variances, i.e., onevari-
ance is squeezed below the quantum shot-noise, whilst the
other is anti-squeezed above it.

4. Phase rotation

The phase is a crucial element of the wave behavior of the
electromagnetic field with no physical meaning for a single
mode on its own. In continuous-variable systems the phase is
usually defined with respect to a local oscillator, i.e., a mode-
matched classical beam. Applying a phase shift on a given
mode is done by increasing the optical path length of the beam
compared to the local oscillator. For instance, this can be
done by adding a transparent material of a tailored depth and
with a higher refractive index than vacuum. The phase rota-
tion operator is generated by the free propagation Hamiltonian
Ĥ = 2θâ†â, so that it is defined byR(θ) = exp(−iθâ†â). In
the Heisenberg picture, it corresponds to the simple linearuni-
tary Bogoliubov transformation̂a→ eiθâ for the annihilation
operator. Correspondingly, the quadratures are transformed
via the symplectic map̂x → R(θ)x̂, where

R(θ) :=

(
cos θ sin θ
− sin θ cos θ

)

, (34)

is a proper rotation with angleθ.

5. General one-mode Gaussian states

Using the singular value decomposition, one can show
that any2 × 2 symplectic matrix can be decomposed as
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S = R(θ)S(r)R(φ). This means that any one-mode Gaus-
sian unitary can be expressed asD(d)US where US =
R(θ)S(r)R(φ). By applying this unitary to a thermal state
ρ̂th(n̄), the result is a Gaussian state with meand and covari-
ance matrix

V = (2n̄+ 1)R(θ)S(2r)R(θ)T . (35)

This is the most general one-mode Gaussian state. This re-
sult can be generalized to arbitraryN bosonic modes as we
will see in Sec. II.C. Now, by settinḡn = 0 in Eq. (35), we
achieve the covariance matrix of the most general one-mode
pure Gaussian state. This corresponds to a rotated and dis-
placed squeezed state|α, θ, r〉 = D(α)R(θ)S(r) |0〉.

6. Beam splitter

In the case of two bosonic modes one of the most important
Gaussian unitaries is thebeam splitter transformation, which
is the simplest example of an interferometer. This transforma-
tion is defined by

B(θ) = exp[θ(â†b̂− âb̂†)] , (36)

whereâ andb̂ are the annihilation operators of the two modes,
andθ which determines the transmissivity of the beam splitter
τ = cos2θ ∈ [0, 1]. The beam splitter is called balanced
whenτ = 1/2. In the Heisenberg picture, the annihilation
operators are transformed via the linear unitary Bogoliubov
transformation

(
â

b̂

)

→
( √

1− τ
√
τ

−√
τ

√
1− τ

)(
â

b̂

)

, (37)

and the quadrature operatorsx̂ := (q̂a, p̂a, q̂b, p̂b)
T are trans-

formed via the symplectic map

x̂ → B(τ)x̂ , B(τ) :=

( √
1− τI

√
τI

−√
τI

√
1− τI

)

. (38)

7. Two-mode squeezing and EPR states

Pumping a nonlinear crystal in the non-degenerate OPA
regime, we generate pairs of photons in two different modes,
known as the signal and the idler. This process is described by
an interaction Hamiltonian which contains the bilinear term
â†b̂†. The corresponding Gaussian unitary is known as the
two-mode squeezing operator and is defined as

S2(r) = exp
[

r(âb̂− â†b̂†)/2
]

, (39)

where r quantifies the two-mode squeezing
(Braunstein and van Loock, 2005). In the Heisenberg
picture, the quadratureŝx := (q̂a, p̂a, q̂b, p̂b)

T undergo the
symplectic map

x̂ → S2(r)x̂ , S2(r) =

(
coshr I sinhr Z
sinhr Z coshr I

)

, (40)

whereI is the identity matrix andZ : = diag(1,−1). By
applyingS2(r) to a couple of vacua, we obtain thetwo-mode

squeezed vacuum state, also known as anEinstein-Podolski-

Rosen (EPR) state ρ̂epr(r) = |r〉 〈r|epr, where

|r〉epr =
√

1− λ2
∞∑

n=0

(−λ)n |n〉a |n〉b , (41)

whereλ = tanhr ∈ [0, 1]. This is a Gaussian state with zero
mean and covariance matrix

Vepr =

(
νI

√
ν2 − 1Z√

ν2 − 1Z νI

)

:= Vepr(ν) , (42)

whereν = cosh2r quantifies the noise-variance in the quan-
dratures (afterwards, we also use the notation|ν〉epr). Using
Eq. (42) one can easily check that

V (q̂−) = V (p̂+) = e−2r , (43)

whereq̂− := (q̂a − q̂b)/
√
2 andp̂+ := (p̂a + p̂b)/

√
2. Note

that for r = 0, the EPR state corresponds to two vacua and
the previous variances are equal to 1, corresponding to the
quantum shot-noise. For every two-mode squeezingr > 0,
we haveV (q̂−) = V (p̂+) < 1, meaning that the correlations
between the quadratures of the two systems beat the quantum
shot-noise. These correlations are known asEPR correlations

and they imply the presence of bipartite entanglement. In the
limit of r → ∞ we have an ideal EPR state with perfect cor-
relations:q̂a = q̂b andp̂a = −p̂b. Clearly, EPR correlations
can also exist in the symmetric case forq̂+ andp̂− using the
replacementZ → −Z in Eq. (42).

The EPR state is the most commonly used Gaussian en-
tangled state and has maximally-entangled quadratures, given
its average photon number. Besides the use of a non-
degenerate parametric amplifier, an alternative way to gener-
ate the EPR state is by combining two appropriately rotated
squeezed vacuum states (outputs of two degenerate OPAs)
on a balanced beam splitter (Braunstein and van Loock, 2005;
Furusawaet al., 1998). This passive generation of entan-
glement from squeezing has been generalized by Wolfet al.

(2003). When one considers Gaussian atomic processing, the
same state can also be created using two atomic (macroscopic)
objects as shown by Julsgaardet al. (2001). Finally, let us
note the important relation between the EPR state and the
thermal state. By tracing out one of the two modes of the
EPR state, e.g., modeb, we getTrb[ρ̂epr(r)] = ρ̂tha (n̄), where
n̄ = sinh2r. Thus, the surviving mode is described by a ther-
mal state, whose mean photon number is related to the two-
mode squeezing. Because of this, we also say that the EPR
state is the purification of the thermal state.

C. Symplectic analysis for multimode Gaussian States

In this section we discuss the most powerful approach to
studying Gaussian states of multimode bosonic systems. This
is based on the analysis and manipulation of the second-order
statistical moments, and its central tools are Williamson’s the-
orem and the Euler decomposition.
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1. Thermal decomposition of Gaussian states

According to Williamson’s theorem, every positive-definite
real matrix of even dimension can be put in diagonal form by
a symplectic transformation (Williamson, 1936). In particu-
lar, this theorem can be applied to covariance matrices. Given
an arbitraryN -mode covariance matrixV, there exists a sym-
plectic matrixS such that

V = SV
⊕
S
T
, V⊕ : =

N⊕

k=1

νkI , (44)

where the diagonal matrixV⊕ is called the Williamson form
of V, and theN positive quantitiesνk are called the symplec-
tic eigenvalues ofV. Here the symplectic spectrum{νk}Nk=1
can be easily computed as the standard eigenspectrum of the
matrix |iΩV|, where the modulus must be understood in the
operatorial sense. In fact, the matrixiΩV is Hermitian and
is therefore diagonalizable by a unitary transformation. Then,
by taking the modulus of its2N real eigenvalues, one gets the
N symplectic eigenvalues ofV. The symplectic spectrum is
very important since it provides powerful ways to express the
fundamental properties of the corresponding quantum state.
For example, the uncertainty principle of Eq. (17) is equiva-
lent to

V > 0, V⊕ ≥ I . (45)

In other words, a quantum covariance matrix must be positive
definite and its symplectic eignevalues must satisfyνk ≥ 1.
Then, the von Neumann entropyS(ρ̂) of a Gaussian statêρ
can be written as (Holevoet al., 1999)

S(ρ̂) =

N∑

k=1

g(νk), (46)

where

g(x) :=
(x+ 1

2

)

log
(x+ 1

2

)

−
(x− 1

2

)

log
(x− 1

2

)

.

(47)
In the space of density operators, the symplectic decomposi-
tion of Eq. (44) corresponds to a thermal decomposition for
Gaussian states. In fact, let us consider a zero-mean Gaussian
stateρ̂(0,V). Because of Eq. (44), there exists a canonical
unitaryUS such that̂ρ(0,V) = USρ̂(0,V

⊕)U †
S
, where

ρ̂(0,V⊕) =

N⊗

k=1

ρ̂th
(
νk−1

2

)
(48)

is a tensor-product of one-mode thermal states whose pho-
ton numbers are provided by the symplectic spectrum{νk} of
the original state. In general, for an arbitrary Gaussian state
ρ̂(x̄,V) we can write the thermal decomposition

ρ̂(x̄,V) = D(x̄)US

[
ρ̂(0,V⊕)

]
U †
S
D(x̄)† . (49)

Using the thermal decomposition of Eq. (49) and the fact
that thermal states are purified by EPR states, we can derive a

very simple formula for the purification of an arbitrary Gaus-
sian state (Holevo and Werner, 2001). In fact, let us denote
by A a system ofN modes described by a Gaussian state
ρ̂A(x̄,V), and introduce an additional reference systemR of
N modes. Then, we havêρA(x̄,V) = TrR[ρ̂AR(x̄

′,V′)],
whereρ̂AR is a pure Gaussian state for the composite system
AR, having mean̄x′ = (x̄,0)

T and covariance matrix

V
′ =

[
V SC

C
T
S
T

V
⊕

]

, C :=

N⊕

k=1

√

ν2k − 1Z . (50)

2. Euler decomposition of canonical unitaries

The canonical unitaryUS in Eq. (49) can be suitably
decomposed using the Euler decomposition (Arvindet al.,
1995), alternatively known as the Bloch-Messiah reduc-
tion (Braunstein, 2005). First of all, let us distinguish be-
tween active and passive canonical unitaries. By definition,
a canonical unitaryUS is called passive (active) if it is pho-
ton number preserving (non-preserving). A passiveUS cor-
responds to a symplectic matrixS which preserves the trace
of the covariance matrix, i.e.,Tr(SVS

T ) = Tr(V) for any
V. This happens when the symplectic matrixS is orthogo-
nal, i.e.,ST= S

−1. Passive canonical unitaries describe mul-
tiport interferometers, e.g., the beam splitter in the caseof two
modes. By contrast, active canonical unitaries correspondto
symplectic matrices which are not trace-preserving and, there-
fore, cannot be orthogonal. This is the case of the one-mode
squeezing matrix of Eq. (32). Arbitrary symplectic matrices
contain both the previous elements. In fact, every symplectic
matrixS can be written as

S = K

[
N⊕

k=1

S(rk)

]

L, (51)

whereK,L are symplectic and orthogonal, whileS(r1), · · · ,
S(rN ) is a set of one-mode squeezing matrices. Direct sums
in phase space correspond to tensor products in the state space.
As a result, every canonical unitaryUS can be decomposed as

US = UK

[
N⊗

k=1

S(rk)

]

UL , (52)

i.e., a multiport interferometer (UL), followed by a parallel
set ofN one-mode squeezers (⊗kS(rk)), followed by another
passive transformation (UK). Combining the thermal decom-
position of Eq. (49) with the Euler decomposition of Eq. (52),
we see that an arbitrary multimode Gaussian stateρ̂(x̄,V) can
be realized by preparingN thermal stateŝρ(0,V⊕), applying
multimode interferometers and one-mode squeezers accord-
ing to Eq. (52), and finally displacing them bȳx.

3. Two-mode Gaussian states

Gaussian states of two bosonic modes (N = 2) represent a
remarkable case. They are characterized by simple analytical
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formulas and represent the simplest states for studying proper-
ties like quantum entanglement. Given a two-mode Gaussian
stateρ̂(x̄,V), let us write its covariance matrix in the block
form

V =

(
A C

C
T

B

)

, (53)

whereA = A
T , B = B

T andC are2 × 2 real matrices.
Then, the Williamson form is simplyV⊕ = (ν−I) ⊕ (ν+I),
where symplectic spectrum{ν−, ν+} is provided by

ν± =

√

∆±
√
∆2 − 4 detV

2
, (54)

with ∆ := detA + detB + 2detC and det is the
determinant (Serafiniet al., 2004). In this case the un-
certainty principle is equivalent to the bona-fide condi-
tions (Pirandola, Serafini, and Lloyd, 2009; Serafini, 2006)

V > 0, detV ≥ 1 and ∆ ≤ 1 + detV. (55)

An important class of two-mode Gaussian states has covari-
ance matrix in the standard form (Duanet al., 2000; Simon,
2000)

V =

(
aI C

C bI

)

, C =

(
c1 0
0 c2

)

, (56)

wherea, b, c1, c2 ∈ Rmust satisfy the previous bona-fide con-
ditions. In particular, forc1 = −c2 := c ≥ 0, the symplec-
tic eigenvalues are simplyν± = [

√
y ± (b− a)]/2, where

y := (a+ b)2 − 4c2. In this case, we can also derive the ma-
trix S realizing the symplectic decompositionV = SV

⊕
S
T .

This is given by the formula

S =

(
ω+I ω−Z

ω−Z ω+I

)

, ω± :=

√

a+ b±√
y

2
√
y

. (57)

D. Entanglement in bipartite Gaussian states

Entanglement is one of the most important properties of
quantum mechanics, being central in most quantum informa-
tion protocols. To begin with let us consider two bosonic sys-
tems,A with N modes andB with M modes, having Hilbert
spacesHA andHB, respectively. The global bipartite system
A + B has a Hilbert spaceH = HA ⊗ HB. By definition, a
quantum statêρ ∈ D(H) is said to be separable if it can be
written as convex combination of product states, i.e.,

ρ̂ =
∑

i

pi ρ̂
A
i ⊗ ρ̂Bi , ρ̂

A(B)
i ∈ D(HA(B)), (58)

wherepi ≥ 0 and
∑

i pi = 1. Note that the index can also
be continuous. In such a case, the previous sum becomes
an integral and the probabilities are replaced by a probabil-
ity density function. Physically, Eq. (58) means that a separa-
ble state can be prepared via local (quantum) operations and

classical communications (LOCCs). By definition, a state is
called entangled when it is not separable, i.e., the correlations
betweenA andB are so strong that they cannot be created by
any strategy based on LOCCs. In entanglement theory there
are two central questions to answer: “Is the state entangled?”,
and if the answer is yes, then “how much entanglement does it
have?”. In what follows we review how we can answer those
two questions for Gaussian states.

1. Separability

As first shown by Horodeckiet al. (1996) and Peres (1996),
a key-tool for studying separability is the partial transposition,
i.e., the transposition with respect to one of the two subsys-
tems, e.g., systemB. In fact, if a quantum statêρ is separable,
then its partial transposêρTB is a valid density operator and
in particular positive, i.e.,̂ρTB ≥ 0. Thus, the positivity of
the partial transpose represents a necessary condition forsep-
arability. On the other hand, the non-positivity of the partial
transpose represents a sufficient condition for entanglement.
Note that, in general, the positivity of the partial transpose
is not a sufficient condition for separability, since there exist
entangled states with positive partial transpose. These states
are bound entangled meaning that their entanglement cannot
be distilled into maximally entangled states (Horodeckiet al.,
1998, 2009).

The partial transposition operation corresponds to a local
time reversal (Horodeckiet al., 1998). For bosonic systems
the quadratureŝx of the bipartite systemA + B undergo the
transformation̂x → (IA ⊕ TB)x̂, whereIA is theN -mode
identity matrix whileTB := ⊕M

k=1Z (Simon, 2000). Let us
consider an arbitrary Gaussian stateρ̂(x̄,V) of the bipartite
systemA + B, also known as anN ×M bipartite Gaussian
state. Under the partial transposition operation, its covariance
matrix is transformed via the congruence

V → (IA ⊕TB)V(IA ⊕TB) := Ṽ . (59)

where the partially-transposed matrix̃V is positive definite. If
the state is separable, theñV satisfies the uncertainty princi-
ple, i.e.,Ṽ+iΩ ≥ 0. SinceṼ > 0, this is equivalent to check
the conditionṼ⊕ ≥ I, whereṼ⊕ is the Williamson form of
Ṽ. This is also equivalent to check̃ν− ≥ 1, whereν̃− is the
minimum eigenvalue in the symplectic spectrum{ν̃k} of Ṽ.

The satisfaction (violation) of the conditioñν− ≥ 1 cor-
responds to having the positivity (non-positivity) of the par-
tially transposed Gaussian state. In some restricted situations,
this positivity is equivalent to separability. This happens for
1 × M Gaussian states (Werner and Wolf, 2001), and for a
particular class ofN × M Gaussian states which are called
bisymmetric (Serafini, Adesso, and Illuminati, 2005). In gen-
eral, the equivalence is not true, as shown already for2 × 2
Gaussian states by Werner and Wolf (2001). Finally, note that
the partial transposition is not the only way to study separabil-
ity. In (Duanet al., 2000) the authors constructed an insepara-
bility criterion, generalizing the EPR correlations, which gives
a sufficient condition for entanglement (also necessary for1x1
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Gaussian states). Two other useful techniques exist to fully
characterize the separability of bipartite Gaussian states. The
first uses nonlinear maps as shown by Giedke, Kraus,et al.

(2001), where the second reduces the separability problem to
a semi-definite program (Hyllus and Eisert, 2006).

2. Entanglement measures

In the case of pureN ×M Gaussian states|ϕ〉, the entan-
glement is provided by theentropy of entanglement EV (|ϕ〉).
This is defined as the von Neumann entropy of the reduced
statesρ̂A,B = TrB,A(|ϕ〉 〈ϕ|), i.e., EV (|ϕ〉) = S(ρ̂A) =
S(ρ̂B) (Bennett, Bernstein,et al., 1996), which can be eas-
ily calcuated using Eq. (46). The entropy of entanglement
gives the amount of entangled qubits (measured in e-bits)
that can be extracted from the state together with the amount
of entanglement needed to generate the state, i.e., distilla-
tion and generation being reversible for pure states (in the
asymptotic limit) (Nielsen and Chuang, 2000). Any bipartite
pure Gaussian state can be mapped, using local Gaussian uni-
taries, into a tensor product of EPR states of covariance matrix
⊕

k Vepr(νk) (Botero and Reznik, 2003; Holevo and Werner,
2001). A LOCC mapping a Gaussian pure state to another one
exists if and only ifνk ≥ ν′k for all k, where their respective
νk andν′k are in descending order (Giedkeet al., 2003).

Unfortunately, for mixed states we do not have a single def-
inition of measure of entanglement (Horodeckiet al., 2009).
Different candidates exist, each one with its own operational
interpretation. Among the most well known is theentangle-

ment of formation (Bennett, DiVincenzo,et al., 1996),

EF (ρ̂) = min
{pk,|ϕk〉}

∑

k

pkEV (|ϕk〉) , (60)

where the minimization is taken over all the possible decom-
positionsρ̂ =

∑

k pk |ϕk〉 〈ϕk| (the sum becomes an integral
for continuous decompositions). In general, this optimiza-
tion is very difficult to carry out. In continuous variables,
we only know the solution for two-mode symmetric Gaus-
sian states (Giedkeet al., 2003). These are two-mode Gaus-
sian states whose covariance matrix is symmetric under the
permutation of the two modes, i.e.,A = B in Eq. (53), where
EF (ρ̂) is then a function of̃ν−. Interestingly the optimal de-
composition{pk, |ϕk〉} leading to this result is obtained from
Gaussian states|ϕk〉. This is conjectured to be true for any the
Gaussian state, i.e., the Gaussian entanglement of formation
GEF (ρ̂), defined by the minimization over Gaussian decom-
positions satisfiesGEF (ρ̂) = EF (ρ̂) (Wolf et al., 2004).

The distillable entanglementD(ρ̂) quantifies the amount of
entanglement that can be distilled from a given mixed stateρ̂
(Horodeckiet al., 2009). It is easy to see thatD(ρ̂) ≤ EF (ρ̂),
otherwise we could generate an infinite amount of entangle-
ment from finite resources, where for pure states we have
D(|ψ〉) = EF (|ψ〉) = EV (|ψ〉). The entanglement dis-
tillation is also hard to calculate, as it needs an optimiza-
tion over all possible distillation protocols. Little is known
aboutD(ρ̂) for Gaussian states, except trivial lower-bounds
given by the coherent information (Devetak and Winter, 2004)

and its reverse counterpart (Garcı́a-Patrónet al., 2009). In
Giedke, Duan,et al. (2001) it was shown that bipartite Gaus-
sian states are distillable if and only if they have a non-positive
partial transpose. However, the distillation of mixed Gaus-
sian states into pure Gaussian states is not possible using
only Gaussian LOCC operations (Eisertet al., 2002; Fiuràšek,
2002a; Giedke and Cirac, 2002), but can be achieved using
non-Gaussian operations that map Gaussian states into Gaus-
sian states (Browneet al., 2003), as recently demonstrated by
Takahashiet al. (2010).

The two previous entanglement measures, i.e.,EF (ρ̂) and
D(ρ̂), are unfortunately very difficult to calculate in full gen-
erality. However, a measure easy to compute is the logarith-
mic negativity (Vidal and Werner, 2002)

EN (ρ̂) = log ||ρ̂TB ||1 (61)

which quantifies how much the state fails to satisfy the posi-
tivity of the partial transpose condition. For Gaussian states it
reads

EN (ρ̂) =
∑

k

F (ν̃k) (62)

whereF (x) = − log(x) for x < 1 and F (x) = 0 for
x ≥ 1 (Vidal and Werner, 2002). It was shown to be an
entanglement monotone (Eisert, 2001; Plenio, 2005) and an
upperbound ofD(ρ̂) (Vidal and Werner, 2002). The logarith-
mic negativity of1 ×M andN ×M bisymmetric Gaussian
states was characterized by Adesso and Illuminati (2007) and
Adessoet al. (2004), respectively. Finally, we briefly men-
tion that although the separability of a quantum state implies
zero entanglement, other types of quantum correlations can
exist for separable (non-entangled) mixed states. One mea-
sure of such correlations is the quantum discord and has re-
cently been extended to Gaussian states (Adesso and Datta,
2010; Giorda and Paris, 2010).

E. Measuring Gaussian states

A quantum measurement is described by a set of opera-
tors{Ei} satisfying the completeness relation

∑

i E
†
iEi = I

where I is the identity operator. Given an input stateρ̂,
the outcomei is found with probabilitypi = Tr(ρ̂E†

iEi)

and the state is projected ontôρi = p−1
i Eiρ̂E

†
i . If we are

only interested in the outcome of the measurement we can
setΠi := E†

iEi and describe the measurement as a positive
operator-valued measure (POVM). In the case of continuous-
variable systems, quantum measurements are often described
by continuous outcomesi ∈ R, so thatpi becomes a probabil-
ity density. Here we define a measurement as being Gaus-
sian when its application to Gaussian states provides out-
comes which are Gaussian-distributed. From a practical point
of view, any Gaussian measurement can be accomplished us-
ing homodyne detection, linear optics (i.e., active and passive
Gaussian unitaries), and Gaussian ancilla modes. A general
property of a Gaussian measurement is the following: suppose
a Gaussian measurement is made onN modes of anN +M
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Gaussian state whereN,M ≥ 1; then the classical outcome
from the measurement is a Gaussian distribution and the un-
measuredM modes are left in a Gaussian state.

1. Homodyne detection

The most common Gaussian measurement in continuous-
variable quantum information is homodyne detection, con-
sisting of the measurement of the quadratureq̂ (or p̂) of a
bosonic mode. Its measurement operators are projectors over
the quadrature basis|q〉 〈q| (or |p〉 〈p|), i.e., infinitely squeezed
states. The corresponding outcomeq (or p) has a probability
distributionP (q) (orP (p)) which is given by the marginal in-
tegral of the Wigner function over the conjugate quadrature,
i.e.,

P (q) =

∫

W (q, p)dp, P (p) =

∫

W (q, p)dq. (63)

This can be generalized to the situation of partially homodyn-
ing a multimode bosonic system by including the integration
over both quadratures of the non-measured modes. Experi-
mentally a homodyne measurement is implemented by com-
bining the target quantum mode with a local oscillator into a
balanced beam splitter and measuring the intensity of the out-
going modes using two photo-detectors. The subtraction of
the signal of both photo-detectors gives a signal proportional
to q̂ (Braunstein and van Loock, 2005). Thep̂ quadrature is
measured by applying aπ/2 phase shift to the local oscil-
lator. Corrections due to bandwidth effects or limited local
oscillator power have also been addressed (Braunstein, 1990;
Braunstein and Crouch, 1991). Homodyne detection is also a
powerful tool in quantum tomography (Lvovsky and Raymer,
2009). For instance, by using a single homodyne detector,
one can experimentally reconstruct the covariance matrix of
two-mode Gaussian states (Buonoet al., 2010; D’Auriaet al.,
2009). In tandem to well known homodyne measurements
on light, homodyne measurements of the atomic Gaussian
spin states via a quantum non-demolition measurement by
light have also been developed. For example, the work of
Fernholzet al. (2008) demonstrated the quantum tomographic
reconstruction of a spin squeezed state of the atomic ensem-
ble.

