
WHITEPAPER
APRIL 2018

THE DEFINITIVE GUIDE TO
SAME-ORIGIN
POLICY

Ziyahan Albeniz

TABLE OF CONTENTS

INTRODUCTION

A WORLD WITHOUT SAME-ORIGIN POLICY

SAME-ORIGIN POLICY IN DETAIL

SAME-ORIGIN POLICY IMPLEMENTATIONS

	 DOM Access and Same-origin Policy

		 Internet Explorer

		 JavaScript Setting: document.domain

	 Same-origin Policy vs. Web 2.0

		 XmlHTTPRequest

		 JSON Padding (JSONP)

		 XDomainRequest and JSONP vs. CORS

CROSS-ORIGIN RESOURCE SHARING (CORS) IN DETAIL

	 Simple Request

	 Preflight Request

	 Cookies

	 Implementations

	 CORS on Security

SAME-ORIGIN POLICY FOR RICH INTERNET APPLICATIONS

	 Java – A Security Note

	 Flash and Silverlight

		 Security Implications

NEXT GENERATION SAME-ORIGIN POLICY

	 Security Perspective

FINAL THOUGHTS AND CONCLUSION

3

3

4

5

6

6

6

7

7

8

9

10

10

11

13

13

14

15

15

15

17

17

18

19

03 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

INTRODUCTION

Back in the 1980s, the Internet was far different than it is today. Internet content was available only via email, special
message boards like dial-in Bulletin Board Systems, newsgroups, etc. There was no well-defined rich content to the
Internet, only plain text and plain files. But then in 1989, Sir Tim Berners-Lee invented the World Wide Web – a name
no longer used, simply called “the Internet” today – as a way to enrich the content available online as something more
than just text and data, but also content layouts, text decoration, media embedding, and so forth.

Rather quickly, this idea caught on. Software called “Web Browsers” began to explode in popularity, including
Cello, Mosaic, and most especially Netscape Navigator, rendering content generated from documents containing Ber-
ners-Lee’s Hyper-Text Markup Language (HTML). A few years later in 1994, the “magic cookie” feature was defined as
part of the Hyper-Text Transfer Protocol (HTTP) as a way to distinguish users from one another, since web pages had
started to become more dynamic and user oriented, and was immediately implemented into Netscape Navigator. The
following year, Netscape introduced two new incredible and truly world-changing features to their Navigator web
browser to add enhancement to the view of the web: JavaScript, and an API to access the HTML elements, known as
the Document Object Model (DOM).

Thanks to DOM, by using the JavaScript language it would be possible to reach all properties of an HTML document
– from its URL to cookies contained by document, events triggered by document interactions, and much more. The ri-
chness of HTML introduced additional resources, such as other documents or media items, and they in turn have their
own cookies, DOM, JavaScript namespace, and other rich elements. Within the scope of the browser, there would
need to be a way to securely interact with these entities.

As a solution to this, Netscape engineers decided to manage relations between these resources by using a rule they
called Same-origin Policy (SOP), which defines borders for each resource loaded by a browser. According to this
rule, all resources loaded by a browser will be defined by a string which is known as the origin, consisting of the pro-
tocol, URL, and port being used to reach the resource. Only resources that have same origin can reach one another
resource’s attributes. But why is this important?

A WORLD WITHOUT SAME-ORIGIN POLICY

Let us say you are somehow tricked into visiting www.your-bank.bad-site.com. On that bad site, there is an iframe
that loads www.your-bank.com, where you proceed to login legitimately. After logging in, a simple JavaScript call on
the bad site could be used to access the DOM elements of www.your-bank.com loaded in the iframe, such as your
account balance.

What this does is accesses the iframe element (named bank_frame), then within that iframe’s DOM, it accesses the
HTML element named balance and gets its value. This could of course even be extended to forging browser calls to
send your money elsewhere! Without Same-origin Policy, these kind of cross-site requests could be executed without
your consent or knowledge.

frames.bank_frame.document.getElementById("balance").value

https://en.wikipedia.org/wiki/Cello_(web_browser)
https://www.w3schools.com/html/html_iframe.asp

04 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

SAME-ORIGIN POLICY IN DETAIL

Imagine we have a web page hosted at http://www.example.com/dir/test.html. Within this document is an iframe that
loads a different web page. Our source host is defined as www.example.com. The following table depicts the full
URLs we want to reach, and whether or not they are reachable due to Same-origin Policy:

Because Same-origin Policy is supported by effectively all modern browsers, web resources can reach one another’s
contents, attributes, and so forth if they use same protocol, same domain and same port; therefore they have same
origin. If not, reaching and changing document attributes are prevented by browsers.

In today’s world, Same-origin Policy usually is thought as if it is only for DOM. However, this is not entirely true, as
all resources on the web have a special Same-origin Policy check mechanism. Cookies are just one example of this.
This is because a cookie will be sent only in the event where the cookie domain, path, and attributes match with the
domain that is requested. If they match and the cookie is not expired, the cookie will be sent. The only major diffe-
rence from the previously described Same-origin Policy is that port and schema (except in the event of secure-only
cookies) are not subject in controls that are checked before sending a cookie.

