¢ workflows.io

ython-Based Custom Web
craping Playbook

Python-Based

Custom Web Scraping Playbook

Setup the Python Enviroment

_

Install Python and Libraries

‘ Skip if Already Installed

Selenium

‘Webdriver - Manager
Beautifulsoup4
Requests

Pandas

|

Use the Scraping Script

Save as “scarper.py” file

|

Update the Target URL

Replace Placeholder URL in the Script
With the Website You Want to Scrape

|

Run the Scraper

Open Terminal

Run “scraper.py”

|

Review the Scarped Output

Open CSV or JSON Output

v/ Check Data Accuracy

! ‘ Elena Mahmutaj « ¢ workflows.io




¢ workflows.io

How it works?

If the website you want to scrape is publicly accessible, you can write a Python script and run it locally
using an IDE like VS Code, Cursor or directly from the command line.

Prerequisites
Before running the script, make sure your environment is properly set up.

1. Install Python
a. Download Python from: https://www.python.org/downloads/
b. Duringinstallation, check “Add Python to PATH”
c. Verify the installation using this command in the terminal:
python -- version
If Python is installed correctly, you’ll see the version number.
2. Install Required Libraries
a. Open Command Line (Windows) or Terminal (Mac / Linux) and run:

pip install selenium

pip install webdriver-manager
pip install beautifulsoup4
pip install requests

pip install pandas

These libraries allow you to:

- Control a browser (Selenium)
- Parse HTML (BeautifulSoup)
- Make HTTP requests

- Export datato CSV or JSON

3. Install Chrome WebDriver
Since this script automates Chrome, you need ChromeDriver.
You have two options:

- Option A (Recommended): Let Selenium manage it automatically

- Option B: Download manually from https://chromedriver.chromium.org/


https://www.python.org/downloads/
https://chromedriver.chromium.org/

¢ workflows.io

How to Use the Script

Step 1: Save the Script

Copy the example code shared below and save it as scraper.py
Step 2: Modify the Target URL

Inside the script, replace the URL with your target website:

url = "YOUR_TARGET_WEBSITE_URL_HERE"

Step 3: Run the Script

From the folder where the file is saved:

python scraper.py

Step 4: Access the Output Files
Once the script finishes, you’ll find:

- walmart_brands.json
- walmart_brands.csv

Both files will be saved in the same directory as the script.

Understanding the Example Code

This example scrapes brand names and URLs from Walmart’s brand directory.

You can use it for other websites by modifying:

- URL: the target websites
- Selectors: XPath or CSS Selectors
- Data fields: names, links, emails, phone numbers



¢ workflows.io

If you’re unsure about selectors, inspect the page in Chrome or ask Claude to help you find
them on the website.

Example Python Scraper Code

Code Link:

https://github.com/Workflowsio/workflows/blob/main/playbooks/python-scraping-script.py

Troubleshooting Common Issues

1. Pythonis not recognised as a command
- Python was not added to your system PATH during installation
- Reinstall Python and make sure to select “Add Python to PATH”
- Verify by running: python --version

2. No module named selenium
- Selenium is not installed in your environment
- Run:
pip install selenium
- Ifitstill fails, try:
pip3 install selenium

3. Chrome browser opens, but nothing happens

- The website may have anti-bot or bot-detection mechanisms

- Add delays using time.sleep() between actions

- Use explicit waits instead of fixed sleeps where possible

- Ask Claude to update the script with basic stealth or human-like behaviour

4. Script crashes with timeout errors

- Increase wait or timeout values in the script

- Make sure your internet connection is stable

- The website’s DOM structure may have changed, requiring selector updates


https://github.com/Workflowsio/workflows/blob/main/playbooks/python-scraping-script.py

	Python-Based Custom Web Scraping Playbook  
	How it works? 
	Troubleshooting Common Issues 