2. Heterodyne detection and Gaussian POVMs

The quantum theory of heterodyne detection was estab-
lished by Yuen and Shapiro (1980) and is an important ex-
ample of a Gaussian POVM. Theoretically, heterodyne de-
tection corresponds to a projection onto coherent states, i.e.,
E(α) := π−1/2 |α〉 〈α|. A heterodyne detector combines the
measured bosonic mode with a vacuum ancillary mode into a
balanced beam splitter and homodynes the quadraturesq̂ and
p̂ of the outcome modes. This approach can be generalized to
any POVM composed of projectors over pure Gaussian states.
As shown by Giedke and Cirac (2002) and Eisert and Plenio
(2003), such measurements can be decomposed into a Gaus-
sian unitary applied to the input system and extra ancillary

(vacuum) modes followed by homodyne measurements on all
the output modes. Finally, a general noisy Gaussian POVM
is modeled as before but with part of the output modes traced
out.

3. Partial Gaussian measurement

When processing a quantum system we are usually inter-
ested in measuring only part of it (for example, subsystem
B which contains1 mode) in order to extract information
and continue processing the remaining part (say, subsystemA
withN modes). Let us consider a Gaussian state for the global
systemA + B where the covariance matrix is in block form
similar to Eq. (53) (but withN + 1 modes). Measuring the
q̂ quadrature of subsystemB transforms the covariance ma-
trix of subsystemA as follows (Eisertet al., 2002; Fiuràšek,
2002a)

V = A−C(ΠBΠ)−1
C

T , (64)

whereΠ := diag(1, 0) and (ΠBΠ)−1 is a pseudoinverse
sinceΠBΠ is singular. In particular, we have(ΠBΠ)−1 =
B−1

11 Π, whereB11 is the top-left element ofB. Note that
the output covariance matrix does not depend on the specific
result of the measurement. This technique can be generalized
to model any partial Gaussian measurement, which consists of
appending ancillary modes to a system, applying a Gaussian
unitary, and processing the output modes as follows: part is
homodyned, another part is discarded and the remaining part
is the output system. As an example, we can easily derive
the effect on a multi-mode subsystemA after we heterodyne
a single-mode subsystemB. By heterodyning the last mode,
the firstN modes are still in a Gaussian state, and the output
covariance matrix is given by

V = A−C(B+ I)−1
C

T , (65)

or, equivalently,V = A − Θ−1
C(ωBωT+I)C

T , where
Θ := detB+TrB+ 1, andω is defined in Eq. (2).

4. Counting and detecting photons

Finally, there are two measurements, that despite being
non-Gaussian, play an important role in certain Gaussian
quantum information protocols, e.g., distinguishabilityof
Gaussian states, entanglement distillation and universalquan-
tum computation. The first one is the von Neumann measure-
ment in the number state basis, i.e.,En := |n〉 〈n|. The
second one is the avalanche photo-diode that discriminates
between vacuumE0 = |0〉 〈0| and one or more photons
E1 = I − |0〉 〈0|. Realistic avalanche photo-diode detectors
usually have small efficiency, i.e., they detect only a small
fraction of the impinging photons. This is modeled theoret-
ically by adding a beam splitter before an ideal avalanche
photo-diode detector, with transmissivity given by the effi-
ciency of the detector. Recent technological developments
allow experimentalists to approach ideal photon-countingca-
pability for photon numbers of up to five to ten (Litaet al.,
2008).
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III. DISTINGUISHABILITY OF GAUSSIAN STATES

The laws of quantum information tell us that in
general it is impossible to perfectly distinguish be-
tween two non-orthogonal quantum states (Fuchs, 2000;
Nielsen and Chuang, 2000). This limitation of quantum mea-
surement theory (Helstrom, 1976) is inherent in a num-
ber of Gaussian quantum information protocols including
quantum cloning and the security of quantum cryptogra-
phy. Closely related to this isquantum state discrimination

which is concerned with the distinguishability of quantum
states. There are two commonly used distinguishability tech-
niques (Bergouet al., 2004; Chefles, 2000): (1) minimum er-
ror state discrimination, and (2) unambiguous state discrimi-
nation. In minimum error state discrimination, a number of
approaches have been developed which allows one to (imper-
fectly) distinguish between quantum states provided we allow
a certain amount of uncertainty or error in our measurement
results. On the other hand, unambiguous state discrimina-
tion, is an error-free discrimination process but relies onthe
fact that sometimes the observer gets an inconclusive result
(Chefles and Barnett, 1998b; Enk, 2002). There also exists
an intermediate discrimination regime which allows for both
errors and inconclusive results (Chefles and Barnett, 1998a;
Fiuràšek, 2003; Wittmannet al., 2010a). Here we discuss
minimum error state discrimination which is more developed
than unambiguous state discrimination in the continuous-
variable framework particularly in the case of Gaussian states.

This section is structured as follows. In Sec. III.A we begin
by introducing some of the basic measures of distinguishabil-
ity, such as the Helstrom bound, the quantum Chernoff bound
and the quantum fidelity. We give their formulation for arbi-
trary quantum states, providing analytical formulas in thespe-
cific case of Gaussian states. Then, in Sec. III.B, we consider
the most common Gaussian discrimination protocol: distin-
guishing optical coherent states with minimum error.

A. Measures of distinguishability

1. Helstrom bound

Let us suppose that a quantum system is described by an un-
known quantum statêρ which can take two possible forms,ρ̂0
or ρ̂1, with the same probability (more generally, the problem
can be formulated for quantum states which are not equiprob-
able). For discriminating between̂ρ0 and ρ̂1, we can ap-
ply an arbitrary quantum measurement to the system. With-
out loss of generality, we can consider a dichotomic POVM
{Π0,Π1 := I − Π0} whose outcomeu = 0, 1 is a logical
bit solving the discrimination. This happens up to an error
probability

pe =
p(u = 0|ρ̂ = ρ̂1) + p(u = 1|ρ̂ = ρ̂0)

2
, (66)

wherep(u|ρ̂) is the conditional probability of getting the out-
comeu given the statêρ. Then we ask: what is the minimum
error probability we can achieve by optimizing over the (di-
chotomic) POVMs? The answer to this question is provided

by the Helstrom bound (Helstrom, 1976). Helstrom showed
that an optimal POVM is given byΠ1 = P (γ+), which is a
projector onto the positive partγ+ of the non-positive opera-
tor γ := ρ̂0 − ρ̂1, known as theHelstrom matrix. As a result,
the minimum error probability is equal to theHelstrom bound

pe,min =
1

2
[1−D(ρ̂0, ρ̂1)] , (67)

where

D(ρ̂0, ρ̂1) :=
1

2
Tr |ρ̂0 − ρ̂1| =

1

2

∑

|λj |, (68)

is the trace distance between the two quantum states
(Nielsen and Chuang, 2000). Here

∑ |λj | is the summation
of the absolute values of the eigenvalues of the matrixρ̂0− ρ̂1.
In the case of two pure states, i.e.,ρ̂0 = |ψ0〉 〈ψ0| and
ρ̂1 = |ψ1〉 〈ψ1|, the Helstrom bound takes the simple form

pe,min =
1

2

(

1−
√

1− | 〈ψ0|ψ1〉|2
)

. (69)

2. Quantum Chernoff bound

In general, deriving an analytical expression for the trace
distance is not easy and, therefore, the Helstrom bound
is usually approximated by other distinguishability mea-
sures. One of the most recent is thequantum Chernoff

bound (Audenaertet al., 2007, 2008; Calsamigliaet al., 2008;
Nussbaum and Szkola, 2009). This is an upper boundpe,min ≤
pQC , defined by

pQC :=
1

2

(

inf
0≤s≤1

Cs

)

, Cs := Tr
(
ρ̂s0ρ̂

1−s
1

)
. (70)

Note that the quantum Chernoff bound involves a minimiza-
tion in s∈ [0, 1]. In particular, we must use an infimum be-
cause of possible discontinuities ofCs at the borders = 0, 1.
By ignoring the minimization and settings = 1/2, we derive
a weaker but easier-to-compute upper bound. This is known
as thequantum Bhattacharyya bound (Pirandola and Lloyd,
2008)

pB :=
1

2
Tr
(√

ρ̂0
√

ρ̂1

)

. (71)

a. General formula for multimode Gaussian states
In the case of Gaussian states the quantum Chernoff

bound can be computed from the first two statistical mo-
ments. A first formula, valid for single-mode Gaussian
states, was shown by Calsamigliaet al. (2008). Later,
Pirandola and Lloyd (2008) provided a general formula for
multimode Gaussian states, relating the quantum Chernoff
bound to the symplectic spectra (Williamson forms). Here we
review this general formula. Since it concerns the termCs in
Eq. (70), it also applies to the quantum Bhattacharyya bound.

First of all it is useful to introduce the two real functions

Gs(x) := 2s [(x+ 1)
s − (x− 1)

s
]
−1
, (72)
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and

Λs(x) :=
(x+ 1)s + (x− 1)s

(x+ 1)
s − (x− 1)

s , (73)

which are positive forx ≥ 1 ands > 0. These functions can
be computed over a Williamson formV⊕ via the rule

f(V⊕) = f

(
N⊕

k=1

νkI

)

=

N⊕

k=1

f(νk)I . (74)

Using these functions we can state the following re-
sult (Pirandola and Lloyd, 2008). Let us consider twoN -
mode Gaussian states,ρ̂0(x̄0,V0) andρ̂1(x̄1,V1), whose co-
variance matrices have symplectic decompositions

V0 = S0V
⊕
0 S

T
0 , V1 = S1V

⊕
1 S

T
1 . (75)

Then, for everys ∈ (0, 1), we can write the Gaussian formula

Cs = 2N
√

detΠs

detΣs
exp

(

−d
T
Σ

−1
s d

2

)

, (76)

whered := x̄0 − x̄1 and

Πs := Gs(V
⊕
0 )G1−s(V

⊕
1 ) , (77)

Σs := S0

[
Λs(V

⊕
0 )
]
S
T
0 + S1

[
Λ1−s(V

⊕
1 )
]
S
T
1 . (78)

In the previous formula, the matrixΠs is diagonal and very
easy to compute, depending only on the symplectic spectra. In
particular, for pure states (V⊕

0 = V
⊕
1 = I) we haveΠs = I.

By contrast, the computation ofΣs is not straightforward due
to the explicit presence of the two symplectic matricesS0 and
S1, whose derivation may need non-trivial calculations in the
general case (however see II.C.3 for two modes). If the com-
putation ofS0 andS1 is too difficult, one possibility is to use
weaker bounds which depend on the symplectic spectra only,
such as theMinkowski bound (Pirandola and Lloyd, 2008).

3. Quantum fidelity

Further bounds can be constructed using thequantum fi-

delity. In quantum teleportation and quantum cloning, the fi-
delity F is a commonly used measure to compare the input
state to the output state. Given two quantum states,ρ̂0 andρ̂1,
their fidelity is defined by (Jozsa, 1994; Uhlmann, 1976)

F (ρ̂0, ρ̂1) :=

[

Tr

(√
√

ρ̂0ρ̂1
√

ρ̂0

)]2

, (79)

which ranges from zero (for orthogonal states) to one
(for identical states). In the specific case of two single-
mode Gaussian states,ρ̂0(x̄0,V0) and ρ̂1(x̄1,V1), we have
(Holevo, 1975; Nha and Carmichael, 2005; Olivareset al.,
2006; Scutaru, 1998)

F (ρ̂0, ρ̂1) =
2√

∆+ δ −
√
δ
exp

[

−1

2
d
T (V0 +V1)

−1
d

]

,

(80)

where∆ := det(V0 +V1), δ := (detV0 − 1)(detV1 − 1)
andd := x̄1 − x̄0. Using the fidelity, we can define the two
fidelity bounds (Fuchs and de Graaf, 1999)

F− := 1
2

[

1−
√

1− F (ρ̂0, ρ̂1)
]

, F+ := 1
2

√

F (ρ̂0, ρ̂1) ,

(81)
which provide further estimates for the minimum error prob-
ability. In particular, they satisfy the chain of inequalities

F− ≤ pe,min ≤ pQC ≤ pB ≤ F+ . (82)

4. Multicopy discrimination

In general, let us assume that we haveM copies of the un-
known quantum statêρ, which again can take the two possible
forms,ρ̂0 or ρ̂1, with the same probability. In other words, we
have the two equiprobable hypotheses

H0 : ρ̂⊗M = ρ̂⊗M
0 :=

M
︷ ︸︸ ︷

ρ̂0 ⊗ · · · ⊗ ρ̂0 , (83)

H1 : ρ̂⊗M = ρ̂⊗M
1 := ρ̂1 ⊗ · · · ⊗ ρ̂1

︸ ︷︷ ︸

M

. (84)

The optimal quantum measurement for discriminating the two
cases is now a collective measurement involving all theM
copies. This is the same dichotomic POVM as before, now
projecting on the positive part of the Helstrom matrixγ =
ρ̂⊗M
0 − ρ̂⊗M

1 . Correspondingly, the Helstrom bound for the
M -copy state discrimination takes the form

p
(M)
e,min =

1

2

[
1−D

(
ρ̂⊗M
0 , ρ̂⊗M

1

)]
. (85)

This quantity is upper bounded by the generalM -copy ex-
pression of the quantum Chernoff bound, i.e.,

p
(M)
e,min ≤ p

(M)
QC :=

1

2

(

inf
0≤s≤1

Cs

)M

. (86)

Interestingly, in the limit of many copies (M ≫ 1), the quan-
tum Chernoff bound is exponentially tight (Audenaertet al.,
2007). This means that, for largeM , the two quantitiesp(M)

e,min

andp(M)
QC decay exponentially with the same error-rate expo-

nent, i.e.,

p
(M)
e,min → ϑ exp(−Mκ) , p

(M)
QC → υ exp(−Mκ) , (87)

whereϑ ≤ υ andκ is known as the quantum Chernoff in-
formation (Calsamigliaet al., 2008). Note that we can also
consider other measures of distinguishability, like theM -copy
version of the quantum Bhattacharyya bound

p
(M)
QC ≤ p

(M)
B :=

1

2

[

Tr
(√

ρ̂0
√

ρ̂1

)]M

. (88)

However, even though it is easier to compute, it is not expo-
nentially tight in the general case.
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B. Distinguishing optical coherent states

The distinguishing of coherent states with minimum error
is one of the fundamental tasks in optical communication the-
ory. For example, we can consider a simple theoretical way
of modeling current telecommunication systems by consid-
ering weak coherent states to send binary information which
has been encoded via the amplitude or phase modulation of a
laser beam2. Such states have small amplitudes and are largely
overlapping (i.e., nonorthogonal) and hence the ability tosuc-
cessfully decode this classical information is bounded by the
minimum error given the Helstrom bound. Note that starting
off with orthogonal states might make more sense, however, if
orthogonal states were to be used their orthogonality is typi-
cally lost due to real world imperfections such as energy dissi-
pation and excess noise on the optical fibre. By achieving the
lowest error possible, the information transfer rate between
the sender and receiver can be maximized. We will now illus-
trate a typical protocol involving the distinguishing of coher-
ent states.

Suppose we have a sender, Alice, and a receiver, Bob. Al-
ice prepares one of two binary coherent statesρ̂0 andρ̂1 where
one may be encoded as a logical “0” and the other a logical
“1”, respectively. These two states form what is known as
the alphabet of possible states from which Alice can choose
to send and whose contents are also known by Bob. Further-
more, the probabilities of each state being sent,p0 andp1, are
also known by Bob. Alice can decide to use either an am-
plitude modulation keyed encoding, or a binary phase-shift
keyed encoding, given respectively as,

|0〉 and |2α〉 , |α〉 and |−α〉 . (89)

We note that it is possible to transform between the two en-
coding schemes by using a displacement, e.g., by applying the
displacement operatorD(α) to each of the two binary phase-
shift keyed coherent states we retrieve the amplitude modu-
lation keyed encodings:D(α) |−α〉 = |0〉 andD(α) |α〉 =
|2α〉. Bob’s goal is to decide with minimum error, which of
the two coherent states he received from Alice (over, for ex-
ample, a quantum channel with no loss and no noise). Bob’s
strategy is based onquantum hypothesis testing in which he
devises two hypotheses:H0 andH1. HereH0 corresponds to
the situation wherêρ0 was sent whilstH1 corresponds tôρ1
being sent. As mentioned earlier, the POVM that optimizes
this decision problem is actually a projective or von Neumann
measurement, i.e., described by the two operatorsΠ0 andΠ1,
such thatΠi ≥ 0 for i = 0, 1 andΠ0 + Π1 = I. Here the
measurement described by the operatorΠ0 selects the statêρ0

2 More specifically, fiber communications currently employ in-line optical
amplifiers, so the states that are received are bathed in amplified sponta-
neous emission noise and, moreover, received by direct detection. Future
fiber systems – in which bandwidth efficiency is being sought –will go to
coherent detection, but they will use much larger than binary signal con-
stellations, i.e., quadrature amplitude modulation. Laser communication
from space will use direct detection andM -ary pulse-position modulation
rather than binary modulation.

whileΠ1 = I−Π0 selectŝρ1. The probability of error quanti-
fies the probability in misinterpreting which state was actually
received by Bob and is given by

pe = p0 p(H1|ρ̂0) + p1 p(H0|ρ̂1), (90)

wherep(Hi|ρ̂j) is defined as the conditional probability, i.e.,
probability that Bob decided it was hypothesisHi when in
fact it wasρ̂j , for i 6= j. The conditional probabilities can be
written as

p(H1|ρ̂0) = tr[Π1ρ̂0], p(H0|ρ̂1) = tr[Π0ρ̂1]. (91)

Consequently, in the binary phase-shift keyed setting we can
write the Helstrom bound as

pe = p0 〈α|Π1 |α〉+ p1 〈−α|Π0 |−α〉 , (92)

and for the amplitude modulation keyed encoding

pe = p0 〈0|Π1 |0〉+ p1 〈2α|Π0 |2α〉 . (93)

The optimal type of measurement needed to achieve the
Helstrom bound when distinguishing between two coher-
ent states was shown (Helstrom, 1976) to correspond to a
Schrodinger cat-state basis (i.e., a superposition of two co-
herent states (Jeong and Ralph, 2007)):Π0 = |ψ〉 〈ψ| with
|ψ〉 = c0(γ) |0〉 + c1(γ) |γ〉 where the actual weightings (c1
and c2) depend on the displacementγ. After Helstrom in-
troduced his error probability bound in 1968, it was not un-
til 1973, that two different physical models of implement-
ing the receiver were discovered. The first construction, by
Kennedy (1973), involved building a receiver based on di-
rect detection (or photon counting) that wasnear-optimal,
i.e., an error probability that was larger than the optimal Hel-
strom bound. However, building on Kennedy’s initial pro-
posal, Dolinar (1973) discovered how one could achieve the
optimal bound using an adaptive feedback process with pho-
ton counting. Over the years other researchers have con-
tinued to make further progress in this area (Bondurant,
1993; Geremia, 2004; Olivares and Paris, 2004; Osakiet al.,
1996). Recently, Kennedy’s original idea was improved upon
with a receiver that was much simpler to implement than
Dolinar’s (although still near-optimal) but produced a smaller
error probability than Kennedy’s. Such a device is called an
optimized displacement receiver (Takeoka and Sasaki, 2008;
Wittmannet al., 2008). However, the simplest possible re-
ceiver to implement is the conventional homodyne receiver,
a common element in optical communication which is also
near-optimal outperforming the Kennedy receiver, albeit only
for small coherent amplitudes. We will now review each of
these receivers in more detail.

1. Kennedy receiver

Kennedy (1973) gave the first practical realization of a re-
ceiver with an error probability twice that of the Helstrom
bound. The Kennedy receiver distinguishes between the al-
phabet|α〉 and|−α〉 by first displacing each of the coherent
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states byα, i.e., |−α〉 → |0〉 and |α〉 → |2α〉. Bob then
measures the number of incoming photons between the times
t = 0 andt = T using direct photon counting, represented by
the operators

Π1 = |0〉 〈0| and Π2 = I − |0〉 〈0| . (94)

If the number of photons detected during this time is zero
then |0〉 is chosen (as the vacuum contains no photons) oth-
erwise it is assumed to have been|2α〉. Hence, the Kennedy
receiver always chooses|0〉 correctly (ignoring experimental
imperfections), where the error in the decision results from
the vacuum fluctuations in|2α〉 (as any coherent state has
some finite overlap with the vacuum state). Using Eq. (93),
where from now on we use the least classical probability sit-
uation ofp1 = p2 = 1/2, the error probability is given by
pke = 1

2 〈2α|Π1 |2α〉 which is equal to

pke =
1

2
exp(−4|α|2). (95)

where we have used Eq. (30). The above error bound is some-
times known as theshot-noise error.

2. Dolinar receiver

Dolinar (1973) built upon the results of Kennedy by con-
structing a physical scheme that saturates the Helstrom bound.
Using Eq. (69) with Eq. (30), the Helstrom bound for two pure
coherent states|α〉 and|−α〉 is given by

pe,min =
1

2
(1−

√

1− exp(−4|α|2)).

This is the lowest possible error in distinguishing between
two pure coherent states. Dolinar’s scheme combined pho-
ton counting with real-time quantum feedback. Here the in-
coming coherent signal is combined on a beam splitter with a
local oscillator whose amplitude is causally dependent on the
number of photons detected in the signal beam. Such an adap-
tive process is continually repeated throughout the duration of
the signal length where a decision is made based on the par-
ity of the final number of photons detected (Geremia, 2004;
Helstrom, 1976; Takeokaet al., 2005). Many years after
Dolinar’s proposal, other approaches, such as using a highly
nonlinear unitary operation (Sasaki and Hirota, 1996) or fast
feedforward (Takeokaet al., 2005), have also achieved the
Helstrom bound by approximating the required Schrodinger
cat state measurement basis (the actual creation of such a basis
is experimentally very difficult (Ourjoumtsevet al., 2007)).
However, an experimental implementation of Dolinar’s orig-
inal approach was recently demonstrated in a proof-of-
principle experiment (Cooket al., 2007).

3. Homodyne receiver

As its name suggests the homodyne receiver uses a homo-
dyne detector to distinguish between the coherent states|α〉

and|−α〉. Such a setup is considered the simplest setup pos-
sible and unlike the other receivers relies only on Gaussian
operations. The POVMs for the homodyne receiver are mod-
eled by the projectors

Π1 =

∫ ∞

0

dx |x〉 〈x| and Π2 = I −Π1, (96)

where a positive (negative) outcome is obtained identifying
|α〉 (|−α〉). It was proven by Takeoka and Sasaki (2008) that
the simple homodyne detector is optimal among all available
Gaussian measurements. In fact, for weak coherent states
(amplitudes|α|2 < 0.4), the homodyne receiver is near-
optimal and has a lower error probability than the Kennedy
receiver. Such a regime corresponds to various quantum
communication protocols as well as deep space communi-
cation. Using Eq. (92) with the projectors from Eq. (96)
and the fact that| 〈−α|x〉|2 = π−1/2 exp[−(x + |α|/2)2],
the error probability for the homodyne receiver is given
by (Olivares and Paris, 2004; Takeoka and Sasaki, 2008)

phe =
1

2

(

1− erf
[

|α|/2
])

, (97)

whereerf[·] is the error function. This limit is known as the
homodyne limit.

4. Optimized displacement receiver

The optimized displacement receiver (Takeoka and Sasaki,
2008) is a modification of the Kennedy receiver where instead
of displacing|α〉 and|−α〉 byα, both are now displaced by an
optimized valueβ, whereα, β ∈ R. This displacementD(β)
is based on optimizing both terms in the error probability of
Eq. (92). When considering the Kennedy receiver, only the
p1 〈−α|Π1 |−α〉 term is minimized. However, the optimized
displacement receiver, is based on optimizing the sum of the
two probabilities as a function of the displacementβ. The
signal states|±α〉 are now displaced byβ according to

|±α〉 →
∣
∣±√

τα+ β
〉
, (98)

for a transmissionτ in the limit of τ → 1. As with the
Kennedy receiver photon detection is used to detect the in-
coming states and is described by the projectors given in
Eq. (94). Using Eqs. (92) and (30) but with the coherent states
now given by Eq. (98), the error probability can be expressed
as

pβe =
1

2
− exp[−(τ |α|2 + |β|2)] sinh(2√ταβ). (99)

The optimized displacement receiver outperforms both the ho-
modyne receiver and the Kennedy receiver for all values ofα.
It is interesting to note that such a receiver has applications in
quantum cryptography where it has been shown to increase
the secret-key rates of certain protocols (Wittmannet al.,
2010a,b). Furthermore, by including squeezing with the dis-
placement, an improvement in the performance of the receiver
can be achieved (Takeoka and Sasaki, 2008). The optimized



17

displacement receiver has also been demonstrated experimen-
tally (Tsujinoet al., 2011; Wittmannet al., 2008).

To summarize, in terms of performance, the hierarchy for
the above mentioned receivers is the following: (1) Dolinar
receiver, (2) optimized displacement receiver, (3) Kennedy
receiver and (4) homodyne receiver. Again, out of the ones
mentioned, the Dolinar receiver is the only one that is optimal.
Furthermore, the Kennedy receiver has a lower error probabil-
ity than the homodyne receiver for most values of amplitude.
Finally, we point out that our discussions of binary receivers
(photon counters) presumes unity quantum efficiency with no
dark noise or thermal noise, and hence paints an ideal theoret-
ical comparison between all of the mentioned receivers.