Although Same-origin Policy is a concept in the center of web browser security, it is often misunderstood and incorrect
assumptions are commonly made about it. Even though Same-origin Policy, at its first glance, looks like a basic origin
matching, when you dive into the details, there are far more complexities and ambiguities that can go overlooked.

The most prevalent myth about Same-origin Policy is that it plainly forbids a browser to load a resource from a diffe-
rent origin. Though we know that the thing makes today’s web technologies so rich and colorful is the content loaded
from different origins. The presence of a huge content delivery network (CDN) ecosystem proves this is not true.

Another prevalent myth is that an origin cannot send information to another one. That is also not true. Again we

URL Result Reason

http://www.example.com/dir/page.htm Accessible Protocol, host and port match

http://www.example.com/dir2/other.htm Accessible Protocol, host and port match

http://www.example.com:81/dir/test.htm Not Accessible Same protocol and host, but port is different (81)

https://www.example.com/dir/test.htm Not Accessible Same host, but schema/protocol (https) different

http://demo.example.com/dir/test.htm Not Accessible
Schema and port are same, but host is different
(demo.example.com)

http://example.com/dir/test.htm Not Accessible Host is different (example.com)

http://example.com/dir/test.htm Not Accessible Host is different (www2.example.com)

05 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

know that an origin can make a request to another one. The information of the forms in one origin can be reached
from another origin. If we think of cloud payment systems integrated into a business workflow, these often operate
by sending request to another origin. Even one of the most common web vulnerabilities, Cross-Site Request Forgery
(CSRF), arises from that point. CSRF is possible because of the ability of sites to make request to each other.

As an example, when evaluate the behavior of an ambiguous image, we must remember the rules that Same-origin
Policy defines:

1.	 Each site has its own resources like cookies, DOM, and Javascript namespace.

2.	 Each page takes its origin from its URL (normally schema, domain, and port).

3.	 Scripts run in the context of the origin which they are loaded. It does not matter where you load it from, only
where it is finally executed.

4.	 Many resources, like media and images, are passive resources. They do not have access to objects and re-
sources in the context they were loaded.

Given these rules, we can assume that a site with origin A:

1.	 Can load a script from origin B, but it works in A’s context

2.	 Cannot reach the raw content and source code of the script

3.	 Can load CSS from the origin B

4.	 Cannot reach the raw text of the CSS files in origin B

5.	 Can load a page from origin B by iframe

6.	 Cannot reach the DOM of the iframe loaded from origin B

7.	 Can load an image from origin B

8.	 Cannot reach the bits of the image loaded from origin B

9.	 Can play a video from origin B

10.	 Cannot capture the images of the video loaded from origin B

Thanks to rules above, rich web contents are well-contained and reasonably secured.

SAME-ORIGIN POLICY IMPLEMENTATIONS

As we have established, Same-origin Policy is a concept at center of the security process with many things of the web:
DOM access, Javascript, cookie, etc. But even Rich Internet Applications (RIA) like Silverlight and Java are subject to
Same-origin Policy. However, this is where implementation differences of Same-origin Policy come into play, and whe-
re developers should be cautious.

Indeed, not only are there sometimes different implementations of Same-origin Policy for various types of web con-
tent, but there are also differences defined for how Same-origin Policy applies to cookies, Javascript, and DOM access
between different browsers. At times, it can resemble freedom in a minefield.

https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)
http://css.csail.mit.edu/6.858/2015/lec/l11-web-security.txt
https://tools.ietf.org/html/rfc6454
https://blogs.msdn.microsoft.com/ieinternals/2009/08/28/same-origin-policy-part-1-no-peeking/

06 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

DOM ACCESS AND SAME-ORIGIN POLICY

Internet Explorer

Although Same-origin Policy that regulates access to DOM exists in all modern browsers, there is – as is typical – a
difference from Internet Explorer’s (IE) implementation, and all other modern browsers. In the browsers except IE, the
items that define origin are schema/protocol + domain + port; whereas in IE, the port is not involved when defining
origin. This poses a security risk to the applications run on same domain but in different ports.

If we take an example web page of http://www.example.com/test.html we can see where the difference lies between
browsers:

Let us examine the risk from a security perspective for this table. Sometimes, test sites can be deployed live on the
same domain, but on a different port. For example, a test version of the site http://www.example.com can be publis-
hed on http://www.example.com:8080. If a vulnerability exists in test version, for instance a Cross-Site Scripting (XSS)
vulnerability, the site published on port 8080 can reach the DOM of the site published on port 80 in Internet Explorer,
and vice-versa. If the test version can be published via a simple deployment hook (a git push, a Jenkins deployment,
etc.), a rogue developer could sneak in a vulnerability then phish users on a legitimate version of the website (possibly
even with the real TLS certificate, too, if deployed behind the same web server or load balancer configuration), crea-
ting an opportunity for insider threat.

