
A practical checklist for modern AppSec teams

Evaluating Application
& API Security Tools

Buyer’s Guide

Can the tool crawl and scan
running applications?

Can the tool scan APIs?

Can the tool discover web applications?

Can the tool discover APIs?

Depth

2AppSec Buyer’s Guide and Checklist

Introduction..3

Coverage...4
	 Can the tool crawl and scan running applications?... 5
	 Can the tool scan APIs?..6
	 Can the tool discover web applications?...7
	 Can the tool discover APIs?..8

Depth..9
	 Can the tool find both CVEs and previously unknown vulnerabilities?.....................................10
	 Does the tool check for all common vulnerability types, including... 11
	 out-of-band issues?
	 Can the tool identify runtime-specific security issues?...12
	 Can the tool identify and test applications that use LLMs?...13
	 Does the tool support authentication and business logic flows?..14

Accuracy...15
	 Can the tool verify if a vulnerability is exploitable?...16
	 Can the tool generate reliable results without wasting your time on.. 17
	 false positives?
	 Can the tool run more than one type of security testing?...18
	 Does the tool use a mature and proven scan engine?..19

Automation..20
	 Can you use the tool in your SDLC?..21
	 Is the tool fast enough to work in dev pipelines?...22
	 Is the tool accurate enough for scalable automation?...23

Risk reduction.. 24
	 Can the tool show you which vulnerabilities need to be fixed first?...25
	 Can the tool provide a risk estimate before you do any testing?.. 26
	 Does the tool provide centralized visibility for security testing data?.......................................27
	 Can the tool generate reports to support compliance efforts?...28

Summary: How to get the best out of this guide and checklist.......................... 29

AppSec Buyer’s Checklist..30

Table of contents

3AppSec Buyer’s Guide and Checklist

Ways to use this guide

Introduction

This guide is for CISOs, AppSec leaders,
and security-minded engineering managers
who are responsible for choosing the
tools and platforms that secure their web
applications and APIs. Whether you are
leading a mature AppSec program or
formalizing your security stack for the first
time, this guide is designed to help you invest
in capabilities that actually reduce risk in
production, not just add more findings.

Who is this guide for?

The guide focuses on five core areas that
matter most when you are evaluating
application and API security tooling:
coverage, depth, accuracy, automation, and
risk reduction. For each area, it explains why
the capability matters, what to look for in
a product, and how to tell if it will work in
practice for your teams and workflows.

The perspective here is deliberately DAST-
first. Automated dynamic application security
testing – scanning your running applications
and APIs – provides a scalable way to show
what is actually exploitable in production.
Other signals from SAST, SCA, infrastructure,
and cloud tools are still important, but they
are only practically actionable when unified
on a platform that uses DAST to validate,
prioritize, and drive real remediation work.

How does this guide
help you?

You can use this guide to assess individual
testing tools as well as broader application
security platforms. It is especially useful when
you are:

•	 Comparing dynamic application security 	
	 testing (DAST) products

•	 Evaluating platforms that put DAST at 	
	 the core but also include API security, 	
	 SCA, or other testing methods

•	 Assessing application security posture 	
	 management (ASPM) or AppSec platforms 	
	 that promise a unified view of application 	
	 and API risk

Throughout, the emphasis is on tools and
platforms that help you find and fix real,
exploitable vulnerabilities in running applications
and APIs, then roll that insight up into a single,
actionable view of risk across your portfolio.

What products can you
evaluate?

You can use the guide to structure your internal tool
evaluation, identify capability gaps in your current
stack, or prepare for vendor conversations. Each
evaluation point is designed to map to a practical
question you can ask vendors (or yourself) to separate
the must-haves from the nice-to-haves for your
specific needs.

At the end of this guide, you will find a checklist that brings together all
of the evaluation points in one place.

4AppSec Buyer’s Guide and Checklist

How much of your
attack surface can
you test?

Coverage

Coverage  |  AppSec Buyer’s Guide and Checklist 5

Can the tool crawl and scan
running applications?

A security scanner is only as good as its
ability to reach all parts of your application
environments. If it can’t crawl dynamic
pages, execute JavaScript, or follow
complex navigation flows, it won’t see key
parts of the application, leaving these parts
without security testing. With modern web
applications that rely heavily on client-side
transformations and rendering, failing to scan
deeply means missing serious vulnerabilities.

If you’re evaluating a code-focused tool
like a SAST scanner, be aware that static
analysis can only see what’s written in the
source – it won’t catch issues that depend
on runtime behavior, dynamic content,
or client-side logic. Without scanning the
running application and performing dynamic
application security testing (DAST), you’re
missing the very part of the attack surface
that real-world attackers can and will target.

Why you need it

An effective scanner should be able to handle
modern JavaScript-heavy applications,
including single-page apps that rely on
dynamic content rendering. Look for a
crawling engine that can adapt to application
state, execute scripts, follow client-side
routes, and interact with forms and buttons
as a user would. The best tools also let you
define custom crawl rules, add manual entry
points, and view coverage maps that show
exactly what parts of the application were
reached during scanning.

Features to look for

•	 Ask the vendor what JavaScript 		
	 frameworks the crawler supports and how 	
	 it handles SPAs or client-rendered content.

•	 Request a demonstration or test
	 run against a modern web application 	
	 with dynamic routing and interactive 	
	 components.

•	 Check whether the tool provides crawl 	
	 reports or coverage maps that show what 	
	 was reached and tested.

•	 During evaluation, monitor whether 		
	 the scanner can discover hidden or 		
	 dynamically generated elements.

How to evaluate

Risks of not having:

•	 Large parts of the application may
	 go untested.