IV. EXAMPLES OF GAUSSIAN QUANTUM PROTOCOLS

A. Quantum teleportation and variants

Quantum teleportation is one of the most beautiful
protocols in quantum information. Originally developed
for qubits (Bennettet al., 1993), it was later extended to
continuous-variable systems (Braunstein and Kimble, 1998;
Ralph and Lam, 1998; Vaidman, 1994), where coherent states
are teleported via the EPR correlations shared by two dis-
tant parties. It has also been demonstrated experimen-
tally (Bowenet al., 2003; Furusawaet al., 1998; Zhanget al.,
2003). Here we review the quantum teleportation protocol for
Gaussian states using the formalism of (Chizhovet al., 2002;
Fiuràšek, 2002b; Pirandola and Mancini, 2006).

Two parties, say Alice and Bob, possess two modes,a and
b, prepared in a zero-mean Gaussian stateρ̂(0,V) whose co-
variance matrixV can be written in the (A,B,C)-block form
of Eq. (53). This state can be seen as a virtual channel that
Alice can exploit to transfer an input state to Bob. In prin-
ciple the input state can be completely arbitrary. In practical
applications she will typically pick her state from some previ-
ously agreed alphabet. Consider the case in which she wishes
to transfer a Gaussian stateρ̂in(x̄in,Vin), with fixed covari-
ance matrixVin but unknown mean̄xin (chosen from a Gaus-
sian distribution), from her input modein to Bob. To accom-
plish this task, Alice must destroy her stateρ̂in by combining
modesin anda in a joint Gaussian measurement, known as
a Bell measurement, where Alice mixesin anda in a bal-
anced beam splitter and homodynes the output modes,− and
+ by measurinĝq− andp̂+, respectively. The outcome of the
measurementγ := (q− + ip+)/2 is then communicated to
Bob via a standard telecom line. Once he receives this infor-
mation, Bob can reconstruct Alice’s input state by applying
a displacementD(γ) on his modeb, which outputs a Gaus-
sian statêρout ≃ ρin. The performance of the protocol is
expressed by the teleportation fidelityF . This is the fidelity
between the input and the output states averaged over all the
outcomes of the Bell measurement. Assuming pure Gaussian
states as input, one has (Fiuràšek, 2002b)

F =
2√
detΓ

, Γ := 2Vin+ZAZ+B−ZC−C
T
Z
T . (100)

where againZ : = diag(1,−1). This formula can be gener-
alized to virtual channelŝρ(x̄,V) with arbitrary mean̄x =
(q̄a, p̄a, q̄b, p̄b)

T . This is possible if Bob performs the modi-
fied displacementD(γ + γ̃), whereγ̃ := [(q̄b − q̄a)− i(p̄b +

p̄a)]/2
√
2 (Pirandola and Mancini, 2006).

In order to be truly quantum, the teleportation must have
a fidelity above a classical thresholdFclass. This value cor-
responds to the classical protocol where Alice measures her
states, communicates the results to Bob who, in turn, recon-
structs the states from the classical information. In general,
a necessary condition for havingF > Fclass is the pres-
ence of entanglement in the virtual channel. For bosonic
systems, this is usually assured by the presence of EPR cor-
relations. For instance, let us consider the case where the
input states are coherent states chosen from a broad Gaus-
sian distribution and the virtual channel is an EPR state
ρ̂epr(r). In this case, the teleportation fidelity is simply
given by (Adesso and Illuminati, 2005; Furusawaet al., 1998;
Mari and Vitali, 2008)

F = (1 + ν̃−)
−1 , ν̃− = exp(−2 |r|) . (101)

Here the presence of EPR correlations (r > 0) guarantees
the presence of entanglement (ν̃− < 1) and, correspond-
ingly, one hasF > 1/2, i.e., the fidelity beats the clas-
sical threshold for coherent states (Braunstein, Fuchset al.,
2001; Hammereret al., 2005). A more stringent thresh-
old for teleportation is to require that the quantum correla-
tions between the input field and the teleported field are re-
tained (Ralph and Lam, 1998). In turn this implies that the
teleported field is the best copy of the input allowed by the
no-cloning bound (Grosshans and Grangier, 2001). At unity
gain this requires that̃ν− < 1/2 and corresponds to a co-
herent state fidelityF > 2/3 as was first demonstrated by
Takeiet al. (2005).

In continuous variables, the protocol of quantum teleporta-
tion has been extended in several ways, including number-
phase teleportation (Milburn and Braunstein, 1999), all-
optical teleportation (Ralph, 1999b), quantum teleportation
networks (van Loock and Braunstein, 2000), teleportation of
single photon states (Ideet al., 2001; Ralph, 2001), quan-
tum telecloning (van Loock and Braunstein, 2001), quan-
tum gate teleportation (Bartlett and Munro, 2003), assisted
quantum teleportation (Pirandolaet al., 2005), quantum tele-
portation games (Pirandola, 2005), and teleportation chan-
nels (Wolfet al., 2007). One of the most important variants of
the protocol is the teleportation of entanglement also known
asentanglement swapping (Jiaet al., 2004; Takeiet al., 2005;
van Loock and Braunstein, 1999). Here Alice and Bob pos-
sess two entangled states,ρ̂aa′ and ρ̂bb′ , respectively. Alice
keeps modea and sends modea′ to a Bell measurement, while
Bob keeps modeb and sendsb′. Oncea′ andb′ are measured
and the outcome communicated, Alice and Bob will share an
output statêρab, wherea andb are entangled. For simplic-
ity, let us suppose that Alice’s and Bob’s initial states areEPR
states, i.e.,̂ρaa′ = ρ̂bb′ = ρ̂epr(r). Using the input-output re-
lations given in Pirandolaet al. (2006), one can easily check
that the output Gaussian stateρ̂ab has logarithmic negativity
EN (ρ̂ab) = ln cosh(2r), corresponding to entanglement for
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every r > 0. By generalizing to two-mode entanglement,
polarization entanglement can be swapped and shown to still
violate a Bell inequality forr > 0 (Polkinghorne and Ralph,
1999).

Teleportation and entanglement swapping are protocols
which may involve bosonic systems of different nature. For
example, in Shersonet al. (2006) a quantum state was tele-
ported from an optical mode onto a macroscopic object con-
sisting of an atomic ensemble of about1012 Caesium atoms.
Theoretically, this kind of result can also be realized by using
radiation pressure. In fact, by impinging a strong monochro-
matic laser beam onto a highly reflecting mirror, it is possi-
ble to generate a scattering process where an optical mode
becomes entangled with an acoustic (massive) mode excited
over the surface of the mirror. Exploiting this hybrid entan-
glement, the teleportation from an optical to an acoustic mode
is possible in principle (Manciniet al., 2003; Pirandolaet al.,
2003), as well as the generation of entanglement between
two acoustic modes by means of entanglement swapping
(Pirandolaet al., 2006).

B. Quantum cloning

Following the seminal works of Wootters and Zurek (1982)
and Dieks (1982), it is well known that a quantum transfor-
mation that outputs two perfect copies of an arbitrary input
state |ψ〉 is precluded by the laws of quantum mechanics.
This is the content of the celebratedquantum no-cloning the-

orem. More precisely, perfect cloning is possible, if and only
if, the input state is drawn from a set of orthogonal states.
Then, a simple von Neumann measurement enables the per-
fect discrimination of the states (see Sec. III), which in turn
enables the preparation of exact copies of the measured state.
In contrast, if the input state is drawn from a set of non-
orthogonal states, perfect cloning is impossible. A notable
example of this are coherent states which cannot be perfectly
distinguished nor cloned as a result of Eq. (30). Interestingly,
although perfect cloning is forbidden, one can devise approx-
imatecloning machines, which produce imperfect copies of
the original state. The concept of a cloning machine was in-
troduced by Bužek and Hillery (1996), where the cloning ma-
chine produced two identical and optimal clones of an arbi-
trary single qubit. Their work launched a whole new field of
investigation (Cerf and Fiuràšek, 2006; Scaraniet al., 2005).
Cloning machines are intimately related to quantum cryptog-
raphy (see Sec. VI) as they usually constitute the optimal at-
tack against a given protocol, so that finding the best cloning
machine is crucial to address the security of a quantum cryp-
tographic protocol (Cerf and Grangier, 2007).

The extension of quantum cloning to continuous-variable
systems was first carried out by Cerfet al. (2000) and
Lindblad (2000), where a Gaussian cloning machine was
shown to produce two noisy copies of an arbitrary coherent
state (where the figure of merit here is the single-clone excess
noise variance). The input mode, described by the quadratures
(q̂in, p̂in), is transformed into two noisy clones(q̂1(2), p̂1(2))

according to

q̂1(2) = q̂in + N̂q1(2), p̂1(2) = p̂in + N̂p1(2), (102)

where N̂q1(2) and N̂p1(2) stand for the added noise opera-

tors on the output mode 1 (2). We may impose〈N̂q1(2)〉 =

〈N̂p1(2)〉 = 0, so that the mean values of the output quadra-
tures coincide with those of the original state. It is the vari-
ance of the added noise operators which translates the cloning
imperfection: a generalized uncertainty relation for the added
noise operators can be derived (Cerf, 2003; Cerfet al., 2000),

∆N̂q1∆N̂p2 ≥ 1, ∆N̂p1∆N̂q2 ≥ 1, (103)

which is saturated (i.e., lower bounded) by this cloning ma-
chine. The above inequalities clearly imply that it is im-
possible to have two clones with simultaneously vanishing
noise in the two canonically conjugate quadratures. This can
be straightforwardly linked to the impossibility of simulta-
neously measuring perfectly the two canonically conjugate
quadratures of the input mode: if we measureq̂ on the first
clone andp̂ on the second clone, the cloning machine actu-
ally produces the exact amount of noise that is necessary to
prevent this procedure from beating the optimal (heterodyne)
measurement (Lindblad, 2000).

The Gaussian cloning machine was first derived in the
quantum circuit language (Cerfet al., 2000), which may, for
example, be useful for the cloning of light states onto atomic
ensembles (Fiuràšeket al., 2004). However, an optical ver-
sion was later developed by Braunstein, Cerfet al. (2001) and
Fiuràšek (2001), which is better suited for our purposes here.
The cloning machine can be realized with a linear phase-
insensitive amplifier of intensity gain two, followed by a bal-
anced beam splitter. The two clones are then found in the two
output ports of the beam splitter, while an anti-clone is found
in the idler output of the amplifier. The anti-clone is defined
as an imperfect version of the phase-conjugate|α∗〉 of the in-
put state|α〉, whereα = (q + ip)/2 andα∗ = (q − ip)/2.
The symplectic transformation on the quadrature operators
x̂ = (q̂1, p̂1, q̂2, p̂2, q̂3, p̂3)

T of the three input modes reads

x̂ → Cx̂, C = (B⊕ I)(I⊕ S2) (104)

whereB is the symplectic map of a beam splitter with trans-
mittanceτ = 1/2 as defined in Eq. (38),S2 is the symplectic
map of a two-mode squeezer with intensity gaincosh2 r = 2
as defined in Eq. (40), andI is a2 × 2 identity matrix. The
input mode of the cloner is the signal mode of the amplifier
(mode 2), while the idler mode of the amplifier (mode 3) and
the second input mode of the beam splitter (mode 1) are both
prepared in the vacuum state. At the output, modes 1 and 2
carry the two clones, while mode 3 carries the anti-clone. By
reordering the threêq quadratures before the threep̂ quadra-
tures, we can express the cloning symplectic map as

C =





2−1/2 1 2−1/2

−2−1/2 1 2−1/2

0 1 21/2



⊕





2−1/2 1 −2−1/2

−2−1/2 1 −2−1/2

0 −1 21/2





(105)
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The second columns of thêq andp̂ blocks immediately imply
that the two clones are centered on the input state(q̂2, p̂2),
while the anti-clone is centered on the phase conjugate of the
input state(q̂2,−p̂2). We can also check that the covariance
matrix of the output modes can be expressed as

V1 = V2 = Vin + I, V3 = ZVinZ+ 2I (106)

whereVin is the covariance matrix of the input mode (mode
2) and againZ = diag(1,−1). Thus, the two clones suf-
fer exactly one unit of additional shot-noise, while the anti-
clone suffers two shot-noise units. This can be expressed in
terms of the cloning fidelities of Eq. (80). The fidelity of each
of the clones is given byF = 2/3, regardless of which co-
herent state is cloned. The anti-clone is noisier, and char-
acterized by a fidelity ofF = 1/2. Note that this latter fi-
delity is precisely that of an optimal joint measurement of the
two conjugate quadratures (Arthurs and Kelly, Jr., 1965), so
that optimal (imperfect) phase conjugation can be classically
achieved by heterodyning the state and preparing its phase-
conjugate (Cerf and Iblisdir, 2001b).

A variant of this optical cloner was demonstrated ex-
perimentally by Andersenet al. (2005), where the ampli-
fier was replaced by a feed forward optical scheme which
only requires linear optical components and homodyne de-
tection (Lamet al., 1997). A fraction of the signal beam is
tapped off and measured using heterodyne detection. The
outcomes of this measurement are then used to apply an
appropriate displacement to the remaining part of the sig-
nal beam. This setup demonstrates near optimal quantum
noise limited performances, and can also be adapted to pro-
duce a phase-conjugate output (Josseet al., 2006). This 1-
to-2 Gaussian cloner can be straightforwardly extended to a
more general setting, whereM identical clones are produced
from N identical replica of an unknown coherent state with
a fidelity F = MN/(MN + M − N) (Cerf and Iblisdir,
2000). More generally, one can addN ′ replica of the phase-
conjugate state at the input and produceM ′ = M +N ′ −N
anti-clones (Cerf and Iblisdir, 2001a). In this more elaborate
scheme, the signal mode carries all inputs and clones, while
the idler mode carries all phase-conjugate inputs and anti-
clones. Interestingly, for a fixed total number of inputsN+N ′

the clones have a higher fidelity ifN ′ > 0, a property which
holds regardless ofM and even survives at the limit of a mea-
surementM → ∞. So the cloning or measurement perfor-
mances are enhanced by phase-conjugate inputs. For exam-
ple, the precision of measuring the quadratures of two phase-
conjugate states|α〉 |α∗〉 is as high as that achieved when mea-
suring four identical states|α〉⊗4 though half of the mean en-
ergy is needed, as experimentally demonstrated by Nisetet al.

(2007). Furthermore, the cloning of phase-conjugate coher-
ent states was suggested by Chen and Zhang (2007) and also
suggested, as well as demonstrated, by Sabuncuet al. (2007)
using the linear cloner of Andersenet al. (2005).

Gaussian cloners have also been theoretically devised in
an asymmetric setting, where the clones have different fideli-
ties (Fiuràšek, 2001). The way to achieve asymmetry is to use
an additional beam splitter that deflects a fraction of the input
beam before entering the signal mode of the amplifier. This

deflected beam bypasses the amplifier and feeds the vacuum
input port of the beam splitter that yields the two clones. By
tuning the transmittance of the beam splitters, one can gen-
erate the entire family of cloners saturating Eq. (103). This
idea can also be generalized to define the optimal asymmet-
ric cloner producingM different clones (Fiuràšek and Cerf,
2007). Other research into Gaussian quantum cloning in-
cludes, the relationship of the no-cloning limit to the quality of
continuous-variable teleportation (Grosshans and Grangier,
2001), the optimal cloning of coherent states with a finite
distribution (Cochraneet al., 2004), the cloning of squeezed
and thermal states (Olivareset al., 2006), and the cloning
of both entangled Gaussian states and Gaussian entangle-
ment (Weedbrooket al., 2008). Finally, it is worth noting
that all the Gaussian cloners discussed above are optimal if
the added noise variance is taken as the figure of merit. The
Gaussian transformation of Eq. (105) produces clones with
the minimum noise variance, namely one unit of shot-noise.
Surprisingly, if the single-clone fidelity is chosen instead as
the figure of merit, the optimal cloner is a non-Gaussian
cloner which slightly outperforms the Gaussian cloner (itsfi-
delity is 2.4 % higher) for the cloning of Gaussian (coherent)
states (Cerfet al., 2005).

V. BOSONIC GAUSSIAN CHANNELS

A central topic in quantum information theory is the study
of bosonic channels, or more properly, linear bosonic chan-
nels (Demoenet al., 1977; Lindblad, 2000). In particular,
Gaussian channels represent the standard model of noise in
many quantum communication protocols (Eisert and Wolf,
2007; Holevoet al., 1999; Holevo and Werner, 2001). They
describe all those communication processes where the interac-
tion between the bosonic system carrying the information and
the external decohering environment is governed by a linear
and/or bilinear Hamiltonian. In the simplest scenario, Gaus-
sian channels are memoryless, meaning that different bosonic
systems are affected independently and identically. This is the
case of the one-mode Gaussian channels, where each mode
sent through the channel is perturbed in this way (Holevo,
2007; Holevo and Werner, 2001).

This section is structured as follows. In Sec. V.A, we give
a general introduction to bosonic channels and, particularly,
Gaussian channels, together with their main properties. Then,
in Sec. V.B, we discuss the specific case of one-mode Gaus-
sian channels and their recent full classification. In Secs.V.C
and V.D we discuss the standard notions of classical and quan-
tum capacity, respectively, with quantum dense coding and
entanglement-assisted classical capacity revealed in Sec. V.E.
Entanglement distribution and secret key capacities are dis-
cussed in Sec. V.F. Finally, in Sec. V.G, we consider the prob-
lem of Gaussian channel discrimination and its potential ap-
plications.
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A. General formalism

Let us consider a multimode bosonic system, with arbi-
trary N modes, whose quantum state is described by an
arbitrary density operator̂ρ ∈ D(H⊗N ). Then, anN -
mode bosonic channel is a linear mapE : ρ̂ → E(ρ̂) ∈
D(H⊗N ), which must be completely positive and trace-
preserving (CPT) (Nielsen and Chuang, 2000). There are sev-
eral equivalent ways to represent this map, one of the most
useful being the Stinespring dilation (Stinespring, 1955). As
depicted in Fig. 1, a multimode bosonic channel can be rep-
resented by a unitary interactionU between the input statêρ
and a pure state|Φ〉E of ancillaryNE modes associated with
the environment. Then the output of the channel is given by
tracing out the environment after interaction, i.e.,

E(ρ̂) = TrE
[
U (ρ̂⊗ |Φ〉 〈Φ|E)U †

]
. (107)

An important property of the Stinespring dilation is its unique-
ness up to partial isometries (Paulsen, 2002). As a result, one
can always choose|Φ〉E = |0〉E , where|0〉E is a multimode
vacuum state.

ρ
U

AE
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�
E ( )ρ�
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FIG. 1 Stinespring dilation of a bosonic channelE . The input statêρ
interacts unitarily with a pure state|Φ〉

E
of the environment, which

can be chosen to be the vacuum. Note that, besides the outputE(ρ̂),
there is a complementary outputẼ(ρ̂) for the environment. In some
cases, the two outputs are connected by CPT maps (see text).

Note that, in the physical representation provided by the
Stinespring dilation, the environment has an output too. In
fact, we can consider thecomplementary bosonic channel
Ẽ : ρ̂ → Ẽ(ρ̂) which is defined by tracing out the sys-
tem after interaction. For particular kinds of bosonic chan-
nels, the two outputsE(ρ̂) and Ẽ(ρ̂) are connected by CPT
maps. This happens when the channel isdegradable or anti-

degradable. By definition, we say that a bosonic channelE is
degradable if there exists a CPT mapD such thatD ◦ E = Ẽ
(Devetak and Shor, 2005). This means that the environmental
outputẼ(ρ̂) can be achieved from the system outputE(ρ̂) by
applying another bosonic channelD. By contrast, a bosonic
channelE is calledanti-degradable when there is a CPT map
A such thatA ◦ Ẽ = E (Caruso and Giovannetti, 2006) (see
Fig. 1).

The most important bosonic channels are the Gaussian
channels, defined as those bosonic channels transforming
Gaussian states into Gaussian states. An arbitraryN -mode
Gaussian channel can be represented by a Gaussian dilation.
This means that the interaction unitaryU in Eq. (107) is Gaus-
sian and the environmental state|Φ〉E is pure Gaussian (or,
equivalently, the vacuum). Furthermore, we can choose an
environment composed ofNE ≤ 2N modes (Carusoet al.,
2008, 2011). The action of aN -mode Gaussian channel over

an arbitrary Gaussian statêρ(x̄,V) can be easily expressed in
terms of the first and second statistical moments. In fact, we
have (Holevo and Werner, 2001)

x̄ → Tx̄ + d , V → TVT
T +N , (108)

whered ∈ R
2N is a displacement vector, whileT and

N = N
T are 2N × 2N real matrices, which must satisfy

the complete positivity condition

N+ iΩ− iTΩT
T ≥ 0 , (109)

whereΩ is defined in Eq. (2). Note that, forN = 0 andT :=
S symplectic, the channel corresponds to a Gaussian unitary
US,d (see Sec. II.A.2).

B. One-mode Gaussian channels

The study of one-mode Gaussian channels plays a cen-
tral role in quantum information theory, representing one
of the standard models to describe the noisy evolution of
one-mode bosonic states. Furthermore, these channels rep-
resent the manifest effect of the most important eavesdrop-
ping strategy in continuous-variable quantum cryptography,
known as collective Gaussian attacks, which will be fully dis-
cussed in Sec. VI.B.4. One of the central results in the the-
ory of one-mode Gaussian channels is the Holevo’s canon-
ical classification. This result was originally derived by
Holevo (2007) and then exploited by several authors to study
the degradability and security properties of these channels
(Carusoet al., 2006; Pirandola, Braunstein, and Lloyd, 2008;
Pirandola, Garcı́a-Patrón,et al., 2009).

An arbitrary one-mode Gaussian channelG is fully char-
acterized by the transformations of Eq. (108), where now
d ∈ R2 andT,N are2× 2 real matrices, satisfying

N = N
T ≥ 0, detN ≥ (detT− 1)

2
. (110)

The latter conditions can be derived by specifying Eq. (109)
to one mode (N = 1). According to Holevo (2007), the
mathematical structure of a one-mode Gaussian channelG =
G(d,T,N) can be greatly simplified. As depicted in Fig. 2(a),
everyG can be decomposed as

G(ρ̂) =W
[
C(Uρ̂U †)

]
W † , (111)

whereU andW are Gaussian unitaries, while the mapC,
which is called thecanonical form, is a simplified Gaussian
channelC = C(dc,Tc,Nc) with dc = 0 andTc,Nc di-
agonal. The explicit expressions ofTc andNc depend on
three quantities which are preserved by the action of the Gaus-
sian unitaries. These invariants are the generalizedtransmis-

sivity τ := detT (ranging from−∞ to +∞), the rank of
the channelr := min[rank(T),rank(N)] (with possible val-
uesr = 0, 1, 2) and thethermal number n̄, which is a non-
negative number defined by

n̄ :=







(detN)1/2 , for τ = 1 ,

(detN)1/2

2 |1− τ | − 1

2
, for τ 6= 1 .

(112)



21

These three invariants{τ, r, n̄} fully characterize the two ma-
tricesTc andNc, thus identifying a unique canonical form
C = C(τ, r, n̄). In particular, the first two invariants{τ, r} de-
termine theclass of the form. The full classification is shown
in table I.

τ r Class Form Tc Nc

0 0 A1 C(0, 0, n̄) 0 (2n̄+ 1)I
0 1 A2 C(0, 1, n̄) I+Z

2
(2n̄+ 1)I

1 1 B1 C(1, 1, 0) I
I−Z

2
1 2 B2 C(1, 2, n̄) I n̄I
1 0 B2(Id) C(1, 0, 0) I 0

(0, 1) 2 C(Loss) C(τ, 2, n̄) √
τI (1− τ )(2n̄+ 1)I

> 1 2 C(Amp) C(τ, 2, n̄) √
τI (τ − 1)(2n̄+ 1)I

< 0 2 D C(τ, 2, n̄)
√
−τZ (1− τ )(2n̄+ 1)I

(113)

TABLE I The values of{τ, r} in the first two columns specify a
canonical classA1, A2, B1, B2, C orD (third column). Within each
class, the possible canonical forms are expressed in the fourth col-
umn, where also the invariantn̄ must be considered. The correspond-
ing expressions ofTc andNc are shown in the last two columns,
whereZ := diag(1,−1), I := diag(1, 1) and0 is the zero matrix.

Let us discuss the various classes. ClassA1 is composed
by forms which are completely depolarizing channels, i.e.,re-
placing input states with thermal states. ClassesA2 andB1 are
special and involve canonical forms transforming the quadra-
tures asymmetrically. ClassB2 describes the classical-noise
channels, transforming the quadratures asx̂ → x̂ + ξ where
ξ is Gaussian noise with classical covariance matrixn̄I. This
class collapses to the identity channel forn̄ = 0. ClassC
describes canonical forms with transmissivities0 < τ 6= 1.
This class is further divided in two subclasses:C(Loss) for
0 < τ < 1, andC(Amp) for τ > 1. Canonical forms
in C(Loss) are known aslossy channels, also denoted by
L(τ, n̄) := C(0 < τ < 1, 2, n̄). These are the most important
ones, representing the basic model to describe communication
lines such as optical fibers. In a lossy channel, the input sig-
nals are attenuated and combined with thermal noise, i.e., we
havex̂ → √

τ x̂+
√
1− τ x̂th, wherêxth are in a thermal state

with n̄ photons. Canonical forms inC(Amp) are known as
amplifying channels, denoted byA(τ, n̄) := C(τ > 1, 2, n̄).
They describe optical processes, such as phase-insensitive am-
plifiers, where the input signals are amplified with the addition
of thermal noise, i.e.,̂x → √

τ x̂ +
√
τ − 1x̂th. Finally, class

D is associated with negative transmissivities. Its forms can
be seen as complementary outputs of the amplifying channels.