JavaScript Setting: document.domain

Sometimes the strict rules of Same-origin Policy can cause problems when sharing between sites under the same
base domain name. For example, if we have login.example.com, games.example.com, and calendar.example.com,
how would we communicate between them when the full domain paths do not match? It is possible to relax the Sa-
me-origin Policy a little for such a case.

Thanks to the the document.domain JavaScript setting, we can expand our domain restriction to allow everything up
to the base domain. If we set the following in our code …

… then this tells the browser that everything up to example.com is considered within the same origin now, including
login.example.com, games.example.com, and calendar.example.com. Placing this in your JavaScript code is manda-

URL Browser Result Reason

http://www.example.com:81/contact.html IE Accessible Schema and domain match

http://www.example.com:81/contact.html

Chrome +
Firefox +
Safari +
Opera, etc.

Not Accessible
Although schema and domain match, port
does not

document.domain = “example.com”;

07 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

tory if these sites which to share their resources with one another.

However, as a caveat, this does not immediately mean that the login.example.com site can access the DOM of examp-
le.com. In order to allow this, the site on example.com must also declare the same document.domain setting of
“example.com”.

The document.domain JavaScript setting can relax Same-origin Policy restrictions on hostname (the sub-domain ele-
ments of the domain), however port and schema restrictions remain the same (but as mentioned previously, port does
not apply to Internet Explorer). If we use the example of iframes again, we can demonstrate this when attempting to
reach the DOM of the iframe. Assume the URL in blue loads the URL in green via an iframe:

One crucial element to highlight here is that a domain cannot set its origin to a different domain. For example, login.
example.com cannot set its origin as example2.com. The setting must match where it actually comes from.

SAME-ORIGIN POLICY VS. WEB 2.0

Same-origin Policy is only the basic construct since the earliest days of the world wide web. Ever since then, the
internet we know today has exploded into a rich ecosystem of cross-domain content, Content Delivery Networks,
single-page design, liking and sharing, and more. In order to support all this diversity and change, Same-origin Policy
had to also expand and adapt. Simple DOM and JavaScript namespace control was no longer enough, and required
expansion with XmlHTTPRequest, JSONP, XDomainRequest, and CORS.

XmlHTTPRequest

XmlHTTPRequest is an HTTP communication method (or API) that can be set on HTTP calls to make web applications
richer. It enables asynchronous communication between resources to avoid having to load the page new each time.
In most cases where the content of the page you are viewing changes without loading a new page, such as while sc-
rolling down – think like Facebook or Twitter – this is most often done via what is called an Asynchronous JavaScript
and XML (AJAX) request using the X-Requested-With HTTP header set to XmlHTTPRequest. Given the potential dan-
gers this can yield, XmlHTTPRequest is also an area where Same-origin Policy rules must be strictly applied.

As such, since the creation of the XmlHTTPRequest HTTP API, the requirements of Same-origin Policy apply in
full. Therefore:

URL document.domain iframe URL document.domain Result

http://www.example.com example.com http://login.example.com example.com Accessible

http://www.example.com example.com http://login.example.com example.com
Not Accessible,
protocol mismatch

http://payment.example.com example.com http://example.com Not Set Not accessible

http://www.example.com example.com http://www.example.com Not Set Not accessible

08 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

•	 * An XmlHTTPRequest call can be sent to a site in a different origin, but the reply cannot be read

•	 Responses can be read if the request URL is in the same origin

•	 Custom headers can be added only to a request made to the same origin

(* It is important to note that since an XmlHTTPRequest call does allow data to be sent to a different origin, this does
allow for the potential of Cross-Site Request Forgery attacks.)

Obviously, the XmlHTTPRequest Same-origin Policy will pose a problem when using resources from different origins,
just as it does with normal DOM access. However, as we will demonstrate, this default behavior can be changed.

JSON Padding (JSONP)

Although you can make an asynchronous request to a different origin by using the XmlHTTPRequest object, you can-
not read its response. So, how can we use the web services that make the internet so rich? How can we show the
currency rates, weather forecasts, album lists, and many other things received from other sites by using asynchronous
requests?

Under the principles of the Same-origin Policy, we know that scripts work in the context of the site on which the scripts
were loaded. The only criteria to do this is that the file loaded should be a valid script file. When we combine this infor-
mation and go back to the early 2000s where the JSON technologies developed, we run into JSONP.

JSON, or Javascript Object Notation, is both a data type and an output considered as valid executable JavaScript
code. If the calls we made to third parties return a result in the form of JSON dynamically, we can circumvent the Sa-
me-origin Policy limitation.

However, it’s not enough to have a response with the content-type application/json returned from the service. These
results must be bound with a callback function named by the caller. For example, let’s say we have JavaScript code
that makes a call to the following URL:

http://www.example.com/getAlbums?callback=foobarbaz

The response returned may look something like this:

Let us break this down a little bit.

1.	 We make a call to the resource http://www.example.com/getAlbums and set a callback name in the query
string of foobarbaz

2.	 When the resource returns its results as a JSON object, they are encapsulated in a function named foobar-
baz, as was defined in the query string callback setting

foobarbaz([{“artist”: “Michael Jackson”, “album”: “Black or White”}{“artist”: “Beatles,
The”, “album”: “Revolution”}]);

09 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

The values within this returned result are now available within the origin of the calling script. Therefore, if this JavaSc-
ript call was made from http://www.example2.com, it is able to use this data even though the resource is in a different
domain.

This does, of course, pose a security risk. When the JSONP request is executed, JavaScript will assume that anything
returned from that resource is trustworthy. Therefore, you should validate that the site to which you make JSONP
request is a trusted one. Do not forget that all code returned from that site will work in your users’ browser under your
web site’s context. Additionally, with the strong importance of trust of the JSONP endpoint, making requests through
a secure HTTPS channel is also important to prevent manipulation that could occur in transmission. This would also
require the whole web page also be under HTTPS, due to JavaScript’s heightened strictness on mixed content.

XDomainRequest and JSONP vs. CORS

With JSONP and XmlHTTPRequest, one may think we have all our bases covered. We can perform asynchronous
calls to other resources, and we can also do dynamic calls to external resources on a different domain. So why, then,
do we need XDomainRequest or CORS? And what are they?

If you only intend to support the simplicity of browsers before IE9, Opera 12, Firefox 12, and so forth, you can continue
to use JSONP just fine. However, with the possibilities Web 2.0 offers, JSONP has started to become incapable of
living up to some aspirations that arose from developers and browser vendors to make Same-origin Policy’s cross-do-
main restriction a little more relaxed still, yet secure. The most essential reason was that cross-domain requests made
with JSONP are only one-way, read only. Requests with the opportunity to write were still prevented by Same-origin
Policy applied to JSONP. JSONP was also sort of a hacked solution to prior problems, so a more refined and properly
designed approach was needed.

Vendors took into account these aspirations created a solution, albeit in two different ways. Microsoft had its own
idea, and with Internet Explorer 8 and 9, XDomainRequest became their solution. Whereas with Chrome, Firefox,
and other browsers, they implemented a more popular alternative feature known as Cross-Origin Resource Sharing
(CORS). Microsoft realized the potential and popularity of CORS and later adopted it in IE10 and beyond. Even though
there are two variations, the good news is that with only a few minor differences, CORS and XDomainRequest imple-
mentations are almost the same.

If we outline a CORS request, when a site in origin A wants to make a request to a site in origin B, first origin A must
declare its origin in the request by setting a custom HTTP header named Origin. The site in origin B then returns a
response with an HTTP header that defines the origins from which it allows CORS requests. This header is the Ac-
cess-Control-Allow-Origin HTTP header.

By Access-Control-Allow-Origin, it is possible to allow only one site. You can also use this to allow subdomains, for
example sub.example.com. Note that it is only possible to allow one FQDN at a time:

Access-Control-Allow-Origin: www.example.com

10 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

Permission can also be granted to all domains on the internet:

In the next chapter, we will dive deeper into the mechanics and details of CORS requests.

CROSS-ORIGIN RESOURCE SHARING (CORS) IN DETAIL

There are two valid request types for CORS requests – Simple Request and Preflight Request. Most normal CORS
requests will fall under the Simple Request category, consisting of typical HTTP headers and actions. Preflight Requ-
ests, however, due to their atypical nature that falls outside the normal trusted scope of a Simple Request, require ad-
ditional validation against the server.

SIMPLE REQUEST

If the request contains one of the methods of GET, POST, or HEAD, and the message type is set by the Content-Type
HTTP header to either application/x-www-form-urlencoded, multipart/form-data, or text/plain, this request is conside-
red a CORS Simple Request and sent directly to the server. The server will signify whether it accepts the CORS requ-
est by the returned Access-Control-Allow-Origin HTTP header. If the server accepts, the response will be processed
by the client. There are also some additional HTTP headers that can be sent in the request that directly apply to the
CORS request, including Accept (content types to accept), Accept-Language (languages the browser accepts), and
Content-Language (the language the request is being sent in).

Let us evaluate an example CORS Simple Request and the server’s response. An example request may look as fol-
lows:

The server response would look like something similar to this:

GET / HTTP/1.1
Host: cors.example.com
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en,en-US;q=0.5
Origin: http://www.acceptmeplease.com
Connection: keep-alive

Access-Control-Allow-Origin: *

http://arunranga.com/examples/access-control/

11 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

In the request, we perform our CORS Simple Request against cors.example.com from our site of http://www.accep-
tmeplease.com, also designating this as our origin. The server responds approving our origin, thereby allowing the
browser to continue with the request with Same-origin Policy domain restrictions relaxed.