We can easily construct the Stinespring dilation of all the
canonical forms (Pirandola, Braunstein, and Lloyd, 2008).As
depicted in Fig. 2(b), an arbitrary formC(τ, r, n̄) can be di-
lated to a three-mode canonical unitaryUL corresponding to a
6 × 6 symplectic matrixL. This unitary transforms the in-
put stateσ̂ (modeA) together with an environmental EPR
state|ν〉 (modesE ande) of suitable noise-varianceν [see
Eq. (42)]. In particular, the symplectic matrix is determined
by the class, i.e.,L = L(τ, r), while the EPR state is deter-
mined by the thermal number, i.e.,ν = 2n̄ + 1. Let us ana-
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FIG. 2 (a) A generic one-mode Gaussian channelG can be repre-
sented by a canonical formC up to input and output Gaussian uni-
tariesU andW . (b) An arbitrary canonical formC = C(τ, r, n̄) can
be dilated to a three-mode canonical unitaryUL which is described
by a class-dependent symplectic transformationL = L(τ, r). This
unitary evolves the input statêσ together with an EPR state|ν〉
with noise-varianceν = 2n̄ + 1 and belonging to the environment.
(c) Apart from classB2, all the other classes can be dilated using
L(τ, r) = M(τ, r) ⊕ Ie. This means that only one modeE of the
EPR state|ν〉 is combined with the input modeA. (d) Tracing out
modee, we get a thermal statêρ(n̄) on modeE. Thus the canonical
forms of all the classes butB2 can be represented by a single-mode
thermal state interacting with the input state via a two-mode sym-
plectic transformationM.

lyzeL(τ, r) for the various classes, starting fromB2. For null
rank, classB2 collapses to the identity and we simply have
L(1, 0) = I. However, for full rank the symplectic matrix
L(1, 2) does not have a simple expression (Holevo, 2007). If
we exclude the classB2, the symplectic matrixL can always
be decomposed asL(τ, r) = M(τ, r) ⊕ Ie, whereM de-
scribes a two-mode canonical unitary acting on modesA and
E, while Ie is just the identity on modee. As depicted in
Fig. 2(c), this means that only one modeE of the EPR state
|ν〉 is actually combined with the input modeA. Clearly by
tracing out the unused EPR modee, we get a thermal state
with n̄ photons on modeE, as depicted in Fig. 2(d). Thus
the canonical formsC(τ, r, n̄) of all the classes butB2 admit
a physical representation where a single-mode thermal state
ρ̂(n̄) interacts with the input state via a two-mode symplec-
tic transformationM(τ, r). Despite being simpler than the
Stinespring dilation, this unitary dilation involves a mixed en-
vironmental state and, therefore, it is not unique up to partial
isometries. The explicit expressions ofM(τ, r) are relatively
easy (Carusoet al., 2006). For classesA1, A2 andB1, we
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have

M(0, 0) =

(
0 I

I 0

)

, M(0, 1) =

(
I+Z

2 I

I
Z−I

2

)

, (114)

M(1, 1) =

(
I

I+Z

2
I−Z

2 −I

)

. (115)

Then, for classesC(Loss), C(Amp) andD, we have

M(0 < τ < 1, 2) =

( √
τI

√
1− τI

−
√
1− τI

√
τI

)

, (116)

M(τ > 1, 2) =

( √
τI

√
τ − 1Z√

τ − 1Z
√
τI

)

, (117)

M(τ < 0, 2) =

( √−τZ
√
1− τI

−
√
1− τI −√−τZ

)

. (118)

Here it is important to note that Eq. (116) is just the beam
splitter matrix (cf. Eq. (38)). This means that the Stine-
spring dilation of a lossy channelL(τ, n̄) is an entangling
cloner (Grosshans, van Assche,et al., 2003), i.e., a beam
splitter with transmissivityτ which combines the input mode
with one mode of an environmental EPR state|ν〉. Clearly,
this implies the well-known physical representation for the
lossy channel where a beam splitter of transmissivityτ mixes
the input state with a single-mode thermal stateρ̂(n̄). A par-
ticular case of lossy channel is the pure-loss channelL(τ, 0)
which is given by settinḡn = 0. In this case the Stinespring
dilation is just a beam splitter mixing the input with the vac-
uum.

Finally, let us review the degradability properties of the
one-mode Gaussian channels. Since these properties are in-
variant by unitary equivalence, we have that a degradable
(antidegradable) channelG corresponds to a degradable (an-
tidegradable) formC. All the formsC(τ, r, n̄) with transmis-
sivity τ ≤ 1/2 are antidegradable (Caruso and Giovannetti,
2006). This includes all the forms of classesA1, A2, D and
part of the forms of classC, i.e., lossy channelsL(τ, n̄) with
τ ≤ 1/2. By unitary equivalence, this means that one-mode
Gaussian channels with transmissivityτ ≤ 1/2 are all an-
tidegradable. Forτ ≥ 1/2 the degradability properties are not
so straightforward. However, we know that pure-loss channels
L(τ, 0) with τ ≥ 1/2 and ideal amplifying channelsA(τ, 0)
are all degradable.

C. Classical capacity of Gaussian channels

Shannon proved that sending information through a noisy
channel can be achieved with vanishing error, in the limit of
many uses of the channel. He developed an elegant math-
ematical theory in order to calculate the ultimate limits on
data transmission rates achievable over a classical communi-
cation channelN , known as the channel capacity (Shannon,
1948). Let us consider two parties, Alice and Bob, which
are connected by an arbitrary noisy channelN . At the in-
put, Alice draws letters from a random variable (or alpha-
bet)A := {a, pa}, where the lettera occurs with probabil-
ity pa. The information content of this variable is expressed

in terms of bits per letter and quantified by the Shannon en-
tropyH(A) = −∑a pa log pa (it is understood that when we
consider continuous variables, the probabilities are replaced
by probability densities and sums by integrals.) By draw-
ing many times, Alice generates a random messagea1, a2, · · ·
which is sent to Bob through the noisy channel. As long as the
channel is memoryless, i.e., it does not create correlations be-
tween different letters, Bob’s output message can be described
by drawings from another random variableB := {b, pb} cor-
related to the input oneB = N (A). On average, the number
of bits per letter which are communicated to Bob is given by
the mutual informationI(A : B) = H(B)−H(B|A), where
H(B|A) is Shannon entropy ofB conditioned on the knowl-
edge ofA (Cover and Thomas, 2006). Now, the channel ca-
pacityC(N ), expressed in bits per channel use, is given by
maximizing the mutual information over all of Alice’s possi-
ble inputs

C(N ) = max
A

I(A : B) . (119)

It is important to note that many communication chan-
nels, such as wired and wireless telephone channels and satel-
lite links are currently modeled as classical Gaussian chan-
nels. Here the input variableA generates a continuous sig-
nal a with varianceP which is transformed to a continuous
output b = τa + ξ, whereτ is the transmissivity of the
channel, andξ is drawn from a Gaussian noise-variable of
varianceV . Shannon’s theory gives the capacityC(N ) =
1
2 log

(
1 + τPV −1

)
(Cover and Thomas, 2006). We remark

that this result predicts an infinite communication rate through
a noiseless channel(V = 0). This counterintuitive result is
due to the lack of limitation to the measurement accuracy in
classical physics. This is no longer true when we consider the
actual quantum nature of the physical systems. In fact, if we
encode classical information in the temporal modes (pulses)
of the quantized electromagnetic field, then the capacity ofthe
identity channel is no longer infinite but depends on the input
energy. As shown by Yuen and Ozawa (1993), the capacity of
the identity channelI is given byC(I) = g(2m̄+ 1), where
g(·) is given in Eq. (47) and̄m is the mean number of pho-
tons per pulse. Thus, a quantum mechanical treatment of the
problem gives a finite solution for finite energy, showing that
quantum mechanics is mandatory in understanding the ulti-
mate limits of communication.

Since information is fundamentally encoded in a physical
system and quantum mechanics is the most accurate repre-
sentation of the physical world, it is therefore natural to ask
what are the ultimate limits set by quantum mechanics to com-
munication? Since the 1980s several groups started studying
quantum encoding and detection over optical channels, mod-
eled as Gaussian quantum channels (Caves and Drummond,
1994; Hall, 1994; Shapiro, 1984; Yuen and Shapiro, 1980).
An important milestone was achieved with the Holevo-
Schumacher-Westmoreland (HSW) theorem (Holevo, 1998;
Schumacher and Westmoreland, 1997), which laid the basis
for a quantum generalization of Shannon’s communication
theory. First of all, let us introduce the notions of quantum
ensemble and Holevo bound (Holevo, 1973). An arbitrary
random variableA = {a, pa} can be encoded in a quantum
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ensemble (or source)A = {ρ̂a, pa}, where each lettera is
associated with a quantum letter-stateρ̂a occurring with prob-
ability pa. Since quantum states are generally non-orthogonal,
a non-trivial question is the following: what is the maximum
information that we can extract fromA using a quantum mea-
surement? This quantity is called the accessible information
of the ensemble and is less than or equal to the Holevo bound,
defined as

χ(A) = S(σ̂A)−
∑

a

paS(ρ̂a) , (120)

whereS(·) is the von Neumann entropy andσ̂A =
∑

a paρ̂a is
the average state of the ensemble (for continuous ensembles,
the previous sums become integrals). Now, the key-result of
the HSW theorem is that the Holevo bound is asymptotically
achievable when we consider a large number of extractions
from the source and a collective quantum measurement. In
this limit, the Holevo boundχ(A) provides the accessible in-
formation per letter-state.

These results can be directly applied to memoryless quan-
tum channelsM. In this case, the letter-states drawn from
a sourceA = {ρ̂a, pa} are transformed identically and inde-
pendently by the channel, i.e.,̂ρa1

⊗ ρ̂a2
· · · → M(ρ̂a1

) ⊗
M(ρ̂a2

) · · · By performing a collective measurement on the
output message-state, Bob can extract an average ofχ(A,M)
bits per channel use, where

χ(A,M) = S [M(σ̂A)]−
∑

a

paS[M(ρ̂a)] . (121)

Thus the Holevo boundχ(A,M) gives the optimal communi-
cation rate which is achievable over the memoryless quantum
channelM for fixed sourceA. Maximizing this quantity over
all the sourcesA we obtain the (single-shot) capacity of the
channel

C(1)(M) = max
A

χ(A,M) . (122)

For bosonic systems, where memoryless channels are usu-
ally one-mode channels, the quantity of Eq. (122) must be
constrained by restricting the maximization over sources with
bounded energyTr(σ̂An̂) ≤ m̄.

Note that we have introduced the notation single-shot in
the definition of Eq. (122). This is because we are restrict-
ing the problem to single-letter sources which input product
states. In general, we can consider multi-letter sources which
input states that are (generally) entangled betweenn uses of
the channelM⊗n. Then, we can define the full capacity of
the channel via the regularization

C(M) = lim
n→∞

1

n
C(1)(M⊗n) . (123)

For one-mode bosonic channels, the computation of Eq. (123)
involves the maximization over sources which emitn-
mode entangled states and satisfying the energy constraint
Tr(σ̂An̂

⊗n) ≤ nm̄. Now an important question to ask is
if the presence of entanglement can really enhance the rate
of classical communication. In other words, do we have

C(M) > C(1)(M)? Hastings (2009) proved the existence
of channels for which this is the case. However, for one-mode
bosonic Gaussian channels this is still an open question.

A first step in this direction has been the computation of
the capacity of a pure-loss channelLp := L(τ, 0). By
exploiting the sub-additivity of the von Neumann entropy,
Giovannettiet al. (2004a) obtained an upper-bound forC(Lp)
coinciding with the lower-bound reported by Holevoet al.

(1999) and Holevo and Werner (2001). As a result, a pure-
loss channelLp of transmissivityτ has classical capacity
C(Lp) = g(τµ + 1 − τ), whereµ := 2m̄ + 1 and m̄ is
the mean number of photons per input mode. Interestingly,
one can achieve this capacity by sending coherent states mod-
ulated with a Gaussian distribution of varianceV = µ − 1.
At the detection stage, collective measurements might be nec-
essary. However, this is not the case in the regime of many
photons, where heterodyne detection is sufficient to achieve
the capacity.

The model of pure-loss channelLp can be adopted to de-
scribe broadband communication lines, such as wave guides,
where the losses are independent from the frequency. For a
pure-loss channel of this kind which employs a set of fre-
quenciesωk = kδω for integerk, one can derive the ca-
pacity C = ξ

√
τPT , whereτ is the transmissivity,T =

2π/δω is the transmission time,P is the average transmitted
power, andξ is a constant (Giovannettiet al., 2004a, 2003;
Yuen and Ozawa, 1993). Another important scenario is free-
space optical communication. Here, transmitter and receiver
communicate through circular apertures of areasAt andAr

which are separated by a distanceL. Far-field regime corre-
sponds to having a single spatial mode, which happens when
AtArω

2 (2πcL)
−2

:= τ(ω) ≪ 1, wherec is the speed of light
andτ(ω) is the transmissivity of the optimal spatial mode with
frequencyω (Yuen and Shapiro, 1978). We have a broadband
far-field regime when we use frequencies up to a critical fre-
quencyωc, such thatτ(ωc) ≪ 1. In this case, we can compute
the capacity

C = (ωcT/2πy0)

∫ y0

0

dx g[(e1/x − 1)−1], (124)

where y0 is a parameter which is connected with the
energy constraint (Giovannettiet al., 2004a; Guha, 2008;
Shapiroet al., 2005). Recently, the computation of this clas-
sical capacity has been generalized to the presence of op-
tical refocusing systems between transmitter and receiver
(Lupoet al., 2011).

1. Bosonic minimum output entropy conjecture

Despite a huge research effort in recent years, little progress
has been achieved in the calculation of the classical ca-
pacity of other one-mode Gaussian channels. However,
by using Gaussian encodings, we can easily give lower
bounds (Lupoet al., 2011). For instance, using a coherent
state encoding at the input of a lossy channelL(τ, n̄), we can
compute the following lower bound for the capacity

C(L) ≥ g[τµ+(1−τ)ν]−g[τ +(1−τ)ν] := C(L), (125)
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whereν := 2n̄+ 1, µ := 2m̄+ 1, andm̄ is the mean number
of photons per input mode (Holevoet al., 1999). It is believed
that this lower-bound is tight, i.e.,C(L) = C(L). This con-
jecture is implied by another conjecture, known as the bosonic
minimum output entropy conjecture and stating that the min-
imum entropy at the output of a lossy channel is realized by
a vacuum state at the input, i.e.,S[L(|0〉 〈0|)] ≤ S[L(ρ̂)] for
everyρ̂. It seems extremely reasonable to assume that sending
nothing through the channel is the best way of minimizing the
noise (entropy) at its output. However, such a simple state-
ment is still today without a proof. Using Lagrangian min-
imization it has been possible to prove that vacuum is a lo-
cal minimum of the output entropy (Giovannettiet al., 2004b;
Lloyd et al., 2009). In the work of Giovannettiet al. (2004b) a
simulated annealing optimization suggested that outputs pro-
duced by a vacuum input majorize all the other outputs, and
therefore have smaller entropy. Other studies showed that the
output Rényi entropy of integer orders≥ 2 is minimized by
the vacuum input and is also additive (Giovannetti and Lloyd,
2004; Giovannetti, Lloyd,et al., 2004). Unfortunately, the
von Neumann entropy is the Rényi entropy of order1, which
is therefore not covered by these results. By restricting the
input states to Gaussian states it was proven that vacuum
gives the minimal output entropy (Giovannettiet al., 2004b;
Hiroshima, 2006; Serafini, Eisert, and Wolf, 2005); unfortu-
nately this does not preclude the possibility of having non-
Gaussian input states performing better. Finally, alterna-
tive approaches to the problem were also proposed, such as
proving theentropy photon-number inequality (Guha, 2008),
which is a quantum version of the classicalentropy power in-

equality (Cover and Thomas, 2006).

D. Quantum capacity of Gaussian channels

Quantum channels can be used to transfer not just classi-
cal information but also quantum information. In the typi-
cal quantum communication scenario, Alice aims to transmit
quantum states to Bob through a memoryless quantum chan-
nelM. The quantum capacityQ(M) of the channel gives the
number of qubits per channel use that can be reliably trans-
mitted. As shown by Schumacher and Nielsen (1996), a cru-
cial role in the definition of the quantum capacity is played
by the coherent informationJ(M, ρ̂A), which is a function of
Alice’s input ρ̂A and the channelM. In order to define this
quantity, let us introduce a mirror systemR and the purifica-
tionΦRA = |Φ〉 〈Φ|RA of the input statêρA = TrR(ΦRA), as
shown in Fig. 3. Then, the coherent information is defined by

����� ���

��

ρ
�

	 Φ ρ
�

M


��

��

�

�

FIG. 3 Alice’s input statêρA is transformed into Bob’s output state
ρ̂B by a generic memoryless channelM. The input statêρA can be
purified by introducing an additional mirror systemR.

J(M, ρ̂A) = S(ρ̂B)− S(ρ̂RB) , (126)

whereρ̂RB := (IR ⊗M)(ΦRA), IR being the identity chan-
nel on the mirror systemR. The (single-shot) quantum capac-
ity is computed by maximizing over all the input states

Q(1)(M) = max
ρ̂A

J(M, ρ̂A). (127)

Since this quantity is known to be non-additive
(Di Vincenzoet al., 1998; Smith and Smolin, 2007;
Smithet al., 2011; Smith and Yard, 2008), the correct
definition of quantum capacity is given by the regularization
(Devetak, 2005; Lloyd, 1997; Shor, 2002)

Q(M) = lim
n→∞

1

n
max
ρ̂An

J(M⊗n, ρ̂An) , (128)

where the input statêρAn is generally entangled overn uses
of the channelM⊗n. It is important to note that the coher-
ent information computed over bosonic channels is finite even
for infinite input energy. As a result the quantum capacity of
bosonic channels is still defined as in Eq. (128) without the
need of energy constraints. Another important consideration
regards degradable and antidegradable channels. As shown by
Devetak and Shor (2005), degradable channels have additive
quantum capacity, i.e.,Q(M) = Q(1)(M). By contrast, an-
tidegradable channels have null quantum capacityQ(M) = 0
(Caruso and Giovannetti, 2006).

Let us consider the specific case of one-mode Gaussian
channels. In this case a lower bound can be computed
by restricting the quantum capacity to a single use of the
channel and pure Gaussian states. Thus, for an arbitrary
one-mode Gaussian channelG with transmissivityτ 6= 1,
we can write the lower-bound (Holevo and Werner, 2001;
Pirandola, Garcı́a-Patrón,et al., 2009)

Q(G) ≥ Q(1,g)(G) = max

{

0, log

∣
∣
∣
∣

τ

1− τ

∣
∣
∣
∣
− g(ν)

}

,

(129)
whereν := 2n̄ + 1 andn̄ is the thermal number of the chan-
nel. Clearly this formula applies to all the canonical forms
of classesA1, A2, C andD. There are remarkable cases
where the bound in Eq. (129) is tight. This happens when the
one-mode Gaussian channel is degradable. The proof given
in (Wolf et al., 2007) combines the additivity for degradable
channelsQ(G) = Q(1)(G) with the extremality of Gaussian
statesQ(1)(G) = Q(1,g)(G) (Wolf et al., 2006). Important
examples of degradable one-mode Gaussian channels are the
ideal amplifying channelsA(τ, 0) and the pure-loss channels
L(τ, 0) with transmissivityτ ≥ 1/2. Another case, where the
previous bound is tight, regards all the one-mode Gaussian
channels with transmissivityτ ≤ 1/2. These channels are
in fact antidegradable and we haveQ(G) = Q(1,g)(G) = 0.
Note that we can also compute a lower bound to the quan-
tum capacity forτ = 1 in the case of a canonical form
B2. This is achieved by using continuous-variable stabilizer
codes (Harrington and Preskill, 2001).
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E. Quantum dense coding and entanglement-assisted
classical capacity

The classical capacity of a quantum channel can be in-
creased if Alice and Bob share an entangled state. This effect
is known asquantum dense coding. The analysis that reaches
this conclusion ignores the cost of distributing the entangle-
ment. The rationale for doing this is that the entanglement
does not carry any information per se. Originally introduced
in the context of qubits (Bennett and Wiesner, 1992), dense
coding was later extended to continuous variables (Ban, 1999;
Braunstein and Kimble, 1999; Ralph and Huntington, 2002),
with a series of experiments in both settings (Liet al., 2002;
Mattle et al., 1996; Mizunoet al., 2005; Pereiraet al., 2000).

The basic setup in continuous variables considers the dis-
tribution of information over an identity channelI by means
of a single bosonic mode. Here Bob possesses an EPR state
of varianceV . This state can be generated by combining a
pair of single-mode squeezed states with orthogonal squeez-
ings into a balanced beam splitter. In particular, the squeezed
quadratures must have varianceVsq = V −

√
V 2 − 1. Bob

sends one mode of the EPR state to Alice, while keeping the
other mode. To transmit classical information, Alice modu-
lates both quadratures and sends the mode back to Bob, with
mean number of photons equal tōm. To retrieve information,
Bob detects both received and kept modes by using a Bell
measurement with detector efficiencyη ∈ [0, 1]. The achiev-
able rate is given by (Ralph and Huntington, 2002)

Rdc(I) = log

[

1 +
η(4m̄− Vsq − 1/Vsq + 2)

4(ηVsq + 1− η)

]

. (130)

This rate can exceed the classical capacity of the identity chan-
nel C(I) at the same fixed average photon numberm̄ for a
considerable range of values ofVsq andη.

The advantages of quantum dense coding can be extended
to an arbitrary memoryless channelM. This leads to the
notion of entanglement-assisted classical capacityCE(M),
which is defined as the maximum asymptotic rate of reliable
bit transmission over a channelM assuming the help of un-
limited pre-shared entanglement. As shown by Bennettet al.

(2002) this is equal to

CE(M) = max
ρ̂A

I(M, ρ̂A), (131)

whereI(M, ρ̂A) = S(ρ̂A) + J(M, ρ̂A) is the quantum mu-
tual information associated with the channelM and the input
stateρ̂A (J is the coherent information). For one-mode Gaus-
sian channels, the capacityCE must be computed under the
energy constraintTr(ρ̂An̂) ≤ m̄. In particular, for a pure-loss
channelLp = L(τ, 0), we have (Holevo and Werner, 2001)

CE(Lp) = g(µ) + g(τµ+ 1− τ)− g(λ−)− g(λ+), (132)

whereµ = 2m̄+ 1 andλ± = D ± m̄(1− τ), with

D = {[1 + m̄(τ + 1)]2 − 4τm̄(m̄+ 1)}1/2 . (133)

This capacity is achieved by a Gaussian state. Forτ → 1 we
have the identity channel and we getCE(I) = 2g(µ), which
is twice its classical capacityC(I).

F. Entanglement distribution and secret-key capacities

Other important tasks that can be achieved in quantum in-
formation are the distribution of entanglement and secret keys
over quantum noisy channels. Given a memoryless channel
M, its entanglement distribution capacityE(M) quantifies
the number of entanglement-bits which are distributed per
use of the channel. As shown by Barnumet al. (2000), this
quantity coincides with the quantum capacity, i.e.,E(M) =
Q(M). Then, the secret-key capacityK(M) of the chan-
nel provides the number of secure bits which are distributed
per use of the channel (Devetak, 2005). Since secret bits
can be extracted from entanglement bits, we generally have
K(N ) ≥ E(M). Using classical communication, Alice
and Bob can improve all these capacities. However, they
need feedback classical communication, since the capacities
assisted by forward classical communication, i.e.,K→(M),
E→(M) andQ→(M), coincide with the correspondingunas-

sisted capacities,K(M), E(M) andQ(M) (Barnumet al.,
2000; Devetak, 2005).

Unfortunately, the study of feedback-assisted capacitiesis
a very difficult task. Alternatively, we can introduce simpler
capacities, called reverse capacities, defined by the maximiza-
tion over protocols which are assisted by a single feedback
classical communication (known as reverse protocols). A re-
verse protocol can be explained considering the purified sce-
nario of Fig. 3. Alice sends to Bob a large number ofAmodes
while keeping theR modes. Then Bob applies a quantum op-
eration over all the outputB modes and communicates a clas-
sical variable to Alice (single final classical communication).
Exploiting this information, Alice applies a conditional quan-
tum operation on all theR modes. Thus we have the reverse
(◭) entanglement distribution capacityE◭(M) and the re-
verse secret-key capacityK◭(M), which clearly must satisfy
K◭(M) ≥ E◭(M). Interestingly, these capacities can be
lower bounded by a quantity which is very easy to compute.
In fact, as shown by Garcı́a-Patrónet al. (2009), we can define
thereverse coherent information

JR(M, ρ̂A) = S(ρ̂R)− S(ρ̂RB) . (134)

This quantity differs from the coherent informationJ(M, ρ̂A)
by the replacementS(ρ̂B) → S(ρ̂R) = S(ρ̂A). For this
reason, we can haveJR(M, ρ̂A) > J(M, ρ̂A) for channels
which decrease entropy, i.e.,S(ρ̂A) > S(ρ̂B). Optimiz-
ing the reverse coherent information over all the inputs, we
can define the (one-shot) reverse coherent information capac-
ity E

(1)
R (M) and the corresponding regularizationER(M).