PREFLIGHT REQUEST

A CORS request that does not fall under the restrictions for a Simple Request are considered Preflight Requests. What
this means is if the request method is not GET, POST, or HEAD; or if the request is POST but the Content-Type header
is not one of application/x-www-form-urlencoded, multipart/form-data, or text/plain; or if a custom HTTP header is
added to the request, then it must be validated against the server first. Before the actual CORS request can be sent
to the server, the browser sends a pre-flight check request using the OPTIONS method. This is more expensive than
a normal CORS Simple Request because two HTTP calls must be executed instead of just one. While this additional
cost may sound burdensome, it is necessary for the additional benefits CORS Preflight Requests provide that work
around core behaviors of web calls, such as working in additional methods and headers.

To better understand this, let us evaluate an example CORS Preflight Request and server response. Say we wish to
send a normal CORS Simple Request-type POST request, but we are adding an additional HTTP header of X-Token-ID
and a Content-Type header of application/xml. This makes the request become a Preflight Request. Thus, our CORS
request sends an initial pre-flight check request to validate that this is acceptable to the server. That pre-flight looks
as follows:

The parts marked in bold are crucial to this CORS Preflight Request. Notice first that the request method is OPTIONS,
which asks the server if the HTTP headers sent are acceptable. Next, we declare our origin, but there are now two

OPTIONS /resources/post-here/ HTTP/1.1
Host: cors.example.com
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Connection: keep-alive
Origin: http://www.acceptmeplase.com
Access-Control-Request-Method: POST
Access-Control-Request-Headers: X-TOKEN-ID

HTTP/1.1 200 OK
Date: Sun, 24 Apr 2016 12:43:39 GMT
Server: Apache
Access-Control-Allow-Origin: http://www.acceptmeplease.com
Keep-Alive: timeout=2, max=100
Connection: Keep-Alive
Content-Type: application/xml
Content-Length: 423

<?xml version=”1.0” encoding=”UTF-8”?>
...

12 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

additional headers defined: Access-Control-Request-Method and Access-Control-Request-Headers. These are impor-
tant because they tell the intentions of the browser in its following request, to send a POST method with an additional
HTTP header defined.

The server, if accepting this OPTIONS request, would respond similar to this:

Let us look carefully at the bold HTTP headers returned above. First and foremost, the server must return a 200
response code, otherwise the Preflight Request is considered unacceptable. Second, we have three additional HTTP
headers that are returned on top of the normal Access-Control-Allow-Origin header:

•	 Access-Control-Allow-Methods – These are the allowed request methods the browser may send.

•	 Access-Control-Allow-Headers – These are the approved additional HTTP headers the browser may send.

•	 Access-Control-Max-Age – If this HTTP header is set in the response, the server wants the browser to cache
this OPTIONS result for the same kind of request. This allows the browser to make similar requests to resour-
ces within this maximum age setting without needing to make an OPTIONS request before each of them.

The Access-Control-Max-Age is an important HTTP response header to be aware of. In the example above, this va-
lue was set as 86,400 seconds, or 24 hours. Each browser defines a maximum value for this field. If the maximum
age limit is exceeded for the browser, it will ignore this value and instead substitute its maximum allowed value. For
example, this value in Chrome browsers is at most 10 minutes. A glance at the Chrome source code explains that this
was implemented to prevent cache poisoning.

Now that our pre-flight check has been completed via the OPTIONS request, our CORS request can continue as it
would with a Simple Request. The key differences, however, are that the Content-Type HTTP header change is now
allowed, and the additional X-Token-ID HTTP header is also allowed. Our follow-up CORS request from our browser
will then look like the following:

HTTP/1.1 200 OK
Date: Mon, 01 Dec 2008 01:15:39 GMT
Server: Apache
Access-Control-Allow-Origin: http://www.acceptmeplease.com
Access-Control-Allow-Methods: POST, GET, OPTIONS
Access-Control-Allow-Headers: X-TOKEN-ID
Access-Control-Max-Age: 86400
Vary: Accept-Encoding, Origin
Content-Length: 0
Keep-Alive: timeout=2, max=100
Connection: Keep-Alive
Content-Type: text/plain

13 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

Notice the two HTTP request headers set in bold. The X-Token-ID HTTP header is allowed to be sent, as well as the
change to Content-Type. The server should now respond similarly as it would with a normal CORS Simple Request.

COOKIES

Thus far, we have demonstrated Cross-Origin Resource Sharing with various HTTP headers, but not the Cookie HTTP
header – an element we may want to share. By default, credentials used in the browser (including cookies, authenti-
cations, and certificates) are not sent along with a CORS request, Simple or Preflight. It should also be noted that un-
der XDomainRequest in IE8 and IE9, under no circumstance could any of these credential data be sent.

If, for example, we wish to pass along the cookie data accessible under our origin, we can simply pass along the
contents of the cookie (without the metadata of domain, expiration, etc.) using the Cookie HTTP header in our CORS
request. This can be added to a Preflight Request OPTIONS request, but is not required. In response, the server also
must accept and acknowledge this credentialed request by returning the Access-Control-Allow-Credentials HTTP he-
ader, set to a ‘true’ value. If this HTTP header is not received, the browser considers the entire request as failed.

IMPLEMENTATIONS

We have explored many of the core concepts of Cross-Origin Resource Sharing, but only the raw HTTP requests and
responses. Obviously the browser will not be interacting with the web server on such a low level, and vice-versa. So
how is CORS actually implemented?

On the client side, there is little necessary to implement a CORS request, Simple or Preflight. This can be done via a
simple JavaScript built-in library known as XMLHttpRequest. It is named the same as the Same-origin Policy imple-
mentation we mentioned earlier, but it does also support CORS requests. Here is a basic example:

POST /resources/post-here/ HTTP/1.1
Host: cors.example.com
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Connection: keep-alive
X-Token-ID: aabbccddeeff0011223344556677889900
Content-Type: application/xml; charset=UTF-8
Content-Length: 55
Origin: http://www.acceptmeplease.com
Pragma: no-cache
Cache-Control: no-cache

<?xml version=”1.0”?>
...

14 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

The comments (in blue) describe what each option does. As you can see, in all actuality in the browser, a CORS requ-
est is quite simple.

On the server side, however, this can become far more complex, mainly due to the fact that there are a wide variety
of languages, applications, and frameworks to choose from for servers. For one excellent implementation example,
though, you can refer to the Server Side Access Control document prepared by the Mozilla Developer Network.

CORS ON SECURITY

The “Sharing” part of Cross-Origin Resource Sharing poses a security risk, both to the browser and the server. For ins-
tance, the Access-Control-Allow-Origin HTTP header should never be set to * (all origins) unless the resource is truly
intended to be publicly accessible. Further, the server should take precaution when setting this HTTP header approp-
riately. All too often, servers simply repeat back whatever the requesting browser set as its Origin HTTP header. This
level of blind trust by the server can pose a security risk. Rather, if Access-Control-Allow-Origin is intended to be rest-
rictive, then this should never be blindly trusted from the browser, and instead some server-side access control policy
should be applied.

Origin headers cannot be changed after the fact in the browser (such as via JavaScript), however if the request is not
made via a TLS-encrypted connection, it is possible to change these parameters via a man-in-the-middle attack. Ori-

// Declare the XMLHttpRequest object
var invocation = new XMLHttpRequest();

// We wish to open a POST method request
invocation.open(‘POST’, ‘http://cors.example.com/sendData, true);

// If we set this option, then in-browser credentials (cookies,
// authentication, certificates) will be sent along with the
// request
invocation.withCredentials = true;

// If we set the following two headers, as described previously,
// this will automatically become a CORS Preflight Request, and
// an OPTIONS method pre-flight check request will be done in
// the background, unless a matching one has already been done
// and was within the site’s (and browser’s) maximum age setting
invocation.setRequestHeader(‘X-TOKEN-ID’, ‘aabbccddeeff00112233’);
invocation.setRequestHeader(‘Content-Type’, ‘application/xml’);

// When the response is returned from the server, we must
// process it via a callback function
invocation.onreadystatechange = function(){ … };

// Send the POST content and initiate the request
invocation.send(‘…’);

https://developer.mozilla.org/en-US/docs/Web/HTTP/Server-Side_Access_Control

15 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

gin should not be a sole indicator of trust, and authentication should not be made by taking only origin into conside-
ration. CORS requests, especially credentialed ones, should always be made via a TLS-encrypted connections. This
will also prevent any potential mixed-content vulnerabilities (such as if your origin is over a TLS connection, but your
CORS request is against a plain HTTP connection).

Even when the external origin is intended to be trusted, that trust scope should always be as highly restrictive as pos-
sible. All activity here should be carefully filtered, as it could all too easily introduce a cross-site scripting (XSS) atta-
ck. HTTP headers returned should also be scrutinized and given only as much trust as necessary.

SAME-ORIGIN POLICY FOR RICH INTERNET APPLICATIONS

Even with Cross-Origin Resource Sharing, there was still a limit to what developers of richer media could do. The
internet consists of a very wide ecosystem, including browser plugins that go outside the normal scope of DOM and
JavaScript namespaces. These plugins – namely Flash, Java, and Silverlight – required more than what the previous
Same-origin Policy implementations could offer.

JAVA – A SECURITY NOTE

The Sun (later, Oracle) Java language found itself one of the earliest forms of rich media in a browser outside the nor-
mal scope of JavaScript and DOM. Java from the start adhered to the core concepts of Same-origin Policy, requiring
matching protocol, domain, and port as typical. However, Java deviated in particular with the domain element, consi-
dering resources to be within the same origin even if the domains differed entirely, but they resolved to the same IP
address. This still holds through even through Java 8 today.