Interestingly, this quantity turns out to be additive for all
channels, so that we simply haveER(M) = E

(1)
R (M).

Now the capacityER(M) provides a lower bound for the
reverse capacities, i.e.,K◭(M) ≥ E◭(M) ≥ ER(M).
The expression ofER(M) can be very simple. As shown
by Pirandola, Garcı́a-Patrón,et al. (2009), an arbitrary one-
mode Gaussian channelG with transmissionτ 6= 1 has

ER(G) = max

{

0, log

∣
∣
∣
∣

1

1− τ

∣
∣
∣
∣
− g(ν)

}

, (135)
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whereν := 2n̄+ 1 andn̄ is the thermal number of the chan-
nel. Note thatER(G) can be positive forτ ≤ 1/2, where the
channel is antidegradable and, therefore,E(G) = Q(G) = 0.
Thus, despite the fact that the unassisted (forward-assisted)
capacities are zero, the use of a single feedback classical com-
munication is sufficient to distribute entanglement (E◭(G) >
0) and secret keys (K◭(G) > 0). In cryptographic terms,
antidegradibility means that an eavesdropper is able to recon-
struct the output state of Bob. Despite this, Alice and Bob are
still able to extract a secret key from their shared correlations
by using a reverse secret-key protocol. This is a remarkable
feature of reverse reconciliation, further discussed in Chap-
ter VI.

G. Gaussian channel discrimination and applications

The discrimination of quantum channels represents one
of the basic problems in quantum information theory (Acı́n,
2001; Childset al., 2000; Chiribellaet al., 2008; Duanet al.,
2009; Harrowet al., 2010; Hayashi, 2009; Invernizziet al.,
2011; Sacchi, 2005; Wang and Ying, 2006). Here we discuss
the problem of distinguishing between two Gaussian chan-
nels. Suppose that we have a black box which implements
one of two possible (one-mode) Gaussian channels,G0 or G1,
with the same probability, and we want to find out which one
it is. In other words, the box contains an unknown Gaussian
channelGu encoding a logical bitu = 0, 1 and we want to
retrieve the value of this bit. The basic approach involves
probing the box with a one-mode quantum stateρ̂ and de-
tecting the corresponding outputσ̂u := Gu(ρ̂) by means of a
quantum measurement. However, this approach can be read-
ily generalized. In fact, we can consider multiple access tothe
box by inputtingM signal modes. Then, we can also consider
additionalL idler modes, which are not processed by the box
but are directly sent to the output measurement, as shown in
Fig. 4. Thus, for a given statêρ of the inputM + L modes,
we have two possible output states,σ̂0 andσ̂1, described by
the dichotomic statêσu := (G⊗M

u ⊗ I⊗L)(ρ̂), whereG⊗M
u

is applied to the signals and the identityI⊗L to the idlers.
This output is detected by a multimode quantum measure-
ment whose outcome estimates the encoded bit. Now, since
σ̂0 and σ̂1 are generally non-orthogonal, the bit is decoded
up to an error probabilityperr. Thus, the main goal of the
problem is the minimization ofperr, which must be done on
both input and output. For fixed input stateρ̂, the optimal de-
tection of the output is already known: this is the Helstrom’s
dichotomic POVM discussed in Sec. III.A. However, we do
not know which state is optimal at the input. More precisely,
we do not know the optimal input state when we constrain the
signal energy irradiated over the box. Here there are two kinds
of constraints that we can actually consider. The first one is
a global energy constraint, where we restrict the mean total
number of photonsmtot irradiated over the box. In this case
the minimum value ofperr can be non-zero. The second one is
a local energy constraint, where we restrict the mean number
of photonsm̄ per signal mode. In this case, the value ofperr
generally goes to zero forM → +∞ and the problem is to

achieve the most rapid decaying behavior. In both cases find-
ing the optimal input state for fixed energy is an open problem.

However, we can try to answer related questions: for fixed
energy, does entanglement help? Or more generally: do we
need non-classical states for minimizingperr? By definition
a state is called classical (non-classical) when it can (cannot)
be written as a probabilistic mixture of coherent states, i.e.,
ρ̂ =

∫
dαP (α) |α〉 〈α|, where|α〉 = |α1〉 ⊗ · · · ⊗ |αL+M 〉

andP (α) is a probability density function. Classical states are
always separable and represent the standard sources in today’s
optical applications. By contrast, non-classical states (such as
number states, squeezed and entangled states) are only gen-
erated in quantum optics labs. Thus, we can formulate the
following question: for fixed signal energy (mtot or m̄) and
optimal output detection, can we find a non-classical state
which outperforms any classical state in the discrimination of
two Gaussian channels? This basic question has motivated
several theoretical investigations (Pirandola, 2011; Tanet al.,
2008; Usha Devi and Rajagopal, 2009; Yuen and Nair, 2009).
In particular, it has been answered in two interesting scenar-
ios, with non-trivial implications in quantum technology.
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FIG. 4 Gaussian channel discrimination. The input stateρ̂ describes
M signal modes andL idler modes. Only the signals probe the black
box which contains one of two possible (one-mode) Gaussian chan-
nelsG0 or G1 (encoding a bitu). At the output, signals and idlers are
described by a dichotomic quantum stateσ̂u whose detection gives
an estimate of the bit.

The first scenario is known asquantum illumination (Lloyd,
2008) with Gaussian states (Tanet al., 2008). Here the Gaus-
sian channel discriminationG0 6= G1 is related with the prob-
lem of sensing the presence of a low-reflectivity object in a
bright thermal-noise environment. In this case, the black box
of Fig. 4 represents a target region from where the signals are
reflected back to the detector. If the object is absent (bit-value
u = 0) we have a completely depolarizing channelC(0, 0, n̄)
which replaces each signal mode with an environmental mode
in a thermal state with̄n ≫ 1 photons. By contrast, if the
object is present (bit-valueu = 1), we have a lossy channel
L(κ, n̄′) with high lossκ≪ 1 and high thermal number̄n′ :=
n̄/(1 − κ) ≫ 1. These channels are entanglement-breaking,
i.e., no entanglement survives at the output. Now, assum-
ing very few photons per signal modēm ≪ 1 (local con-
straint), we ask if a non-classical state is able to outperform
any classical state. To this goal, we construct an EPR trans-
mitter composed ofM signals andM idlers in a tensor prod-
uct of EPR states, i.e.,ΦM := ρ̂11(r)⊗ · · ·⊗ ρ̂MM (r), where
ρ̂ij(r) is an EPR state of squeezingr which entangles signal
modei and idler modej. The corresponding error probability
perr = pEPR(M) can be computed using the Gaussian for-
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mula of the quantum Chernoff bound (see Sec. III.A.2.a). For
largeM , we derivepEPR(M) ≃ exp(−Mκm̄/n̄)/2, which
decays to zero more rapidly than the error probability of any
classical state withM signals and arbitraryL idlers. In partic-
ular, if we restrict the classical states to coherent states, then
we have an error probabilitypcoh(M) ≃ exp(−Mκm̄/4n̄)/2
which is 6 dB worse thanpEPR(M) (Tanet al., 2008). In-
terestingly, the quantum illumination advantage accrues de-
spite the fact that no entanglement survives at the output. In
fact, even if the output signal-idler correlations are within the
classical bounds, there is no classical input state that canpro-
duce a close approximation to this output state. Further stud-
ies on quantum illumination of targets have been pursued by
Shapiro and Lloyd (2009) and Guha and Erkmen (2009).

The second scenario regards the use of non-classical trans-
mitters to read data from classical digital memories, such as
optical disks (CDs and DVDs). This is known asquantum

reading (Pirandola, 2011). Here the discrimination of Gaus-
sian channels is associated with the retrieval of information
from a memory cell, modeled as a medium with two possible
reflectivities. This cell is equivalent to the black box of Fig. 4
where the bitu = 0, 1 specifies two lossy channels,L(κ0, n̄)
andL(κ1, n̄), with the same thermal numbern̄ but different
lossesκ0 6= κ1. For optical disks, we can consider low noise
(n̄ ≪ 1) andκ1 close to1. In these conditions, and irradi-
ating relatively few photons over the cellmtot ≃ 10 (global
constraint), we can find an EPR transmitterΦM ′ , with small
M ′, which is able to outperform any classical state with any
M andL. As shown by Pirandola (2011), the difference in
the readout of information can be surprising (up to one bit per
cell), with non-trivial implications for the technology ofdata
storage. Follow up studies on the quantum reading of memo-
ries have been pursued by various authors (Bisioet al., 2011;
Hirota, 2011; Nair, 2011; Pirandolaet al., 2011).

VI. QUANTUM CRYPTOGRAPHY USING CONTINUOUS
VARIABLES

Cryptography is the theory and practice of hiding informa-
tion (Menezeset al., 1997). The development of the informa-
tion age and telecommunications in the last century has made
secure communication a must. In the 1970s, public-key cryp-
tography was developed and deals with the tremendous de-
mand for encrypted data in finance, commerce and govern-
ment affairs. Public-key cryptography is based on the concept
of one-way functions, i.e., functions which are easy to com-
pute but extremely hard to invert. As an example, most of the
current internet transactions are secured by the RSA proto-
col, which is based on the difficulty of factorizing large num-
bers (Rivestet al., 1978). Unfortunately, its security is not
unconditional, being based on the assumption that no efficient
factorization algorithm is known for classical computers.Fur-
thermore, if quantum computers were available today, RSA
could be easily broken by Shor’s algorithm (Shor, 1997).

Ideally, it would be desirable to have a completely secure
way of communicating, i.e., unconditional security. Shannon
(1949) proved that this is indeed possible using the one-time

pad (Vernam, 1926). Here two parties, Alice and Bob, share a
pre-established secret key unknown to a potential eavesdrop-
per, Eve. In this technique, Alice encodes her message by
applying a modular addition between the plaintext bits and an
equal amount of random bits from the secret key. Then, Bob
decodes the message by applying the same modular addition
between the ciphertext received from Alice and the secret key.
The main problem of the one-time pad is the secure genera-
tion and exchange of the secret key, which must be at least
as long as the message and can only be used once. Distribut-
ing very long one-time pad keys is inconvenient and usually
poses a significant security risk. For this reason, public-key
cryptography is more widely used than the one-time pad.

Quantum cryptography, or quantum key distribution (QKD)
as it is more accurately known3, is a quantum technology al-
lowing Alice and Bob to generate secret keys that can later
be used to communicate with theoretically unconditional se-
curity. This is used in conjunction with the one-time pad
or another symmetric cryptographic protocol such as pretty
good privacy (Schneier, 1995). The unconditional security
of QKD is guaranteed by the laws of quantum mechan-
ics (Gisinet al., 2002) and, more precisely, the no-cloning
theorem (cf. Sec. V.E), which can be understood as a man-
ifestation of the Heisenberg uncertainty principle. The first
QKD protocol was the BB84 protocol (Bennett and Brassard,
1984). Since then QKD has become one of the leading fields
in quantum information. Despite being a quantum technology,
QKD is not hard to implement experimentally. In fact, the use
of telecom components over normal optical fibers is sufficient
to distribute secret keys with reasonable rates over metropoli-
tan network areas, as recently demonstrated by the European
Union’s SECOQC project (SECOQC, 2007). Today QKD can
be considered as a mature field (Scaraniet al., 2009) with sev-
eral start-up companies formed around the world.

In this section, we review the continuous-variable ver-
sion of QKD, whose key elements are the modula-
tion (encoding) of Gaussian states and Gaussian measure-
ments (decoding), e.g., homodyne and heterodyne detec-
tion. The first continuous-variable QKD protocols were
based on a discrete modulation of Gaussian states (Hillery,
2000; Ralph, 1999a; Reid, 2000). The first protocol
based on a continuous (Gaussian) modulation of Gaus-
sian states was introduced by Cerfet al. (2001) and em-
ployed squeezed states for the secret encoding. This idea
was readily extended by Grosshans and Grangier (2002) and
Grosshans, van Assche,et al. (2003), with the design and im-
plementation of the first continuous-variable QKD protocol
based on the Gaussian modulation of coherent states and ho-

3 Technically, quantum cryptography refers not only to quantum key dis-
tribution but also other secrecy tasks such as quantum money, quan-
tum secret and state sharing (Lanceet al., 2004; Tyc and Sanders, 2002),
quantum bit commitment (albeit with certain constraints (Magninet al.,
2010; Mandilara and Cerf, 2011)), and quantum random numbergener-
ators (Gabrielet al., 2010). However, it is not uncommon for quantum
cryptography and quantum key distribution to be used synonymously in
the literature.
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modyne detection. Shortly afterwards, another coherent-state
protocol was proposed (Weedbrooket al., 2004, 2006) and
implemented (Lanceet al., 2005), known as the no-switching
protocol, where homodyne detection is replaced by hetero-
dyne detection. This enables the honest parties to exploit
both quadratures in the distribution of the secret key. It
is important to note that the coherent-state encoding intro-
duced by Grosshans and Grangier (2002) is today at the core
of the most promising continuous-variable QKD implementa-
tions, thanks to the possibility of using standard telecom com-
ponents (Fossieret al., 2009; Lodewycket al., 2007, 2005,
2007; Lodewyck and Grangier, 2007).

In order to reach significant transmission distances,
i.e., corresponding to more than3 dB of loss, two
main techniques are commonly used: reverse recon-
ciliation (Grosshans, van Assche,et al., 2003) and post-
selection (Silberhornet al., 2002). Furthermore, the introduc-
tion of new protocols using two-way quantum communica-
tion (Pirandola, Mancini,et al., 2008) and discrete modula-
tion (Leverrier and Grangier, 2009, 2010b) have shown the
possibility of further improvements in terms of transmission
range. Recently, it was shown by Weedbrooket al. (2010)
that a secure key could, in principle, be generated over short
distances at wavelengths considerably longer than opticaland
down into the microwave regime, providing a potential plat-
form for noise-tolerant short-range QKD.

The first security proof in continuous-variable QKD
was given by Gottesman and Preskill (2001) using squeezed
states. The proof used techniques from discrete-variable
quantum error correction and worked for states with squeez-
ing greater than2.51 dB. Subsequent proofs for continuous-
variable QKD followed, including a proof against individ-
ual attacks for coherent-state protocols (Grosshans and Cerf,
2004) and an unconditional security proof which reduced co-
herent attacks to collective attacks (Renner and Cirac, 2009).
Using the latter result, a large family of QKD protocols
can be analyzed against the simpler collective Gaussian at-
tacks (Garcı́a-Patrón and Cerf, 2006; Leverrier and Grangier,
2010a; Navascuéset al., 2006) which have been fully
characterized by Pirandola, Braunstein, and Lloyd (2008).
More recently, finite-size effects have begun to be stud-
ied (Leverrieret al., 2010), with the aim of assessing uncondi-
tional security when only a finite number of quantum systems
have been exchanged.

This section is structured as follows. In Sec. VI.A we
present the various continuous-variable QKD protocols using
Gaussian states. This is followed by an analysis of their se-
curity in Sec. VI.B and finally, in Sec. VI.C, we discuss the
future directions of the field.

A. Continuous-variable QKD protocols

In this section we start by presenting a generic QKD proto-
col. Then we continue by illustrating the most important fam-
ilies of continuous-variable QKD protocols based on the use
of Gaussian states. These protocols are presented asprepare-

and-measure schemes, where Alice prepares an ensemble of

signal states using a random number generator. In Sec. VI.A.5
we also discuss the entanglement-based representation, where
Alice’s preparation is realized by a suitable measurement over
an entangled source.

1. A generic protocol

Any QKD protocol, be it based on discrete or continuous
variables, can be divided into two steps: (1) quantum commu-
nication followed by (2) classical post-processing. During the
quantum communication, Alice and Bob exchange a signifi-
cant number of quantum states over a communication chan-
nel, which is modeled as a quantum channel. In each round,
Alice encodes a classical random variablea onto a quantum
system which is sent to Bob. This system is measured by Bob
at the output of the channel, thus extracting a random vari-
ableb which is correlated to Alice’s. Repeating this procedure
many times, Alice and Bob generate two sets of correlated
data, known as the raw keys.

Quantum communication is followed by classical post-
processing where the two raw keys are mapped into a shared
secret key (i.e., the final key used to encode the secret mes-
sage). The classical post-processing is divided into several
stages (Gisinet al., 2002; Scaraniet al., 2009; van Assche,
2006). The first stage is thesifting of the keys where Alice
and Bob communicate which basis or quadrature they used to
encode/decode the information, thus discarding incompatible
data. We then haveparameter estimation, where the two par-
ties compare a randomly chosen subset of their data. This step
allows them to analyze the channel and upper-bound the infor-
mation stolen by Eve. Next, we haveerror correction, where
the two parties communicate the syndromes of the errors af-
fecting their data. As a result, Alice’s and Bob’s raw keys are
transformed into the same string of bits. Finally, we havepri-

vacy amplification. During this step, the two parties generate
a smaller but secret key, reducing Eve’s knowledge of the key
to a negligible amount (van Assche, 2006). The amount of
data to discard is given by the upper-bound on Eve’s informa-
tion which has been computed during the parameter estima-
tion stage.

It is important to note that the classical post-processing
stages of error correction and privacy amplification involves
a public channel that Alice and Bob use by means of ei-
ther one-way or two-way classical communication (the ini-
tial stages of sifting and parameter estimation always involve
two-way communication). Two-way classical communication
is allowed in the postselection protocol which we introduce
later. When one-way classical communication is used and
is forward, i.e., from Alice to Bob, we have direct recon-
ciliation. In this case, Alice’s data is the reference which
must be estimated by Bob (and Eve). By contrast, if one-
way classical communication is backward, i.e., from Bob
to Alice, then we have reverse reconciliation, where Bob’s
data must be estimated by Alice (and Eve). As discussed
by Pirandola, Garcı́a-Patrón,et al. (2009), both direct and re-
verse reconciliation can be in principle realized by using a
single classical communication. This observation enables a
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simple definition of the most general protocols in direct and
reverse reconciliation (direct and reverse protocols). Byusing
these protocols we can define the direct and reverse secret-
key capacities of an arbitrary quantum channel (see Sec. V.F).
Another important observation is that the public channel used
for the classical communication must be authenticated. This
means that Alice and Bob have to identify themselves by us-
ing a pre-shared secret key (Renner and Wolf, 2005). As a
result, QKD does not create secret keys out of nothing, but
rather expands initial secret keys into longer ones.

2. Coherent-state protocol (homodyne detection)

A seminal result in QKD using continuous variables
was the discovery that coherent states are sufficient to dis-
tribute secret keys (Grosshans and Grangier, 2002; Ralph,
2003). Because coherent states are much easier to gen-
erate in the lab than any other Gaussian state, this
result opened the door to experimental demonstrations
and field implementations. The first Gaussian mod-
ulated coherent state protocol utilized direct reconcilia-
tion (Grosshans and Grangier, 2002), followed shortly af-
ter by reverse reconciliation (Grosshans, van Assche,et al.,
2003). Since then nearly all proposals have used coherent
states as its substrate. The security of coherent-state protocols
is based on the fact that coherent states are non-orthogonal(cf.
Eq. 30), which on its own is a sufficient condition for QKD
(i.e., the no-cloning theorem applies). The quantum commu-
nication starts by Alice generating two real variables,aq and
ap, each drawn from a Gaussian distribution of varianceVa
and zero mean. These variables are encoded onto a coherent
state resulting in a mean of(aq, ap). By imposingVa = V −1,
we obtain an average output state which is thermal of variance
V . For each incoming state, Bob draws a random bitu′ and
measures either thêq or p̂ quadrature using homodyne detec-
tion based on the outcome ofu′. After repeating these steps
many times, Alice ends up with a long string of data encoding
the values(aq, ap) which are correlated with Bob’s homodyne
outcomesb. The post-processing starts by Bob revealing his
string of random bitsu′ and Alice keeping as the final string
of dataa the values (aq or ap) matching Bob’s quadratures.

3. No-switching protocol (heterodyne detection)

In the previous protocols, Alice generates two real random
variables but in the end only one is ultimately used for the
key after the sifting stage. Thus, one can modify the protocol
in order to use both values for the generation of the key, as
shown by Weedbrooket al. (2004). The quantum communi-
cation part of the protocol is equivalent to the previous pro-
tocols except for Bob’s measurement which is now replaced
by heterodyne detection, and enables him to measureq̂ and
p̂ simultaneously (albeit with a noise penalty demanded by
the uncertainty principle). Since there is no longer the ran-
dom switching between the two conjugated bases, the random
number generator at Bob’s side is no longer needed. After re-

peating these steps many times, Alice ends up with two strings
of data(aq, ap) correlated with Bob’s data(bq, bp). Hetero-
dyne detection allows for a simpler experimental setup, pro-
ducing higher secret-key rates and can be used in conjunction
with all known continuous-variable QKD protocols.

4. Squeezed-state protocols

The ability to use coherent states was a milestone in
continuous-variable QKD and is currently, by far, the most
popular state to use both theoretically and experimentally.
However, the first protocol based on the Gaussian modulation
of Gaussian states with Gaussian measurements was given by
Cerf et al. (2001) and involved using squeezed states. Here
Alice generates a random bitu and a real variablea drawn
from a Gaussian distribution of varianceVa and zero mean.
Subsequently, she generates a squeezed vacuum state and dis-
places it by an amounta. Before sending the state through the
quantum channel, Alice applies a random phase ofθ = uπ/2.
This is equivalent to randomly choosing to squeeze and dis-
place either thêq or p̂ quadrature. Averaging the output states
over the Gaussian distribution gives a thermal state whose
varianceV is the same foru = 0 andu = 1, which prevents
Eve from extracting information on which quadrature was se-
lected by Alice. This imposes the constraintVa + 1/V = V
on Alice’s modulation. Once the state has reached Bob, he
generates a random bitu′ informing him which quadrature
he should measure. Alice and Bob then publicly reveal their
strings of random bits keeping only the data which corre-
sponds to the same measured quadrature.

Another squeezed state protocol was developed by
Garcı́a-Patrón and Cerf (2009) where Alice again randomly
sends displaced squeezed states to Bob. However, this time
Bob uses heterodyne detection rather than homodyne detec-
tion, but still disregards either one of his quadrature mea-
surements, depending on Alice’s quadrature choice. This re-
verse reconciliation protocol can be seen as a noisy version
of the protocol with squeezed states and homodyne detec-
tion. Thanks to this addition of noise, the protocol has an
enhanced robustness versus the noise of the channel which
can be interpreted as the continuous-variable counterpartof
the effect described by Renneret al. (2005) for qubit-based
protocols. Note that such an effect can also be seen in the
work of Navascués and Acı́n (2005), where the protocol with
coherent states and homodyne detection has a better perfor-
mance than the protocol with squeezed states and homodyne
detection when using direct reconciliation. Further evidence
that noise can improve the performance of QKD is provided
in the work of Pirandola, Garcı́a-Patrón,et al. (2009).

5. Fully-Gaussian protocols and entanglement-based
representation

The previous protocols based on coherent states encoding
and homodyne detection, together with the no-switching pro-
tocols and the squeezed states protocols are all based on the
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Gaussian modulation of Gaussian states followed by Gaus-
sian measurements. For this reason, we refer to these pro-
tocols asfully-Gaussian protocols. Because they can be im-
plemented in direct or reverse reconciliation, they represent a
family of eight protocols. As we will discuss afterwards, their
unconditional security can be simply assessed against collec-
tive Gaussian attacks. By adopting an entanglement-based
representation (Bennettet al., 1992; Grosshans, Cerf,et al.,
2003), these protocols can be described by a unique scheme
(Garcı́a-Patrón, 2007) where Alice has an EPR state|V 〉A′A
with noise varianceV and sends one modeA to Bob while
keeping the other modeA′ for herself (see Fig. 5). Then,
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FIG. 5 Entanglement-based representation for the fully-Gaussian
protocols. Alice has an EPR state|V 〉

A′A
sending modeA to Bob

while keeping modeA′. Alice (Bob) mixes her (his) modeA′ (B)
with a vacuum mode in a beam splitter of transmissivityτA (τB) and
subsequently homodynes the output quadratures. Dependingon the
value ofτA, Alice generates a source of squeezed states (τA = 1) or
coherent states (τA = 1/2). Then, Bob applies homodyne (τB = 1)
or heterodyne (τB = 1/2) detection.

Alice mixes her modeA′ with a vacuum modeC into a
beam splitter of transmissivityτA, followed by a measure-
ment of the output quadratureŝqA and p̂C . As a result, she
projects the EPR modeA into a Gaussian state with mean
d = (γqqA, γppC) and covariance matrixV = diag(x−1, x),
wherex = (µV + 1)/(V + µ), µ = (1− τA)/τA and

γq =

√

τA(V 2 − 1)

τAV + (1− τA)
, γp =

√

(1− τA)(V 2 − 1)

(1− τA)V + τA
. (136)

It is easy to check that Alice generates a source of squeezed
(coherent) states forτA = 1 (τA = 1/2). Then, Bob applies
homodyne (τB = 1) or heterodyne (τB = 1/2) detection de-
pending on which protocol they want to implement. It is im-
portant to note that the entanglement-based representation is a
powerful tool to study many other QKD protocols, including
discrete modulation and two-way protocols. In general, any
prepare-and-measure protocol admits an entanglement-based
representation. This is because any ensemble of states on a
systemA can be realized by applying a partial measurement
on a larger bipartite systemA+A′ (Hughstonet al., 1993).

6. Postselection

Originally, it was believed that the range of continuous-
variable QKD protocols could not exceed the3 dB loss limit,
as first encountered by direct reconciliation. Exceeding such
a limit corresponds to having less than50% transmission
which intuitively means that Eve is getting more informa-

tion on Alice’s data than what Bob is. However, two pro-
posals showed that such a limit can actually be surpassed,
namely reverse reconciliation (as discussed previously) and
postselection (Silberhornet al., 2002). The quantum commu-
nication part of the postselection protocol is equivalent to the
previously mentioned coherent-state protocols. However,the
main difference occurs in the classical post-processing stage.
In the sifting stage, once Bob has revealed which quadra-
ture he measured, Alice replies with the absolute value of her
corresponding quadrature (|aq| or |ap|). Subsequently, Bob,
depending on Alice’s revealed value and the absolute value
of his measurement outcome|b|, decides, following a pre-
established rule, whether they should discard or keep parts
of their data. The main concept is that, every pair of values
(|a|, |b|) can be associated with a discrete channel and a bi-
nary protocol, based on the signs ofa and b. A theoretical
secret-key rateK(|a|, |b|) can be calculated for each channel
(|a|, |b|) from the data obtained during the parameter estima-
tion stage of the post-processing. The postselection protocol
discards those channels for whichK(|a|, |b|) ≤ 0, keeping
only those channels with a positive contribution. A variantof
this protocol consists in Bob applying heterodyne instead of
homodyne detection, i.e., a no-switching postselection proto-
col (Lanceet al., 2005; Lorenzet al., 2004). In such a case,
Alice and Bob can extract information from both quadra-
tures thus increasing the secret-key rate. This version of the
postselection protocol has also been experimentally demon-
strated (Lanceet al., 2005; Lorenzet al., 2006).

7. Discrete modulation of Gaussian states

The very first continuous-variable QKD protocols were
based on a discrete (and hence, non-Gaussian) encoding
of Gaussian states (Hillery, 2000; Ralph, 1999a; Reid,
2000). However, after the discovery of Gaussian modu-
lated coherent states as a viable resource, the discrete en-
coding took a back seat with only a small number of pa-
pers continuing with the idea (Heid and Lütkenhaus, 2006;
Namiki and Hirano, 2003, 2006). In recent times though,
there has been renewed interest in the discrete encoding
of coherent states (Leverrier and Grangier, 2009, 2010b,c;
Sych and Leuchs, 2009; Zhaoet al., 2009) due to it being ex-
perimentally easier to implement as well as its higher error
correction efficiencies which promotes continuous-variable
QKD over longer distances. A generalized protocol using a
discrete modulation (Sych and Leuchs, 2009) consists of an
alphabet ofN coherent states|αk〉 =

∣
∣aei2πk/N

〉
with rela-

tive phase2πk/N , wherek encodes the secret key. Bob uses
either homodyne or heterodyne detection in order to estimate
k. Such a multi-letter encoding scheme can achieve higher
key rates under the assumption of a lossy channel. Of the pro-
posals introduced thus far, the classical post-processingstage
uses either postselection or reverse reconciliation. The cur-
rent drawback with discrete modulation Gaussian protocols
is the infancy of their security analysis, although promising
advances have been made recently (Leverrier and Grangier,
2009, 2010b; Zhaoet al., 2009).
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8. Two-way quantum communication

In standard QKD protocols the quantum communica-
tion is one-way, i.e., quantum systems are sent from Al-
ice to Bob. In two-way protocols, this process is bidi-
rectional, with the systems transformed by Bob and sent
back to Alice (Boström and Felbinger, 2002, 2008). Re-
cently, Pirandola, Mancini,et al. (2008) introduced this idea
in continuous-variable QKD, showing how the use of two-
way quantum communication can increase the robustness to
noise of the key distribution. As a result, bosonic channels
which are too noisy for one-way protocols may become se-
cure for two-way protocols. This “security activation” can
have non-trivial applications, especially in realistic communi-
cation lines where the noise is high. For simplicity, we discuss
only the two-way coherent-state protocol depicted in Fig. 6,
which is a two-way extension of the no-switching protocol.
Let Alice prepare a random coherent state|α〉, whose am-
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FIG. 6 Two-way coherent-state protocol. Alice sends a random co-
herent state to Bob, who selects between two configurations,ON or
OFF. In ON, Bob applies a random displacementD(β). In OFF,
he heterodynes and prepares another random coherent state|γ′〉. In
both configurations, the output state is sent back to Alice who per-
forms heterodyne detection. The figure also displays a two-mode
attack (discussed later).

plitudeα is Gaussian modulated. This state is sent to Bob,
who randomly chooses between two configurations, ON and
OFF. In ON, Bob applies a random displacementD(β) with β
Gaussian modulated. In OFF, Bob heterodynes the incoming
state with outcomeα′ and prepares another random coherent
state|γ′〉. In both configurations, the state is finally sent back
to Alice, who performs heterodyne detection with outcome
γ. During sifting, Bob declares the configuration chosen in
each round. In ON, Alice processesα andγ to estimateβ. In
OFF, Alice considersα ≃ α′ andγ ≃ γ′. During parame-
ter estimation, Alice and Bob analyze the noise properties of
the channel, checking for the presence of memory between the
forward and backward paths. If memory is present, they select
the OFF configuration only. In this way, they can destroy the
effect of the memory in the post-processing, by choosing only
one of the two paths and processing its data in direct or reverse
reconciliation. In this case the protocol is at least as robust as
the underlying one-way protocol. By contrast, if memory is
absent, Alice and Bob can use both the ON and OFF configu-
rations. In this case, the key distribution is more robust tothe
noise of the channel, with the enhancement provided by the
use of the ON configuration (see Sec. VI.B.5.d for details.)

9. Thermal state QKD

Generally, it is assumed in all the previous continuous-
variable QKD protocols that Alice’s initial states originate
from encoding classical information onto pure vacuum states.
However, in practice this is never possible with some level of
impurity occurring due to experimental imperfections. Ther-
mal state QKD therefore addresses this issue where the pro-
tocol is now analyzed with respect to Alice using noisy co-
herent states. This was first investigated by Filip (2008) and
Usenko and Filip (2010) who showed that by using reverse
reconciliation the distance over which QKD was secure, fell
rapidly as the states became significantly impure. Extending
upon this initial work, Weedbrooket al. (2010) showed that
by using direct reconciliation, and provided that the channel
transmissionτ is greater than50%, the security of quantum
cryptography is not dependent on the amount of preparation
noise on Alice’s states. This is a counterintuitive result as we
might naturally expect that as Alice’s states become more and
more thermalized, secure transmission over any finite distance
would become impossible. Consequently, the best strategy to
deal with preparation noise is to use a combination of direct
(τ > 0.5) and reverse reconciliation (τ ≤ 0.5). This moti-
vated analysis into secure key generation at different wave-
lengths and was shown that secure regions exists from the
optical and infrared all the way down into the microwave re-
gion (Weedbrooket al., 2010).

B. Security analysis

The strongest definition of security in a quantum scenario
was given by Renner (2005). A QKD protocol is said to be
ǫ-secure if

D(ρ̂abE , σ̂ab ⊗ ρ̂E) ≤ ǫ (137)

whereD is the trace distance as defined in Eq. (68). Hereρ̂abE
is the final joint state of Alice, Bob and Eve andσ̂ab⊗ρ̂E is the
ideal secret-key state. Therefore, up to a probabilityǫ Alice
and Bob generate a shared secret key identical to an ideal key
and with probability1 − ǫ they abort. In the following we
present the necessary tools to calculate the secret-key rateK
for various continuous-variable QKD protocols.

1. Main eavesdropping attacks

To prove the unconditional security of a QKD protocol, the
following assumptions on Eve have to be satisfied: (1) full ac-
cess to the quantum channel; (2) no computational (classical
or quantum) limitation; (3) capable of monitoring the pub-
lic channel, without modifying the messages (authenticated
channel); (4) no access to Alice’s and Bob’s setups. Under
these assumptions, the most powerful attack that Eve can im-
plement is known as acoherent attack. This consists in Eve
preparing a global ancillary system and making it interact with
all the signals sent through the quantum channel, and then
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storing the output ancillary system into a quantum memory4.
Finally, after having listened to all the classical communi-
cation over the public channel, Eve applies an optimal joint
measurement on the quantum memory. The security against
coherent attacks is extremely complex to address. Interest-
ingly, by using the quantum de Finetti theorem, proven by
Renner (2007) for discrete variables and by Renner and Cirac
(2009) for continuous variables, we can prove unconditional
security in the asymptotic regime by analyzing the simpler
class of collective attacks. For an arbitrary QKD protocol
in the entanglement-based representation, if the multimode
entangled state (shared between Alice and Bob after many
uses of the channel) is permutationally invariant, then, for the
quantum de Finetti theorem, this state can be approximated
(asymptotically) by a mixture of independent and identically
distributed two-mode states. This corresponds to considering
the simpler case of a collective attack.

In a collective attack Eve has a set of independent and
identically prepared systems (ancillas) each one interacting
individually with a single signal sent by Alice. In the
entanglement-based representation, this implies that theout-
put state of Alice, Bob and Eve is in a tensor product ofn
identical states (̂ρabE = ρ̂⊗n

abE ). Eve’s ancillas are stored
in a quantum memory and then, after listening to Alice and
Bob’s classical communication, Eve applies an optimal mea-
surement on the quantum memory. In the asymptotic regime
(n → ∞), the secret-key rateK can be computed via the for-
mula (Renneret al., 2005):

K = ϕ [I(a:b)− S(x:E)] , (138)

whereI(a:b) is the mutual information between the variables
of Alice (a) and Bob (b) andS(x:E) is the Holevo bound
between Alice’s (Bob’s) variablex = a (x = b) and Eve’s
quantum memory, when direct (reverse) reconciliation is used.
For more on the mutual information and the Holevo bound see
Sec. V.C. The coefficientϕ ∈ [0, 1] models the effect of the
sifting. For instance, we haveϕ = 1 for the no-switching
protocol, whileϕ = 1/2 for the protocol with coherent states
and homodyne detection.

2. Finite-size analysis

Until now we have considered the asymptotic scenario
where Alice and Bob exchange infinitely many signals. This
ideal situation is useful when we are interested in comparing
the optimal performances of different protocols. However,in
practice the number of signals is always finite. The formalism
to address this problem was recently developed for discrete-
variable QKD (Cai and Scarani, 2009; Scarani and Renner,

4 Quantum memory is a device that allows the storage and retrieval of quan-
tum information. It plays a role in many continuous-variable quantum in-
formation protocols. For more theoretical details and the status of experi-
mental demonstrations, see e.g., Hammereret al. (2010) and Lvovskyet al.

(2009).

2008). In what follows we explain the most important fea-
tures of finite-size analysis in the continuous-variable scenario
(Leverrieret al., 2010). In such a situation, the secret-key rate
reads

K =
ϕn

N
[βI(a:b)− SǫPE

(a(b):E)−∆(n)−D(n)] ,

(139)
whereN is the total number of signals exchanged;n is the
numbers of signals used for the establishment of the key
(N − n is used for parameter estimation);β is the recon-

ciliation efficiency (ranging from0 when no information is
extracted to1 for perfect reconciliation);SǫPE

(a(b):E) is the
maximal value of Eve’s information compatible with the pa-
rameter estimation data;∆(n) is related to the security of
the privacy amplification and the speed of convergence of the
smooth min-entropy towards the von Neumann entropy;D(n)
is the penalty due to considering collective attacks instead
of coherent attacks (Christandlet al., 2009; Renner, 2007;
Renner and Cirac, 2009). The principal finite-size negative
effect in discrete-variable QKD is due to the parameter esti-
mation (Cai and Scarani, 2009) which is expected to be also
the case for continuous-variable QKD (Leverrieret al., 2010).

Despite the fact that Renner and Cirac (2009) have shown
that collective attacks are as powerful as coherent attacks
in the asymptotic regime, the correctionD(n) provided for
the finite regime leads to a result that could be improved.
An alternative approach using the natural symmetries of
bosonic channels, was suggested by Leverrieret al. (2009),
with only partial results obtained so far (Leverrier and Cerf,
2009). An ideal solution would be finding a generalization
of the Leverrier and Grangier (2010a) result by showing that
collective Gaussian attacks are optimal in the finite regime,
i.e.,D(n) = 0 (which is the case for the asymptotic scenario
as discussed in the next section). The study of finite-size ef-
fects in continuous-variable QKD is very recent and further
investigations are needed.

3. Optimality of collective Gaussian attacks

The fully-Gaussian protocols, have the most developed se-
curity proofs due to their high symmetry. As we have dis-
cussed, Renner and Cirac (2009) have shown that, assuming
the permutation symmetry of the classical post-processing,
collective attacks are as efficient as coherent attacks. There-
fore, in order to guarantee the security against collectiveat-
tacks we need to know what type of collective attack is
the most dangerous. A crucial step in that direction was
the discovery that the optimal attack Eve can implement is
one based on Gaussian operations (Garcı́a-Patrón and Cerf,
2006; Leverrier and Grangier, 2010a; Navascuéset al., 2006).
This consequently makes the security analysis much eas-
ier. Garcı́a-Patrón and Cerf (2006) showed that, for an
entanglement-based QKD protocol characterized by a tripar-
tite stateρ̂abE , i.e., resulting from Alice’s and Bob’s measure-
ments on the pure state|ψ〉ABE , of covariance matrixVABE ,
the secret-key is minimized by the Gaussian stateρ̂GabE of the



33

same covariance matrix, i.e.,

K(ρ̂abE) ≥ K(ρ̂GabE). (140)

As a result, collective Gaussian attacks represent the fun-
damental benchmark to test the asymptotic security of
continuous-variable QKD protocols based on the Gaussian
modulation of Gaussian states.

4. Full characterization of collective Gaussian attacks

The most general description of a collective Gaussian attack
is achieved by dilating the most general one-mode Gaussian
channel into an environment which is controlled by Eve. As
discussed in Sec. V.B, an arbitrary one-mode Gaussian chan-
nel G is associated with three symplectic invariants: trans-
missivity τ , rank r, and thermal number̄n. These quanti-
ties identify a simpler channel, the canonical formC(τ, r, n̄),
which is equivalent toG up to a pair of Gaussian unitariesU
andW (see Fig. 7). The canonical form can be dilated into
a symplectic transformationL(τ, r) which mixes the incom-
ing stateσ̂ with an EPR state|ν〉 of varianceν = 2n̄ + 1
(see Fig. 7). Now if we treat the environment as a large but
finite box, the dilation is unique up to a unitarỹU which trans-
forms the output EPR modesE together with a countable set
of vacuum modesF (see Fig. 7). Thus, for each use of the
channel, Eve’s modes{E,F} are transformed by somẽU and
then stored in a quantum memory. This memory is detected
at the end of the protocol by means of an optimal coherent
measurementM which estimates Alice’s data (in direct rec-
onciliation) or Bob’s data (in reverse reconciliation). This is
the most general description of a collective Gaussian attack
(Pirandola, Braunstein, and Lloyd, 2008).
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FIG. 7 Construction of a collective Gaussian attack in four steps.
(1) Any one-mode Gaussian channelG can be reduced to a canonical
form C via two Gaussian unitariesU andW . (2) FormC can be
dilated into a symplectic transformationL mixing the input statêσ
with an EPR state|ν〉. (3) In a finite box, the dilation is unique up
to a unitaryŨ combining the output EPR modesE with a countable
set of vacuum modesF. (4) After Ũ all of the output is stored in a
quantum memory that Eve measures at the end of the protocol.

This scenario can be greatly simplified if we use the Holevo
bound for Eve’s accessible information. For instance, this
happens when we consider the asymptotic regime, so that
Eq. (138) holds. In this case, we can ignore the details of

M, the extra unitaryŨ and the extra ancillasF. As a re-
sult, the attack is simply described by the canonical dilation
{L(τ, r), |ν〉} and the one-mode Gaussian unitaries{U,W}
(see solid boxes in Fig. 7). As discussed in Ch. II, the
Gaussian unitaries{U,W} can be further decomposed in dis-
placements, rotations and squeezings. By definition, we call
‘canonical’ the attacks withU = W = I. These attacks
are fully described by the canonical dilation{L(τ, r), |ν〉}
(Pirandola, Braunstein, and Lloyd, 2008). The most impor-
tant canonical attack is the (collective) entangling-cloner at-
tack (Grosshans, van Assche,et al., 2003). In this attack, the
symplectic transformationL represents a beam splitter of
transmissivity0 < τ < 1 mixing the incoming signal mode
with one mode only of the EPR state|ν〉. Thus, from the point
of view of Alice and Bob, we have a lossy channel with trans-
missivityτ and thermal number̄n = (ν − 1)/2. This channel
is the most common, representing the standard description for
communication lines such as optical fibers.

5. Secret-key rates

In this section, we discuss the secret-key rates of the
continuous-variable QKD protocols given in Sec. VI.A. These
rates are derived in the presence of a collective entangling
cloner attack which is the most important collective Gaussian
attack in the experimental sense. This attack can be identi-
fied by the parameters of the corresponding lossy channel, i.e.,
transmissionτ and thermal number̄n. Equivalently, we can
considerτ and the excess noiseχ := 2n̄(1 − τ)τ−1, i.e.,
the noise on Bob’s side referred to the input (Alice). These
parameters are inferred by Alice and Bob during the param-
eter estimation stage. Given a specific protocol, the corre-
sponding secret-key rate can be expressed in terms of the two
channel parameters asK = K(τ, χ). Furthermore, the equa-
tionK = 0 defines the security threshold of the protocol, ex-
pressed in terms of tolerable excess noiseχ̄ versus the trans-
missivity of the channel, i.e.,̄χ = χ̄(τ).

Note that we can derive more general expressions for the
secret-key rates by considering the most general form of a col-
lective Gaussian attack (cf. Sec. VI.B.4). This generalization
can be found in Pirandola, Braunstein, and Lloyd (2008) for
the no-switching protocol of Weedbrooket al. (2004). The
secret-key rates of the other protocols could be generalized as
well. This generalization involves not only the study of other
canonical attacks but also the analysis of phase-effects (mix-
ing of the quadratures) which derive from the Gaussian uni-
tariesU andW . These effects can be taken into account by
introducing suitable corrections in the expressions of therates.
Another possibility is reducing an attack to a canonical attack
(U = W = 1) by means of random transformations in the
post-processing stage, which sacrifices part of the secret data.
This symmetrization has been recently used by Leverrieret al.

(2009) to delete phase-effects from lossy channels.

a. Fully-Gaussian protocols
Here we discuss the secret-key rates for the family of fully-
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Gaussian protocols. In the entanglement-based description,
one mode of an EPR state of varianceV is sent through the
lossy channel with transmissivityτ and excess noiseχ. At
the output of the channel, Alice and Bob’s bipartite state is
Gaussian with covariance matrix

VAB =

(
xI zZ
zZ yI

)

, (141)

x = V , y = τ(V + χ) andz =
√

τ(V 2 − 1). Now the var-
ious protocols differ for the measurements of both Alice and
Bob and the kind of reconciliation used. In order to estimate
Eq. (138) we first calculate Alice and Bob’s mutual informa-
tion (Garcı́a-Patrón, 2007)

I(a:b) =
w

2
log
[
(V + χ)/(χ+ λV −1)

]
, (142)

wherew = 1, except for the no-switching protocol where
w = 2; then λ = V (λ = 1) for protocols with coher-
ent (squeezed) states. The calculation of Eve’s information
is more involved. As an example, we consider the calculation
of S(b:E) = S(E)− S(E|b) for reverse reconciliation using
coherent states and homodyne detection. First we use the fact
that Eve’s systemE purifiesAB, i.e.,S(E) = S(AB), where
S(AB) can be calculated from the symplectic eigenvalues of
the matrixVAB using Eq. (54), which are then substituted
into Eq. (46). Next, to calculate the termS(E|b) we find the
symplectic eigenvalues of the covariance matrixVE|b, com-
puted using Eq. (64), and then proceed as before.

b. Postselection
Determining the secret-key rates for postselection is more

challenging than either direct or reverse reconciliation.De-
spite the fact that the postselection protocol involves Gaus-
sian elements in the quantum communication part, its descrip-
tion becomes non-Gaussian after the filtering of data. Conse-
quently, using Eq. (140) to upper-bound Eve’s information no
longer applies. Therefore, a subtler analysis has to be car-
ried out to obtain tighter bounds. Here we present the basic
security analysis for the postselection protocol against col-
lective entangling cloner attacks (Heid and Lütkenhaus, 2007;
Symulet al., 2007). When Bob performs homodyne detec-
tion, the mutual information between Alice and Bob for a
given pair of variables (|aq(p)|, |b|) is given by Shannon’s for-
mula for a binary channel (Shannon, 1948)

I(a : b) = 1 + pe log pe + (1 − pe) log(1 − pe) . (143)

Herepe is Bob’s error in determining the value of Alice’s sign
and is given by

pe =
{
1 + exp

[
8
√
τ |aq(p)b|/(1 + χ)

]}−1
. (144)

Now if Bob performs heterodyne detection, we have to con-
sider the Shannon formula for two parallel binary channels,
one per quadrature, and is given by (Lanceet al., 2005)

pe =
{

1 + exp
[

4
√
2τ |aq(p)b|/(1 + χ)

]}−1

. (145)

Eve’s information is calculated using the Holevo bound be-
tween Eve’s system and the information bits used as reference
for the key (a in direct reconciliation andb in reverse recon-
ciliation). The key rate for a given pair of values (a, b) reads

∆K = ϕ max{βI(a : b)− Sa,b(E : x), 0}, (146)

where againϕ accounts for the sifting andβ for the recon-
ciliation efficiency. The postselection is then modeled by the
maximum function, imposing a zero contribution of the effec-
tive binary channel whenβI(a : b) − Sa,b(E : x) < 0, as
expected. Finally, the evaluation of the overall secret-key rate
needs to be calculated numerically and is given by

K =

∫

p(a, b) ∆K(a, b) da db, (147)

wherep(a, b) is a joint probability distribution. A detailed
experimental analysis was carried out by Symulet al. (2007)
using postselection with the no-switching protocol.

c. Discrete modulation of Gaussian states
One of the technical advantages of continuous-variable

QKD is that it relies solely on standard high-speed opti-
cal telecom components. However to date, field imple-
mentations have been restricted to short distances (27 km
by Fossieret al. (2009)). The main reason is the low effi-
ciency of the reconciliation stage for protocols using Gaussian
modulation (Lodewycket al., 2007). This is especially true
at low signal-to-noise ratios (Leverrieret al., 2008), which
is the working regime when distributing secret keys over
long distances. On the other hand, extremely good rec-
onciliation protocols exist for discrete modulations, as the
error correction procedure is greatly simplified. In this
case, the problem can be mapped onto a binary channel
with additive noise, for which there exists very good codes,
such as low-density-parity check codes (Richardsonet al.,
2001). Unfortunately, protocols based on discrete mod-
ulation, even if using Gaussian states, have non-Gaussian
entanglement-based representations. As a result, the cal-
culation of Eve’s information can no longer rely on the
previous optimality proofs (Garcı́a-Patrón and Cerf, 2006;
Leverrier and Grangier, 2010a; Navascuéset al., 2006).

However, the proof by Garcı́a-Patrón and Cerf (2006)
can still be used to provide a (non-tight) Gaussian up-
per bound on Eve’s information. This idea was used by
Leverrier and Grangier (2009), where a protocol with four co-
herent states was shown to outperform Gaussian-modulated
protocols in the regime of low signal-to-noise ratio. The cru-
cial point was the observation that the four-state modulation
well approximates the Gaussian modulation for low modula-
tion variances. As a result, the Gaussian upper bound can
still be used, being nearly tight in the studied regime. The
following year Leverrier and Grangier (2010b) proposed an-
other non-Gaussian (but continuous) modulation protocol able
to exploit the Gaussian upper bound. In this protocol, Al-
ice generates points centered on an eight-dimensional sphere
to decide which ensemble of four successive coherent states
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are to be sent. Then, Bob uses the no-switching protocol
(heterodyne detection) to guess the point selected by Alice.
The secret-key rate reached by this new protocol is higher, by
nearly an order of magnitude, for realistic parameters, which
enables the distribution of a secret keys over distances of the
order of50 km, even after taking all finite-size effects into
account.

d. Two-way quantum communication
In general, the security analysis of two-way protocols is

quite involved. For simplicity, here we consider the two-way
coherent-state protocol of Fig. 6. Using symmetrization ar-
guments (Renner, 2005; Renner and Cirac, 2009), one can re-
duce an arbitrary coherent attack to a two-mode attack, af-
fecting each round-trip independently. This attack can have a
residual memory between the two uses of the quantum chan-
nel. If this memory is present, Alice and Bob use the OFF
configuration, thus collapsing the protocol to one-way quan-
tum communication. Correspondingly, the attack is reduced
to one-mode, i.e., collective, which can be bounded by assum-
ing a Gaussian interaction (collective Gaussian attack). Thus,
in OFF, the security threshold is given by the underlying one-
way protocol (the no switching protocol in this case). The ad-
vantage occurs when no memory is present, which is the most
practical situation. In particular, this happens when the orig-
inal attack is already collective. In this case, Alice and Bob
can use both the ON and OFF configurations to process their
data. While the OFF configuration is equivalent to two in-
stances of one-way protocol (forward and backward), the ON
configuration is based on a coherent two-way quantum com-
munication. Let us consider the case of a collective entangling
cloner attack, which results in a one-mode lossy channel with
transmissivityτ and excess noiseχ. For everyτ ∈ (0, 1),
the key distribution is possible whenever the excess noiseχ
is below a certain valuēχ specified by the security threshold
χ̄ = χ̄(τ). As shown by Pirandola, Mancini,et al. (2008), the
security threshold in ON configuration is higher than the one
in OFF configuration. For instance, if we consider reverse rec-
onciliation, we havēχON(τ) > χ̄OFF(τ) for everyτ ∈ (0, 1).
As a result, there are lossy channels whose excess noiseχ is
intolerable in OFF but still tolerable in ON. Thanks to this se-
curity activation, the two-way coherent-state protocol isable
to distribute secret keys in communication lines which are too
noisy for the corresponding one-way protocol. This result,
which has been proven for large modulation and many rounds
(asymptotic regime), is also valid for other Gaussian modula-
tion protocols, extended to two-way quantum communication
via the hybrid ON/OFF formulation.