From a security concept, if for example two websites – example.com and attacker.com – are hosted on the same sha-
red host, sharing the same IP address, then example.com could run JavaScript in the origin of attacker.com, effectively
bypassing SOP.

FLASH AND SILVERLIGHT

Flash and Silverlight chose to tackle problems of Same-origin Policy via files on the cross-origin rather than via HTTP
headers. Flash, for example, requires the existence of a file named crossdomain.xml on the external site in order to
validate external origin requests. Given that Microsoft generally likes to do things a little special from the rest, Sil-
verlight uses the same file, but additionally also requires a clientaccesspolicy.xml file for further context that is not
provided normally in crossdomain.xml. These files are expected to be in the root directory of the external origin. For
example, if a Flash file hosted and loaded from website.com makes a cross-origin request against flash.example.com/
path/to/content.txt, then the crossdomain.xml file must exist at flash.example.com/crossdomain.xml.

The crossdomain.xml file manages what domains can make a cross-origin request, whether there exists nested cros-
sdomain.xml files, what headers can be sent along with the request, and whether the cross-origin requests must be
done via TLS-only or not.

https://www.owasp.org/index.php/CORS_OriginHeaderScrutiny

16 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

An example crossdomain.xml file may look as follows:

Let us break down these tags and their attributes one by one:

•	 site-control-permitted-cross-domain-policies – There are a series of settings that can be defined here

o	 master-only – Only this crossdomain.xml is valid for this origin and all its sub-domains

o	 all – Sub-directories and sub-domains may have their own nested crossdomain.xml settings files

o	 none – If this is set, allow-access-from (explained next) is irrelevant as no cross-origin requests are
permitted

•	 allow-access-from

o	 domain – This attribute defines what domains may use the resources, very much the same as the
Access-Control-Allow-Origin HTTP header

o	 to-port – Same-origin Policy by default on most browsers restricts requests to the same port as the
origin, however this can be left blank to relax that restriction

o	 secure – If the request is to be made via TLS-only (HTTPS), setting this to a true value with make
Flash fail to load the resource unless the connection is secured

As an example, a Flash cross-origin request may look like this:

1.	 A user visits a.com and their browser loads a Flash SWF file

2.	 The SWF file from a.com wants to make a request to a resource on b.com

3.	 To detect whether this request is valid, the browser loads a request for crossdomain.xml from b.com

4.	 If the settings within this crossdomain.xml permit this request, then the Flash SWF may continue with its initial
request

<?xml version=”1.0”?>
<cross-domain-policy>
 <site-control permitted-cross-domain-policies=”all” />
 <allow-access-from domain=”*” to-port=”” secure=”” />
</cross-domain-policy>

17 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

Security Implications

By using crossdomain.xml, it’s possible to read data from the target origin hence cross-site request forgery (CSRF)
attack prevention can be bypassed! Authentication is also not well managed, and other security measures can be cir-
cumvented as well. In effect, the same scenario as outlined at the beginning of this article can take place: Flash could
be used to circumvent Same Origin Policies and send attacking traffic to a victim site and read the response, especial-
ly if crossdomain.xml allows all origins.

Therefore, the crossdomain.xml settings should be as restrictive as possible, and carefully managed. Even if the
crossdomain.xml file in the root web directory does not pose a security risk, if it contains site-control-permitted-c-
ross-domain-policies=”all”, then crossdomain.xml files in sub-directories and sub-domains can open further security
risks. The domains allowed should never spread wider in scope than needed, unless this is absolutely intended on
being a public endpoint. In that event, the data permitted should be carefully restricted. In general, the policy of least
privilege should be applied.

NEXT GENERATION SAME-ORIGIN POLICY

At first we began the “next generation” of the internet with “Web 2.0” – a loosely defined idea of methodologies and
visualizations of the new ‘modern’ web. This was a very fluid and dynamic idea, mostly consisting of concepts rather
than standards. Later, with the implementation of HTML5 and the new dynamic this added, the concept of Same-ori-
gin Policy also needed to expand.

According to Same-origin Policy, two sites can reach each other’s DOM and JavaScript namespace to make asynch-
ronous requests only if their origin matches. However, in HTML5, there is a newly available DOM feature, enabled in
JavaScript as postMessage, which allows something known as “cross-domain messaging.” This is yet another way to
allow communication between sites that have a different origin.

The way this works is twofold: First, the starting origin must declare a call to the external origin, and secondly, the
external origin must also have a receiver function to handle this event – called a Message Event. Let us look at and
break down an example of this JavaScript call:

First, we must attach the DOM of the target origin to an object – in this case, the otherWindow object. This is a refe-
rence value returned from window.open, the contentWindow property of an iframe, or it can be referenced from a win-
dow.frames collection. Then, inside the postMessage() call, we define three data points:

•	 message – This can be plain text, or it can also be a complex type. This data is transmitted using the HTML5
Structured Clone Algorithm.