C. Future directions

Continuous-variable QKD offers a promising alternative to
the traditional discrete-variable QKD systems (for a state-of-
the-art comparison between the various QKD platforms see
Scaraniet al. (2009)). An important next step for continuous-
variable QKD is to prove unconditional security in a fully

realistic scenario, for example, by improving the reconcili-
ation procedures and taking finite-size effects into account.
This could potentially provide extremely high secret-key rates
over distances which are comparable to the ones of discrete-
variable protocols (about 100 km). Thus, additional research
efforts are focused to extend the range of continuous-variable
QKD protocols. As opposed to the single-photon detectors
of discrete-variable QKD, the use of homodyne detection in
continuous-variable QKD provides an outcome even for the
vacuum input. Filtering out this vacuum noise is the main
weakness in the reconciliation procedures. From this pointof
view, postselection is the best choice. Therefore, provingthe
unconditional security of the postselection protocol would be
of great interest5. Another possibility is the design of new pro-
tocols which are more robust to excess noise, i.e., with higher
security thresholds. This would enable the reconciliationpro-
cedures to work much more efficiently. Such a possibility has
been already shown by the use of two-way protocols. Thus
further directions include the full security analysis of proto-
cols based on multiple quantum communication.

The further development of continuous-variable quantum
repeaters is also an important research direction. Quan-
tum repeaters would allow one to distribute entanglement be-
tween two end-points of a long communication line, which
can later be used to extract a secret key. This technique
combines entanglement distillation, entanglement swapping,
and the use of quantum memories. Unfortunately, Gaus-
sian operations cannot distill Gaussian entanglement which
poses a serious limitation to this approach. However, there
has been ongoing research effort in the direction of Gaus-
sian preserving optical entanglement distillation employ-
ing non-Gaussian elements (Browneet al., 2003; Eisertet al.,
2004; Fiuràšeket al., 2003; Menzies and Korolkova, 2007;
Ralph and Lund, 2009).

VII. CONTINUOUS-VARIABLE QUANTUM COMPUTATION
USING GAUSSIAN CLUSTER STATES

Quantum computation using continuous variables was first
considered by Lloyd and Braunstein (1999) in the circuit
model of quantum computing (Nielsen and Chuang, 2000).
They showed that arbitrary quantum logic gates (i.e., simple
unitaries) could be created using Hamiltonians that are poly-
nomial in the quadrature operatorsq̂ and p̂ of the harmonic
oscillator. Years later, a different but computationally equiv-
alent model of continuous-variable quantum computation,
known as cluster state quantum computation, was developed
by Zhang and Braunstein (2006) and Menicucciet al. (2006).
This measurement-based protocol of quantum computation
was originally developed by Raussendorf and Briegel (2001)
for discrete variables and forgoes actively implementing quan-
tum gates. Instead, the computation is achieved via local mea-

5 At the time of writing a paper by Walket al. (2011) has appeared which
addresses this issue.
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surements on a highly entangled multimode state, known as a
cluster state. In the ideal case, the continuous-variable cluster
state is created using infinitely squeezed states, but in prac-
tice, is approximated by a finitely squeezed Gaussian entan-
gled state.

These two models of continuous-variable computation
must be associated with a fault tolerant and error correctable
system, where at some point the continuous variables are dis-
cretized. With this in mind, there is a third type of continuous-
variable quantum computer, known as the Gottesman-Kitaev-
Preskill quantum computer (Gottesmanet al., 2001). This
proposal shows how to encode finite-dimensional qubits into
the infinite-dimensional harmonic oscillator, thus facilitating
fault tolerance and quantum error correction. In this sec-
tion, we focus primarily on cluster state quantum computation
while still using important elements of the Gottesman-Kitaev-
Preskill computer and the Lloyd-Braunstein model.

This section is structured as follows. We begin by intro-
ducing important continuous-variable gates as well as defin-
ing what constitutes a universal set of gates. In Sec. VII.B
we introduce the notion of one-way quantum computation us-
ing continuous variables and how one can gain an understand-
ing of it by considering a teleportation circuit. The important
tools of graph states and nullifiers follows in Sec. VII.C, while
the realistic case of Gaussian computational errors due to fi-
nite squeezing is discussed in Sec. VII.D. The various pro-
posals for optically implementing Gaussian cluster statesare
revealed in Sec. VII.E. In Secs. VII.F and VII.G, achieving
universal quantum computation and quantum error correction
for continuous variables, are discussed respectively. Twoex-
amples of algorithms for a continuous-variable quantum com-
puter are given in Sec. VII.H, before ending with future direc-
tions of the field in Sec. VII.I.

A. Continuous-variable quantum gates

Before introducing the quantum gates used in continuous-
variable quantum computation we remind the reader that the
displacement gateD(α), the beam splitter gateB, and the one
and two-mode squeezing gates,S andS2, are important Gaus-
sian gates which have already been introduced in Sec. II.B.
To begin with, in Gaussian quantum information processing
there are the Heisenberg-Weyl operators which comprise of
the position and momentum phase-space displacement opera-
tors, given respectively as

X(s) = exp(−isp̂/2), Z(t) = exp(itq̂/2), (148)

whereX(s) gives a shift by an amounts in the q direction
andZ(t) a momentum shift by an amountt, i.e., in terms of
the displacement operatorD(α) they can be rewritten asX =
D(s/2) andZ = D(it/2). They are related viaX(s)Z(t) =
e−ist/2Z(t)X(s) and act on the position computational basis
states|q〉 as

X(s) |q〉 = |q + s〉 , Z(t) |q〉 = eitq/2 |q〉 . (149)

and on the momentum basis states|p〉 as

X(s) |p〉 = e−isp/2 |p〉 , Z(t) |p〉 = |p+ t〉 . (150)

The position and momentum basis states are related via a
Fourier transform as defined in Eq. (9). The Fourier gateF
is the Gaussian version of the qubit Hadamard gate and can
be defined in terms of the annihilation and creation operators
as well as the quadrature operators

F = exp
( iπ

4

)

exp
[ iπ

2
â†â
]

= exp
[ iπ

8

(

q̂2 + p̂2
)]

. (151)

In the phase-space picture, the Fourier gate is aπ/2 rotation,
e.g., from one quadrature to the other

F †q̂F = −p̂, F †p̂F = q̂. (152)

The Fourier gate acts on the displacement gates as follows

F †Z(t)F = X(t), FX(s)F † = Z(s). (153)

Finally, the Fourier gate acting on the quadrature eigenstates
gives

F |x〉q = |x〉p , F † |x〉q = |−x〉p , (154)

F |x〉p = |−x〉q , F † |x〉p = |x〉q , (155)

where the subscript is used to remind us whether we are in the
computationalq basis or the conjugatep basis. The phase gate
P (η) can be thought of as a type of shearing operation, i.e., a
combination of rotations and squeezers. It is defined as

P (η) = exp
[( iη

4

)

q̂2
]

. (156)

whereη ∈ R. The phase gate acts on theX(s) displacement
gate as

P †X(s)P = eiηs
2/4X(s)Z(ηs), (157)

while leavingZ unaltered. The phase gate affects the quadra-
tures as

P †q̂P = q̂, P †p̂P = p̂+ ηq̂. (158)

The controlled-phase gate, orCPHASE for short, is a two-
mode Gaussian gate defined as

CZ = exp
[( i

2

)

q̂1 ⊗ q̂2

]

. (159)

The effect of this two-mode gate on the computational basis
states is given by

CZ |q1〉 |q2〉 = eiq1q2/2 |q1〉 |q2〉 , (160)

In the Heisenberg picture, theCPHASEgate transforms the
momentum quadratures according to

p̂1 → p̂1 + q̂2, p̂2 → p̂2 + q̂1, (161)

while doing nothing to the position quadraturesq̂1 → q̂1 and
q̂2 → q̂2. TheCPHASEgate and the phase gate both get their
names from the analogous discrete-variable gates and their
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similar actions on the Pauli matrices (Nielsen and Chuang,
2000).

Finally, we note the graphical representation of the quan-
tum gates in the circuit model of computation. The single-
mode Gaussian gates: Heisenberg-Weyl displacement gates,
single-mode squeeze gate, Fourier gate and the phase gate are
given respectively as

X Z S F P (162)

While the two-mode Gaussian gates: theCPHASE gate, the
beam splitter gate and the two-mode squeeze gate, are denoted
respectively by

•
B S

•

(163)

1. Universal set of quantum gates

A continuous-variable quantum computer is said to be uni-
versal if it can implement an arbitrary Hamiltonian with ar-
bitrarily small error. So what are the necessary and suffi-
cient conditions for a continuous-variable quantum computer
to be universal? This is given by the Lloyd-Braunstein crite-
rion (Lloyd and Braunstein, 1999) which tells us which gates
are needed to generate any unitary transformation to arbitrary
accuracy. This consists of the two families of gates:

1. Z(t), P (η), F andUG (which is any multimode Gaus-
sian gate, e.g.,CZ orB), ∀ t, η ∈ R. This first family
generates all possible Gaussian operations.

2. exp[itq̂n≥3] (for some value oft) which is a non-linear
transformation of polynomial degree3 or higher and
corresponds to a family of non-Gaussian gates.

Note that if we were restricted to using only Gaussian gates we
would not be able to synthesize an arbitrary Hamiltonian. In
fact, the continuous-variable version (Bartlettet al., 2002) of
the Gottesman-Knill theorem (Gottesman, 1998) tells us that
starting from an initial Gaussian state, Gaussian processing
(which includes Gaussian measurements and Gaussian opera-
tions) can be efficiently simulated on a classical computer.

B. One-way quantum computation using continuous
variables

One-way quantum computation (Raussendorf and Briegel,
2001) using continuous variables (Guet al., 2009;
Menicucciet al., 2006; Zhang and Braunstein, 2006) al-
lows one to perform any computational algorithm by
implementing a sequence of single-mode measurements on a
specially entangled state known as a cluster state (note that
we often begin our analysis using a perfectly entangled state
but move to the more realistic case of a Gaussian cluster
state as we progress). Here quantum gates are not required,
as arbitrary Hamiltonians are simulated via measurements

alone. After each measurement is performed the resulting
measurement outcome is used to select the basis of the next
measurement. In general, the order in which measurements
are made does matter, a property known asadaptiveness.
However, when implementing only Gaussian gates, this
condition is relaxed and the order no longer matters, a
property known asparallelism. The two basic steps of
continuous-variable cluster state quantum computation can
be summarized as follows:

1. Cluster state preparation: All qumodes are initialized
as highly squeezed vacuum states, approximating mo-
mentum eigenstates|0〉p. TheCZ gate is applied to the
relevant qumodes in order to create the entangled clus-
ter state.

2. Measurements: single-mode measurements are made
on the relevant qumodes where each result is used to
select the subsequent measurement basis.

Here a quantum mode, orqumode for short, is the continuous-
variable analogue of the discrete-variable qubit and is simply
a continuous-variable quantum state or mode. Note that, up
until this point in the review, we have simply referred to such
states as modes. However in line with the terminology used in
the current research of continuous-variable cluster states, we
will refer to such quantum states as qumodes.

1. Understanding one-way computation via teleportation

To get a feel of how measurements allow us to generate
arbitrary evolutions in cluster state computation, it is helpful
to look at quantum teleportation from the perspective of the
quantum circuit model. The quantum circuit for the gate tele-
portation of a single-mode continuous-variable quantum state
|ψ〉 is given by (Menicucciet al., 2006)

|ψ〉 • FE


 p̂ = m1

|0〉p • X(m1)F |ψ〉

(164)

The above circuit can be understood in the following way.
The input states consist of the arbitrary state|ψ〉 that we
wish to teleport and a momentum eigenstate|0〉p (note that
we will begin by considering the unphysical case of perfectly
squeezed vacuum states with the realistic case of Gaussian
squeezed states discussed later). They are entangled using
a CZ gate. A p̂ quadrature measurement is performed re-
sulting in the outcomem1. The state|ψ〉 is thus teleported
from the top quantum wire to the bottom wire and can be
fully restored by applying the correctionsF †X†(m1) to the
output state. We will now go through the above circuit in
more detail. First, the two initial input states can be writ-
ten as|ψ〉 |0〉p. Expanding them into the position basis gives
|ψ〉 |0〉p = (2

√
π)−1

∫
dq1dq2ψ(q1) |q1〉 |q2〉 where |ψ〉 =

∫
dq1ψ(q1) |q1〉 and |0〉p = (2

√
π)−1

∫
dq2 |q2〉. Applying
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theCPHASEgate leads to

CZ |ψ〉 |0〉p =
1

2
√
π

∫

dq1dq2ψ(q1)e
iq1q2/2 |q1〉 |q2〉 .

(165)

After measuringp̂ of the first mode, using the projector
|m1〉 〈m1|p, and obtaining the resultm1 we get

1

4π

∫

dq1dq2ψ(q1)e
iq1(q2−m1)/2 |q2〉 ,

where we used〈m1 |q1〉 = (2
√
π)−1exp(−iq1m1/2). The

above state can be rewritten as:|ψ′〉 = X(m1)F |ψ〉. As
mentioned before applying the corrections gives back the ini-
tial state:F †X†(m1) |ψ′〉 = |ψ〉.

Having considered the teleportation of an arbitrary state,we
are now in a position to consider the teleportation of a quan-
tum gate (Bartlett and Munro, 2003), which is at the heart of
the measurement-based model of computation. This requires
only a slight alteration to the previous circuit as we will be
considering teleporting gates that are diagonal in the computa-
tional basis and thus commute through theCPHASEgate. For
example, the circuit below teleports the state|ψ′〉 = U |ψ〉
whereU = exp[if(q̂)] is a gate diagonal in the computational
basis

U |ψ〉 • FE


 p̂ = m1

|0〉p • X(m1)FU |ψ〉

(166)

The above circuit is equivalent to the circuit below, whereU
can be absorbed into the measurement process

|ψ〉 • FE


 U † p̂ U = m1

|0〉p • X(m1)FU |ψ〉

(167)

The above circuit forms the basis for our understanding of
measurement-based quantum computation. Let us stop for a
moment to consider why this is. Circuit (166) is the typical
quantum circuit where an algorithm (in this case gate telepor-
tation) is achieved by first implementing a quantum gateU
onto a quantum state|ψ〉. However, circuit (167) shows us
that we no longer need to explicitly implement the quantum
gate but we can simulate the effect of the gate using only mea-
surements in a new basis. This effect is the building block of
cluster state computation where we can concatenate a number
of these circuits to form a larger cluster state.

2. Implementing gates using measurements

We have just shown that by performing a measurement in
the basisU †p̂U we can simulate the effect of theU gate on
an arbitrary state. Using this result with the previously men-
tioned Lloyd-Braunstein criterion, we are able to implement

the set of universal Hamiltonianŝq, q̂2, q̂3 using only measure-
ments. We can forget about the two-mode Gaussian gateUG

from the set as we have already used it in creating the cluster
via theCZ gate. We also use the Hamiltonianq̂3, rather than
any other higher order polynomial, because we know how to
optically implement it (more on this in Sec. VII.F). This cor-
responds to the following three transformations

U †
j p̂ Uj = p̂+ tq̂j−1 (168)

for j = 1, 2, 3 and where the gates diagonal in the computa-
tional basis are conveniently written asUj = exp[(it/2j)q̂j].
Notice thatU1 corresponds to the Heisenberg-Weyl displace-
ment operatorZ(t),U2 is the phase gateP (t) andU3 is known
as the cubic phase gate, denoted asV (t). So how are the above
transformations optically implemented? Well, the first oneis
achieved by simply measurinĝp and addingt to the measure-
ment result. The second one is a homodyne measurement in
a rotated quadrature basis:(p̂ cosθ− q̂ sinθ)/cosθ. However,
the cubic Hamiltonian is a little more difficult to implement
than the previous two and will be discussed in more detail in
Sec. VII.F.

C. Graph states and nullifiers

1. Graph states

A common and convenient way of depicting cluster states
is by using graphs. The continuous-variable version of graph
states was defined by Zhang and Braunstein (2006) where ev-
ery continuous-variable cluster state can be represented by a
graph (Guet al., 2009) known as a graph state6. Specifically,
a graphG = (V,E) consists of a set of vertices (or nodes)
V and a set of edgesE. The following recipe allows us to
construct a corresponding graph state

1. Each squeezed momentum eigenstate becomes a vertex
in the graph.

2. EachCZ operation applied between two qumodes is an
edge in the graph.

To illustrate, we give a simple example of a two-mode clus-
ter state. Below we have the first step of initializing the two
squeezed momentum eigenstates (represented by vertices and
labeled1 and2). In the second step theCZ gate is applied,
indicated by the edge joining vertices1 and2. The final step
illustrates how measurements are indicated on a graph. Here
a p̂ quadrature measurement on the first node is implemented

1GFED@ABC 2GFED@ABC → 1GFED@ABC 2GFED@ABC → p̂GFED@ABC 2GFED@ABC (169)

6 From now on we will use the terms “cluster states” and “graph states” in-
terchangeably. Note that some authors technically refer toa cluster state
as one which has a graph that is universal for measurement-based com-
putation (e.g., a square lattice); while a graph state couldbe any arbi-
trary graph. However, in the continuous-variable literature (Flammiaet al.,
2009; Menicucci, 2011; Menicucciet al., 2008, 2011, 2010, 2006) it is
common to use them synonymously with context providing clarity.
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Previously we introduced the quantum circuit formalism to
understand measurement-based computation. Therefore we
give below an equivalence between the teleportation circuit
(on the left) and the graph state formalism (on the right)

|0〉p • FE


 p̂ = m1

|0〉p •

p̂GFED@ABC 2GFED@ABC (170)

The concept of continuous-variable graph states has
been developed in a number of papers by Zhang (Zhang,
2008a,b, 2010) and independently by others (Aolitaet al.,
2011; Flammiaet al., 2009; Flammia and Severini, 2009;
Menicucciet al., 2008, 2007; Pfister, 2007; Zaidiet al., 2008;
Zhanget al., 2009). Recently, a more general approach was
introduced by Menicucciet al. (2011) allowing the graphical
calculus formalism to be applied to the practical case where
continuous-variable cluster states are created using finitely
squeezed Gaussian states rather than ideal perfectly squeezed
eigenstates.

2. Stabilizers and nullifiers

The stabilizer formalism (Gottesman, 1997) for con-
tinuous variables (Barnes, 2004; Gottesmanet al., 2001;
van Loocket al., 2007) is a useful way of both defining and
analyzing cluster states (or graph states). An operatorÔ is
a stabilizer of a state|ψ〉 if Ô |ψ〉 = |ψ〉, i.e., it has an
eigenvalue of+1. For example, a zero momentum eigen-
state |0〉p is stabilized by the displacement operatorX(s),
i.e., X(s) |0〉p = |0〉p for all values ofs. For an arbitrary
continuous-variable graph state|φ〉 with graphG = (V,E)
onn qumodes, the stabilizers are defined as

Ki(s) = Xi(s)
∏

j∈N(i)

Zj(s), (171)

for i = 1, ..., n and for alls ∈ R. HereN(i) means the set of
vertices in the neighborhood ofvi, i.e.,N(i) = {j|(vj , vi) ∈
E}. A variation of these stabilizersKi involves using what is
known asnullifiers Hi. Here every stabilizer is the exponen-
tial of a nullifier, i.e.,Ki(s) = e−isHi for all s ∈ R. This
results inHi |φ〉 = 0 where the set of nullifiers are given by

Hi = p̂i −
∑

j∈N(i)

q̂j . (172)

Therefore the graph state|φ〉 is a zero eigenstate of the above
nullifiers where any linear superposition satisfiesHi |ψ〉 = 0
and[Hi, Hj ] = 0. An example might be helpful here. Sup-
pose we have a simple three-node linear cluster where the
nodes are labeled1, 2 and3. Then, according to Eq. (172),
the nullifiers are given by:̂p1− q̂2, p̂2− q̂1− q̂3, p̂3− q̂2. Fur-
thermore, according to Eq. (171), the set of stabilizers can
be written as:X1(s)Z2(s), Z1(s)X2(s)Z3(s), Z2(s)X3(s),
for all s. Therefore, by simply looking at a given graph we
can write down the nullifiers and stabilizers of that particular

graph. We note another useful way of analyzing graph states,
other than the nullifier formalism, is by using the Wigner rep-
resentation (Guet al., 2009).

3. Shaping clusters: removing nodes and shortening wires

The nullifier formalism provides a useful way of under-
standing how graph states are transformed by quadrature mea-
surements. It can be shown (Guet al., 2009) thatq̂ (compu-
tational) measurements remove a given node (modulo some
known displacement), whilêp quadrature measurements also
remove the node but preserve the correlations between neigh-
boring nodes (modulo a displacement and Fourier transform).
For example, in the graph state picture, a position quadrature
measurement on the second node has the following effect

1GFED@ABC q̂GFED@ABC 3GFED@ABC −→ 1GFED@ABC 3GFED@ABC
and a momentum measurement on the second node we have

1GFED@ABC p̂GFED@ABC 3GFED@ABC −→ 1GFED@ABC 3GFED@ABC
Using the above techniques we can shape a Gaussian cluster
in order to put it into the required topology to perform a spe-
cific algorithm. For example, below we can create the graph
state on the right by first performing a sequence of quadrature
measurements on an initial4× 5 cluster given on the left

76540123 76540123 76540123 76540123
q̂76540123 q̂76540123 p̂76540123 q̂76540123
76540123 76540123 76540123 76540123 −→

q̂76540123 p̂76540123 q̂76540123 q̂76540123
76540123 76540123 76540123 76540123

76540123 76540123 76540123 76540123
76540123 76540123 76540123 76540123
76540123 76540123 76540123 76540123

(173)

Recently, an experimental demonstration of continuous-
variable cluster state shaping was performed using a four-
mode linear cluster using homodyne detection and feedfor-
ward (Miwa,et al., 2010).

D. Gaussian errors from finite squeezing

In the next section, we will look at ways in which Gaus-
sian cluster states can be implemented optically. As soon as
we start discussing practical implementations we have to con-
sider using finitely squeezed Gaussian states in our analysis
which inevitably introduces errors into our computations.To
illustrate the effect of finite squeezing we show what happens
to the propagation of quantum information in a simple telepor-
tation protocol. We now go back to the teleportation circuits
from Sec. VII.B.1 where we showed the effect of teleporting,
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first a qumode and then a gate diagonal in the computational
basis, from one quantum wire to another. In that particular
scenario, the nodes of the cluster were momentum eigenstates.
In the calculations that follow they will be replaced by Gaus-
sian squeezed states, i.e.,|0〉p −→ |0, VS〉p whereVS < 1 is
the variance of the input squeezing. Suppose we initially start
off with the two input states|ψ〉 and|0, VS〉p where both can
again be expanded in terms of arbitrary position bases, i.e.,
|ψ〉 =

∫
dq1ψ(q1) |q1〉 and

|0, VS〉p = (πVS)
−1/4

∫

dq2 e
−q2

2
/2VS |q2〉 , (174)

Applying theCPHASEgate to these two states gives

(πVS)
−1/4

∫

dq1dq2ψ(q1)e
−q2

2
/2VSeiq1q2/2 |q1〉 |q2〉 .

(175)

After performing a measurement on the first mode in the mo-
mentum basis we end up with:|ψ′〉 = MX(m1)F |ψ〉, where
M is a Gaussian distortion (Menicucciet al., 2006)

M|ψ〉 ∝
∫

dq eq
2VS/2 |q〉 〈q|ψ〉. (176)

So effectively what we have is a Gaussian distortion, with zero
mean and variance1/VS, applied to the original input state as
a result of propagating through a cluster created using finite
squeezing (equivalently, this can be thought of as a convolu-
tion in momentum space by a Gaussian of varianceVS). The
same reasoning holds when we consider the gate teleporta-
tion situation where the output is given byMX(m1)FU |ψ〉.
We note that the above distortions due to finite squeezing er-
rors of both state propagation and universal gate teleportation
have also been analyzed by Guet al. (2009) from the point of
view of the Wigner representation.

E. Optical implementations of Gaussian cluster states

Here we look at the various methods to optically implement
continuous-variable cluster states using Gaussian elements.
The advantage of the continuous-variable optical approach,
compared to the discrete-variable approach, is that the gen-
eration of continuous-variable cluster states is completely de-
terministic. Furthermore, once the cluster is setup only homo-
dyne detection is needed to implement any multimode Gaus-
sian transformation (Ukai, Yoshikawa,et al., 2010). How-
ever, the errors introduced into the computations, due to the
finitely squeezed resources, are a downside to this uncondi-
tionality. The five methods for cluster state production are
outlined below.