•	 targetOrigin – Can be a wildcard (an asterisk, “*”), or a specific value. The receiver’s origin is checked against
this value, and if valid, the request continues.

•	 transfer (optional) – Enable two-way communication. Channel Messaging can be used here.

otherWindow.postMessage(message, targetOrigin, [transfer])

https://www.owasp.org/index.php/Test_RIA_cross_domain_policy_(OTG-CONFIG-008)
https://www.owasp.org/index.php/Test_RIA_cross_domain_policy_(OTG-CONFIG-008)
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Structured_clone_algorithm
https://dev.opera.com/articles/window-postmessage-messagechannel/

18 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

The recipient, or external origin, must have defined within its JavaScript namespace an event handler for this postMes-
sage event. Here is a brief example of what this could look like:

In this example, we define an event listener named “message” and tie it to a function named receiveMessage. This
function gets a single parameter, event, which holds objects such as the sender (event.source) and the data sent
(event.data). Here you can see where we validate the origin of the sender, and how we can even interact back with
the sender of this event. It is important to note that event.origin specifies the origin at the time when postMessage
was executed. During the message transmission or communication, the document origin of the windows reached th-
rough event.origin can be changed.

SECURITY PERSPECTIVE

Cross Domain Messaging, as will any implementation of relaxed Same-origin Policy, comes with its own security ris-
ks. The easiest and simplest method to mitigate these risks is to simply not declare a message event handler. Howe-
ver, if one is absolutely needed, much caution needs to be taken to reduce the security risks.

For example, you should almost never use a wildcard (asterisk, “*”) for an allowed origin. As mentioned earlier, during
message transmission or communication, the location of the target window can be changed. Say two sites, foobank.
com and login.foobank.com, communicate with each other through the postMessage API. Upon visiting foobank.com,
the website opens a new window that navigates to login.foobank.com and requests sensitive information. As menti-
oned earlier during message transmission or communication, the window’s location can be changed at any time. As
we continue, assume that shortly after foobank.com send its message, the location of window changed immediately
to an attacker controlled site -- we will call this site badbank.com. The login.foobank.com site checked the origin of
the message in its message handler function, so it indeed did come from foobank.com. However, since it already
checked the origin when it received the message, the website does not restrict or specify which sites are allowed to
receive the message because it used “*” (wildcard) instead of specific origin (foobank.com). However, since the origi-
nal site got redirected to an attacker controlled site, the postMessage API call with the sensitive info will now be sent
to the attacker controlled page!

This can also pose a security risk for subdomains of the same primary domain. Say you have a shared hosting site
where each user gets their own sub-domain – e.g. user1.example.com, user2.example.com, etc. Without setting exp-
licit origin validation – such as if you only check that “example.com” exists within the origin, e.g. with a JavaScript in-
dexOf() conditional test – this also can open a security vulnerability.

Finally, as mentioned multiple times previously, trust should always be within a very limited scope when dealing with
external resources, especially when you are not in control of them. For example, if the data returned is simply pasted
to the browser as raw HTML, this easily opens a security vulnerability of XSS and other problems. Instead, data retur-

window.addEventListener(“message”, receiveMessage, false);

function receiveMessage(event){
 if (event.origin == “http://www.example.com”)
	 event.source.postMessage(“Your message: “ + event.data, “http://www.example.com”);
}

19 / 19

Whitepaper | The Definitive Guide to Same-Origin Policy

ned should be checked and should be used with safe APIs as explained in our DOM XSS article, rather than blindly
trusted and used as-is.

FINAL THOUGHTS AND CONCLUSION

Same-origin Policy is an ever-evolving construct of the world wide web. We can see this, for example, with the evolu-
tion of cookies. Cookies were invented before DOM and JavaScript, and so their Same-origin Policy adaptations were
tacked on later. We can see this in the contrast with normal Same-origin Policy, where with cookies the schema and
port are not considered. After JavaScript was invented, there was an httpOnly flag added which deemed a cookie
usable only via HTTP headers and not within the JavaScript namespace. Only later was the secureOnly flag added to
tackle the problem of cookies within a TLS-only scope.

Same-origin Policy, while at the center of client-side web security, is wide and quite varied, differing in important de-
tails from browser to browser and between technological implementations. It is a crucial concept to understand, but
more importantly, the differences and pitfalls must be equally taken into consideration. When developers (and indeed
security engineers) understand and properly implement the Same-origin Policy that suits their needs, it makes for a
richer web, indeed.

Author:
Ziyahan Albeniz

Translators:
Alex Baker
Emre İyidogan

https://www.netsparker.com/blog/web-security/dom-based-cross-site-scripting-vulnerability/
https://www.netsparker.com/blog/web-security/same-site-cookie-attribute-prevent-cross-site-request-forgery/