1. Canonical method

The canonical method was first introduced in
2006 (Menicucciet al., 2006; Zhang and Braunstein, 2006)
and proposed a literal interpretation of how to implement

an optical Gaussian cluster state. By that we mean each
mode is first prepared as a momentum squeezed vacuum
state and then an appropriate number ofCZ gates are
applied to create the required cluster. TheCZ gate is
optically implemented using two beam splitters and two
online7 squeezers (Walls and Milburn, 2008; Yurke, 1985).
One of the advantages of this method is that theCZ gates
commute with one another (i.e., the order in which they
are applied does not matter) and thus facilitates theoretical
analysis. On the other hand, the implementation of theCZ

gate is experimentally challenging (Ukaiet al., 2011) due
to the difficulty of online squeezing (La Portaet al., 1989;
Yoshikawaet al., 2007; Yurke, 1985) and therefore is not very
efficient asCZ gates are needed for every link in the cluster.
Note that the demonstration of another type of quantum
non-demolition (QND) gate (the SUM gate) has also been
achieved (Yoshikawaet al., 2008).

2. Linear-optics method

The linear-optics method was conceived by van
Loock (van Loocket al., 2007) and provided a way of
greatly simplifying the optical implementation of the canon-
ical method. Put simply, the linear-optics method allows
the creation of a cluster state using only offline squeezed
states and a beam splitter network. Experimentally this
represented an important advancement in the building of
continuous-variable cluster states as the difficult part of
online squeezing was now moved offline (Guet al., 2009).
In this work (van Loocket al., 2007) two algorithms were
developed using squeezed vacuum states and linear optics to
create two varieties of cluster states: (1) canonical Gaussian
cluster states and (2) generalized cluster-type states. The first
algorithm, known as the decompositional algorithm, used the
Bloch-Messiah reduction (cf. Sec. II.C.2) to show that the
canonical method can be decomposed into offline squeezed
states and beam splitters to create the original canonical
cluster. The second algorithm (this time independent of
the Bloch-Messiah reduction) showed how to create a more
general class of Gaussian cluster states, known as cluster-type
states (from which the canonical cluster states are a special
case). This was shown by requiring that the final cluster
state (again created from squeeze vacuum states and carefully
configured passive linear optics) satisfies the nullifier relation
of Eq. (172) in the limit of infinite squeezing. However, when
the finite squeezing case is also considered a larger family of
non-canonical cluster states are created.

One of the benefits of the second algorithm is that the an-
tisqueezing components are suppressed thus making it ex-
perimentally more appealing (Yukawaet al., 2008). Also
smaller levels of input squeezing are required to create cluster-

7 An online squeezer (also known as inline squeezer) is the squeezing of an
arbitrary, possibly unknown, state. An offline squeezer is the squeezing of
a known state, typically the vacuum.
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type states compared to using the canonical method to cre-
ate canonical states with the same kind of correlations. A
number of experiments using the linear-optics method have
been demonstrated from setting up an initial four-mode
Gaussian cluster (Suet al., 2007; Yukawaet al., 2008) (in-
cluding linear, T-shape and square clusters (Yukawaet al.,
2008)) to simple continuous-variable one-way quantum com-
putations on a four-mode linear cluster (Miwa,et al., 2010;
Ukai, Iwata,et al., 2011).

3. Single-OPO method

The single-OPO-method (Flammiaet al., 2009;
Menicucciet al., 2008, 2007) was developed around the
same time as the linear-optics method and shows how to cre-
ate an ultra-compact and scalable, universalN -mode cluster
state using only a single optical parametric oscillator8(OPO).
Effectively this means that the cluster state can be createdin
just a single step using a top-down approach and requires the
same amount of resources as the linear-optics method (i.e.,
O(N2)). However, unlike the linear-optics method it does
not require an interferometer which can be cumbersome for
largeN thus removing the beam splitter network altogether.
It therefore holds great promise of scalability for universal
continuous-variable cluster states.

The initial proposal (Menicucciet al., 2007) showed that,
by using an appropriately constructed multi-frequency pump
beam, the single OPO could generate any continuous-variable
cluster state with a bipartite graph. Mathematically this re-
sult relied on showing a connection between continuous-
variable cluster states and Hamiltonian graphs orH-graphs
for short (Flammiaet al., 2009; Flammia and Severini, 2009;
Menicucciet al., 2008, 2007; Zaidiet al., 2008). TheseH-
graphs correspond to those states produced by an OPO. With
this result we have effectively gone from requiringN single-
mode squeezers (OPOs) to a single multimode OPO which
is pumped by anO(N2)-mode beam. Further progress
showed (Flammiaet al., 2009; Menicucciet al., 2008) that
this method can in fact produce a whole family of universal
continuous-variable cluster states where the encoding scheme
of the single-OPO involves using the optical frequency comb.
Here each independent qumode corresponds to a different fre-
quency in the optical frequency comb (which derives its name
from the equal spacings between each qumode). The main ad-
vantage of this method is that the number of pump frequencies
is notO(N2) but in fact constant. Recently, the first experi-
mental demonstration of cluster state generation in the optical
frequency was performed (Pysher, 2011). Here15 quadripar-
tite cluster states were created over60 cavity qumodes, ex-
hibiting its potential for scalable quantum computation.

8 A simple OPO consists of an optical cavity (e.g., two facing mirrors) with a
crystal inside. Typically this crystal is nonlinear (e.g.,second-orderχ(2))
and is pumped by a laser beam which can lead to the down-conversion or
the up-conversion of the initial frequencies.

4. Single-QND-gate method

In the four years since the canonical method, and
its reliance onCZ gates, all of the previous methods
have purposely shied away from using this non-demolition
gate due to its difficulty in being experimentally imple-
mented (Ukaiet al., 2011). However, in a novel ap-
proach (Menicucciet al., 2010), theCZ gate once again
makes an appearance in a compact scheme devised to gen-
erate arbitrarily large cluster states. In the canonical method,
O(N2) low-noiseCZ gates are needed to set up the initial
N -mode cluster. However, in this new approach, all that is
required is a singleCZ gate. In fact, for universal quantum
computation, only a single copy of the following key opti-
cal ingredients are needed: a single-mode vacuum squeezer,a
CZ gate, a homodyne detector and a photon counter. The ba-
sic premise of the single-QND-gate method involves building
the cluster on the go where the cluster is extended and mea-
sured as needed, according to the particular algorithm to be
executed.

The specific design of this method can be understood from
considering a simple linear cluster. In this case momentum
squeezed vacuum states are generated at regular intervals and
repeatedly fed into a singleCZ gate. One output of the gate
is directed towards a detector while the other is fed back into
theCZ gate. Because in general all qumodes travel the same
optical path, but importantly at different times, the encoding
scheme of the qumodes is temporal. This process of creating
and measuring is repeated over and over during the duration
of the algorithm and can be extended in much the same way to
create universal cluster states. One advantage that the single-
QND-gate method offers over the previous approaches is that
maintaining the coherence of a large cluster becomes less of
an issue. This is because we are only concerned with the co-
herence of a small instance of the cluster at any one time.

5. Temporal-mode-linear-optics method

The latest approach was developed by Menicucci (2011)
and combines the essential features and benefits of the pre-
vious three methods into one. This method, known as the
temporal-mode-linear optics method, offers an improvement
over the single-QND-gate approach in that it uses the tech-
niques from the linear-optics scheme to move the experi-
mentally challenging online squeezing, offline. This new
temporal-mode encoding, where again the input squeezed
vacuum states are repeatedly sent through the same optical
hardware but at different times, still maintains the finite co-
herence and scalability features of the previous model. This
implementation is achieved by recognizing that the output
states of the single-OPO method are in fact Gaussian projected
entangled pair states (Ohligeret al., 2010). Gaussian pro-
jected entangled pair states are pairs of Gaussian two-mode
squeezed states that are locally projected down to a lower-
dimensional subspace. For example, in the cluster state for-
malism, this corresponds to having two two-node graph states
where a measurement projects the ends of both nodes down
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to a single node and in doing so creates a linear three-node
graph (Ohligeret al., 2010). The graphical formalism devel-
oped by Menicucciet al. (2011) is used to describe and for-
mulate this Gaussian projected entangled pair states construc-
tion and can be optically implemented using single-mode of-
fline squeezers and linear optics.

F. Universal quantum computation

As previously noted, the Lloyd-Braunstein criterion tells
us that in order to achieve universal quantum computation,
i.e., the ability to generate an arbitrary Hamiltonian, we
need the addition of a non-Gaussian element, such as a non-
Gaussian operation or a non-Gaussian state, to our tool box.
In continuous-variable cluster state quantum computationthe
cubic phase gate and the cubic phase state, respectively, are
examples of such elements. The cubic phase gate is defined
as

V = exp(iγq̂3), (177)

whereγ ∈ R. The action of the cubic phase gate on a zero
momentum eigenstate|0〉p creates what is known as the cubic
phase state|γ〉 which is an unnormalizable non-Gaussian state

|γ〉 = V |0〉p =
1

2
√
π

∫

dq eiγq
3 |q〉 . (178)

Ultimately the cubic phase state will be used as a resource
to implement the cubic phase gate onto an arbitrary state in
the cluster. We begin by first showing how to create such a
state and then explore two methods of implementing the cubic
phase gate.

1. Creating the cubic phase state

It was shown by Gottesmanet al. (2001) that the cubic
phase state could be created by implementing the following
quantum circuit (Guet al., 2009)

S(r) |0〉 • FE


 X†n̂X

S(r) |0〉 • ≈ V ′ |0〉p

(179)

where V ′ = exp(iγ′(n)q̂3) and the strength of the gate
depends on the probabilistic measurement result:γ′(n) =
(6
√
2n+ 1)−1. Therefore the above circuit corresponds to

a simple two-mode graph state with a displaced photon count-
ing measurement on the first node

X†n̂X_^]\XYZ[ γ′_^]\XYZ[ (180)

Notice that the output state above is not quite in the form we
would like, i.e., it isγ′ and notγ. To correct this note that

V ′ can be decomposed into two squeeze gates and the cubic
phase gate (Gottesmanet al., 2001), i.e.,

V ′ = S(f)V S†(f), (181)

wheref := f(n) = [γ/γ′(n)]1/3. Once these squeezing cor-
rections are implemented the cubic phase state can be synthe-
sized.

2. Implementing the cubic phase gate

Now that we have a way of creating the cubic phase state
we look at two possible approaches to inducing the action of
the cubic phase gate onto an arbitrary state using the cubic
phase state as a resource. The first approach deviates from the
typical measurement-based scheme by performing Gaussian
measurements on a non-Gaussian cluster state. The second
approach revisits the typical setup of a Gaussian cluster but
requires that the measurement tool box now consists of both
Gaussian and non-Gaussian measurements.

a. Non-Gaussian cluster and Gaussian measurements
In the standard cluster-state model of computation all

nodes are initialized as zero momentum eigenstates before be-
coming entangled via theCPHASEgate. However, one way to
implement the cubic phase gate is to first embed the cubic
phase state into the original cluster. In the regime of finite
squeezing the initial Gaussian cluster state now becomes non-
Gaussian. A computation is performed as before using only
Gaussian (homodyne) measurements. Once the cubic phase
state|γ〉 is part of the initial cluster a variation of gate tele-
portation can be used to teleportV onto an arbitrary state|φ〉
of the cluster (where for instance|φ〉 is the state of a node in
the cluster at a particular point in time). The following circuit
achieves this (Guet al., 2009)

|φ〉 • FE


 p̂ = m1

|γ〉 = V |0〉p • • FE


 p̂ = m2

|0〉p • ≈ |φ′〉 = eiγq̂
3 |φ〉

(182)

modulo known Gaussian corrections (Weedbrook, 2009)
(hence the≈). In the graph state formalism the above circuit
is depicted as

φONMLHIJK γONMLHIJK 3ONMLHIJK −→ p̂ONMLHIJK p̂ONMLHIJK φ′ONMLHIJK
Note that the above graph corresponds to a subgraph of a
much larger cluster. One way to think about what is happen-
ing is that we have the cubic phase gateV acting on a zero
momentum eigenstate on the second node and by performing
momentum quadrature measurements on the first and second
nodes we are effectively teleportingV onto |φ〉 (modulo cor-
rections) with the resulting state appearing at the third node.
The beauty of using a non-Gaussian cluster from the begin-
ning is that once it is created only quadrature measurements
are needed to perform any algorithm. However, creating such
an improved resource is experimentally challenging.
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b. Gaussian cluster and non-Gaussian measurements
Now the previous approach is tailored to creating the cu-

bic phase state offline, i.e., as one of the initial resource states
prior to the entangling gate. However, if we wanted to emulate
the original cluster state formalism by beginning with a uni-
versal Gaussian cluster, our set of measurements would need
to be both Gaussian and non-Gaussian (e.g., photon counting).
One consequence of this is the need to perform the squeezing
corrections of Eq. (181) online. With this in mind circuit (182)
now becomes

|φ〉 S(f) • FE


 p̂ = m1

V ′ |0〉p • • FE


 p̂ = m2

|0〉p • S†(f,m1) |φ′〉 ≈ V |φ〉

(183)

where the second squeezing correction is dependent on the
first measurement resultm1 because it is itself dependent on
the photon counting resultn (Weedbrook, 2009). Translat-
ing the above circuit into the graph state formalism and using
graph (180) gives the following

X†n̂X_^]\XYZ[

p̂_^]\XYZ[ S(f) p̂_^]\XYZ[ S†(f,m1) φ′_^]\XYZ[
where the input state|φ〉 is the first node from the left.
Here the square boxes represent subgraphs through which
the squeezing corrections,S(f) andS†(f,m1), are imple-
mented via homodyne measurements (van Loock, 2007). An-
other consequence of the non-Gaussian measurement is that
the concept of parallelism is not longer valid as the center top
node needs to be measured first due to the probabilistic na-
ture of the measurement outcome. After which the amount of
squeezing required on the first node is dependent on the result
n. Hence the time ordering of measurements now matters and
adaptiveness plays a role (depending on the specific algorithm
performed, the value ofγ might also depend on previous mea-
surement results as well). From the above graph one can no-
tice that ideally the top center node is only attached to the node
below it. This is where the shaping tools from Sec. VII.C.3
play a part. For example, if there is a point in the computation
on the Gaussian cluster where the cubic phase state needs to
be created then removing or deleting nodes from the cluster
would allow one to have it in the required form.

G. Quantum error correction

To argue that a particular physical system is capable of uni-
versal quantum computation it is not sufficient to show that
the system in question can implement arbitrary unitary evolu-
tions. In any physical implementation there will be imperfec-
tions in the system that will inevitably lead to random errors

being introduced. Even if these errors are small, when large
scale quantum processing is considered, we have to worry
about their propagation during gate operations. If uncorrected,
such errors will grow uncontrollably and make the computa-
tion useless. The answer to this problem is fault tolerant error
correction (Shor, 1995; Steane, 1996). Thus to make a nec-
essary and sufficient argument that a particular physical sys-
tem is capable of continuous-variable quantum computation,
strictly one must also show that fault tolerant error correction
is possible.

The idea of error correction is self-explanatory, though the
description of its application to quantum systems requires
some care. Classically we might consider using a redundancy
code such that, for example,0 → 000 and1 → 111. If a
bit flip occurs on one of the bits we might end up with010
or 101 but we can recover the original bit value by taking a
majority vote. An example of a quantum redundant encoding
for qubits isα|0〉+ β|1〉 → α|000〉+ β|111〉 where we have
created an entangled state rather than copies. It is then possi-
ble to identify an error without collapsing the superposition,
by reading out the parity of pairs of qubits. For example a
bit-flip error might result in the stateα|001〉 + β|110〉. The
parity of the first two qubits will be zero whilst the parity of
the second two qubits will be one, thus unambiguously iden-
tifying that an error has occurred on the last qubit. Because
we are measuring the parity, not the qubit value, the superpo-
sition is not collapsed. Such codes can be expanded to cope
with the possibility of more than one error occurring between
correction attempts and to cope with multiple types of errors.
Of course the gates being used to detect and correct the errors
may themselves be faulty. An error correction code is said to
be fault tolerant if error propagation can be prevented evenif
the components used to do the error correction introduce er-
rors themselves. Typically this is only possible if the error rate
per operation is below some level known as the fault tolerant
threshold.

The first error correction protocol for continuous vari-
ables (Braunstein, 1998a; Lloyd and Slotine, 1998) was de-
veloped as a direct generalization of the qubit redun-
dancy codes (Shor, 1995). In Braunstein’s simplified ver-
sion (Braunstein, 1998b), eight ancilla squeezed states are
mixed on beam splitters with the signal state to create a
nine-mode encoded state. Decoding is similarly achieved
with beam splitters, with homodyne detection on eight of the
modes providing information about errors on the remaining
signal mode. This protocol has recently been demonstrated
experimentally (Aokiet al., 2009). On any particular run the
code can correct any error that occurs on any single mode of
the encoded state (Walker and Braunstein, 2010). This was
shown to extend to multiple errors provided they occur in a
stochastic way (van Loock, 2008). Unfortunately, error mod-
els of this kind are non-Gaussian error models and do not cor-
respond to the Gaussian errors that typically occur in experi-
ments due to loss and thermal noise. Other protocols for cor-
recting more specific types of non-Gaussian noise imposed
on Gaussian states have been proposed and experimentally
demonstrated (Lassenet al., 2010; Nisetet al., 2008). It has
been proven that error correction of Gaussian noise, imposed
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on Gaussian states, using only Gaussian operations is impos-
sible (Nisetet al., 2009).

This no-go theorem does not apply if the initial states are
non-Gaussian. An example of such a protocol is that devel-
oped by Gottesmanet al. (2001). Here, the information is dis-
cretized by encoding qubit states as non-Gaussian continuous-
variable states. Such states could be generated in optical
modes by means of cross-Kerr interactions (Pirandolaet al.,
2004). Error correction against Gaussian errors can then be
achieved using Gaussian operations. This protocol is known
to be fault tolerant, although the threshold requirements are
quite extreme (Glancy and Knill, 2006). A simpler encoding
of qubits into continuous-variable states is the coherent state
encoding (Ralphet al., 2003). Fault tolerant error correction
against Gaussian errors can also be achieved with this system,
with a better threshold behavior (Lundet al., 2008). The price
paid for this improvement though, is that non-Gaussian oper-
ations are also required.

A third possibility that is not explicitly forbidden by the no-
go theorem is to error correct Gaussian states against Gaussian
noise using non-Gaussian operations, that none-the-less result
in a Gaussian output state. Such protocols have been pro-
posed (Browneet al., 2003) and demonstrated (Xianget al.,
2010) for continuous-variable entanglement distillation. En-
tanglement distillation (Bennett, Brassard,et al., 1996) is a
non-deterministic error detection protocol, useful for ex-
tending the reach of quantum communication systems.
Continuous-variable protocols have also been developed to
distill entanglement against non-Gaussian noise (Donget al.,
2008; Hageet al., 2008) and for non-Gaussian states against
Gaussian noise (Ourjoumtsevet al., 2009). In principle,
continuous-variable teleportation and continuous-variabledis-
tillation protocols based on noiseless amplification can be
combined to error correct Gaussian states against Gaussian
noise (Ralph, 2011). However, it is not currently known if
such protocols can be made fault tolerant.

Error correction cannot be directly introduced into the
continuous-variable cluster state model by simply simulat-
ing a circuit model error correction protocol with the clus-
ter (Cable and Browne, 2010; Ohligeret al., 2010). This is
a generalization of the result of Nielsen and Dawson (2005)
that similarly restricts error correction for discrete-variable
cluster states. These authors showed that error correction
could only be incorporated into the cluster state computation
model provided the construction and measurement of the clus-
ter occurred concurrently, and the off-line, non-deterministic
production of special states was allowed. In continuous-
variable cluster state computation, without fully-fletched
continuous-variable fault tolerance, continuous-variable clus-
ter states based on any finite squeezing are strictly speak-
ing not resources for continuous-variable cluster state quan-
tum computing (Ohligeret al., 2010). However, it has
been argued that in principle, combining the techniques
of Nielsen and Dawson (2005) with the oscillator encoding
scheme of Gottesmanet al. (2001) would allow fault toler-
ant continuous-variable cluster state computation to be carried
out (Guet al., 2009), though this has not been shown explic-
itly.

H. Continuous-variable algorithms

Finally, before discussing future directions, we briefly
mention two algorithms that have been developed for a
continuous-variable quantum computer: Grover’s search
algorithm (Grover, 1997) and the Deutsch-Jozsa al-
gorithm (Deutsch and Jozsa, 1992). These algorithms
were originally developed for discrete-variable sys-
tems (Nielsen and Chuang, 2000) and later analogs were
found for continuous-variable systems in terms of the quan-
tum circuit model formalism. Grover’s search algorithm
using continuous variables was presented by Patiet al. (2000)
and showed that a square-root speed-up in searching an
unsorted database could be achieved in analogy with the qubit
case. A continuous-variable version of one of the earliest
quantum algorithms, the Deutsch-Jozsa algorithm, was first
developed by Pati and Braunstein (2003). Here the goal
of determining whether a function is constant or balanced
was constructed in the ideal case of perfectly squeezed
qumodes. Later, this algorithm was analyzed in more detail
by Adcocket al. (2009) and reformulated using Gaussian
states by Zwierzet al. (2010).

I. Future directions

Research interest in the field of continuous-variable quan-
tum computation has increased significantly in the last few
years. This is particularly true in the case of cluster state
quantum computation. Therefore it is worth making a brief
comparison between the continuous-variable cluster states
discussed here and the discrete-variable approach based on
single-photon qubits and linear optics techniques (Knillet al.,
2001; Nielsen, 2004). The key trade-off is between construc-
tion of the cluster and its measurements. In the continuous-
variable approach construction is deterministic, whilst in the
single-photon approach it is non-deterministic and requires a
very large overhead in terms of photon sources and memory
in order to make it near deterministic. On the other hand,
all required measurements are trivial in the single-photonap-
proach, whilst non-Gaussian measurements pose a major chal-
lenge in the continuous-variable approach. At this point itis
difficult to say which of these problems represents the biggest
impediment to building a large scale system.

There are a number of important avenues for future re-
search in continuous-variable quantum computation. Per-
haps the most important at this stage is the development
of continuous-variable fault tolerance for cluster state quan-
tum computation. Another avenue would be to incorporate
continuous-variable quantum algorithms, such as Grover’sal-
gorithm and the Deutsch-Jozsa algorithm, into the cluster state
model. Additionally, the development of further algorithms
for a continuous-variable quantum computer, e.g., an optical
version of Shor’s factoring algorithm (Shor, 1997), would also
be interesting, especially for future experimental demonstra-
tions.
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VIII. CONCLUSION AND PERSPECTIVES

This review examined the power of continuous-variable
quantum information from a Gaussian perspective. The pro-
cessing of Gaussian quantum information involves the use of
any combination of Gaussian states, Gaussian operations, and
Gaussian measurements. The ability to characterize Gaus-
sian states and operations via their first and second-order sta-
tistical moments offers a major simplification in the mathe-
matical analysis of quantum information protocols. Over the
last decade, optical and atomic Gaussian states and operations
have being recognized as key resources for quantum informa-
tion processing. For example, continuous-variable quantum
teleportation only requires Gaussian entanglement and Gaus-
sian operations, while it can be used to teleport arbitrary,even
highly non-Gaussian, quantum states. Similarly, continuous-
variable quantum key distribution works with coherent states,
while it achieves the unconditional security once believedto
reside only with highly non-classical resources. Yet another
unexpected property is that a Gaussian cluster state is prov-
ably a universal resource for quantum computation. All of
these findings have put forward the idea that Gaussian pro-
tocols deserve a front row position in quantum information
science.

Beyond a comprehensive description of Gaussian quantum
information protocols, this review also examined bounds on
the distinguishability of Gaussian states, and features ofGaus-
sian bosonic quantum communication channels such as their
capacity and statistical discrimination. Future directions in
quantum information sciences include the exploration of more
complex scenarios of quantum communication, involving dif-
ferent protocols such as quantum cloning or teleportation net-
works. In this context, the Gaussian approach is particu-
larly promising, allowing us to explore these future directions
with powerful mathematical tools and standard optical com-
ponents.

From a purely Gaussian perspective, i.e., when one is re-
stricted to using states, operations and measurements that
are all Gaussian, certain protocols are not possible. For ex-
ample, universal quantum computation, entanglement distil-
lation, and error correction all require that the protocol be
supplemented with either a non-Gaussian state, operation,or
measurement. For some tasks, hybrid systems, which com-
bine elements from continuous and discrete-variable quantum
information processing, are then favored as they may outper-
form purely discrete-variable systems. Interestingly, the pow-
erful mathematical tools of Gaussian analysis can sometimes
be used even when non-Gaussian processing or non-Gaussian
states are involved. For example, in certain quantum key dis-
tribution protocols, even if Alice and Bob use non-Gaussian
distributions or Eve makes a non-Gaussian attack, the security
can be ensured by considering the worst case of a Gaussian at-
tack against a Gaussian protocol. Such an analysis would still
hold if quantum repeaters based on non-Gaussian processing
were used by Alice and Bob. Similarly, universal quantum
computation achieved by a Gaussian cluster state and non-
Gaussian detection is an example of the power brought by the
application of Gaussian analysis tools to hybrid quantum sys-

tems.
In conclusion, we anticipate that Gaussian quantum infor-

mation will play a key role in future developments of quantum
information sciences, both theoretical and experimental.This
is due to the simplicity and versatility of the involved proto-
cols as well as the availability of the required technologies.
We hope that this review will help encourage these develop-
ments.
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