•	 Vulnerabilities may remain undetected
	 in dynamic content.

•	 Code-based tools alone can’t validate
	 or cover runtime risks.

Importance

Critical

https://www.invicti.com/learn/static-application-security-testing-sast
https://www.invicti.com/learn/dynamic-application-security-testing-dast
https://www.invicti.com/learn/dynamic-application-security-testing-dast

Coverage  |  AppSec Buyer’s Guide and Checklist 6

Can the tool scan APIs?

Why you need it
Modern applications rely heavily on APIs
to deliver data and functionality to users –
and attackers know it. APIs often expose
sensitive operations like authentication, data
access, and business logic, making them
a prime target. If your security testing tool
can’t scan APIs directly, you’re leaving a
major part of your attack surface untested.
This makes API security testing crucial
across all industries and application types,
especially as organizations move toward
microservices, mobile-first interfaces, and
third-party integrations.

SAST tools can analyze code-level issues
for known API endpoints, but they won’t see
runtime vulnerabilities, authorization flaws, or
configuration problems that only appear when
the API is actually running. Dynamic testing is
the only way to simulate how attackers would
interact with your live APIs.

Features to look for
A capable tool should support scanning a
wide range of API formats, including at least
REST, SOAP, and GraphQL. It should be
able to import API definitions (such as
OpenAPI/Swagger or Postman collections),
handle common authentication methods,
and automatically test endpoints for issues
like injection, broken access control, and
security misconfigurations. For complex
or undocumented APIs, it should also
support manual entry and offer flexibility in
request customization.

How to evaluate
•	 Ask vendors what API types and 		
	 specifications (e.g., OpenAPI, Swagger, 	
	 GraphQL, SOAP) their tool supports.

•	 Confirm whether the scanner can 		
	 test undocumented or dynamically 		
	 generated endpoints.

•	 Check if the tool supports bearer tokens, 	
	 API keys, OAuth, and custom headers for 	
	 authenticated scanning.

•	 Import an API definition during evaluation 	
	 and verify that endpoints are correctly 	
	 parsed, tested, and reported on.

•	 Observe whether the scanner uncovers 	
	 real vulnerabilities without requiring 		
	 excessive manual tuning.

Risks of not having

•	 APIs may go untested despite handling 	
	 sensitive operations and data.

•	 Business logic vulnerabilities may be 		
	 missed entirely.

•	 You will need a separate tool to cover APIs.

Importance

Critical

https://www.invicti.com/blog/web-security/what-is-api-security

Coverage  |  AppSec Buyer’s Guide and Checklist 7

Risks of not having

•	 Shadow apps may go completely 			
	 untested and unprotected.

•	 False sense of security from testing 			
	 only known assets.

•	 Any missed assets expand your attack 		
	 surface without your knowledge.

•	 Untracked assets from mergers and 			
	 acquisitions or decentralized teams 			
	 can lead to unknown exposures.

Can the tool discover web
applications?

Why you need it
Before you can secure an application, you
need to know it exists. In many organizations,
especially large or decentralized ones, it’s
easy for web apps to be deployed without
being formally cataloged or added to security
workflows. These forgotten or shadow
applications often lack proper security
controls and are prime targets for attackers.
Web asset discovery capabilities are
especially important if you’re consolidating
systems, onboarding new acquisitions, or
managing a sprawling digital presence.

Static testing tools and manual inventories
can’t identify assets that aren’t already
documented or tracked in source code.
Dynamic discovery helps you uncover real,
live web applications – including the ones
nobody remembered to tell you about.

Features to look for
A good tool will use multiple techniques to
identify web assets, such as crawling public
DNS records, analyzing SSL certificates,
parsing known domains, and fingerprinting
exposed technologies. It should be able to
map these to your organization’s known
properties and surface new or unexpected
assets. Bonus points if it integrates discovery
directly into scanning workflows so you can
go from unknown to tested in a few clicks.

•	 Ask the vendor how their discovery engine 	
	 works and what data sources it uses.

•	 Request a discovery report for your 		
	 organization’s domain or IP range.

•	 Look for capabilities that allow 		
	 auto-enrollment of discovered apps into 	
	 scan schedules.

•	 Verify whether the discovery process 	
	 can be customized or filtered to avoid 	
	 irrelevant results.

•	 Test how quickly and accurately 		
	 the tool surfaces assets you weren’t 		
	 already tracking.

How to evaluate

Importance

High

https://www.invicti.com/learn/web-asset-discovery

Coverage  |  AppSec Buyer’s Guide and Checklist 8

Risks of not having

•	 Shadow APIs remain untested
	 and unsecured.

•	 Outdated API inventories lead to blind
	 spots in coverage.

•	 Attackers can exploit APIs that aren’t 		
	 even on your radar.

Can the tool discover APIs?

An API scanning capability won’t help if
you don’t know about an API in the first
place. Just like web applications, APIs
can be deployed, changed, or exposed
without proper oversight, especially in
modern architectures where services are
built, connected, and released rapidly.
Undocumented or unmanaged APIs (also
called shadow APIs) are a major risk factor
because they often bypass standard security
checks and may expose sensitive data or
functionality. If your tool can’t help you with
API discovery, these endpoints are unlikely to
be tested or protected.

While SAST tools can reveal which APIs
your code intends to expose, they only
cover the code you have and can’t show
you what’s actually running in production.
Only dynamic discovery gives you visibility
into real, accessible endpoints across
your environment.

•	 Ask the vendor whether their tool can 	
	 discover APIs beyond what’s listed 		
	 in documentation.

•	 Find out what techniques are used:
	 traffic analysis, API management 		
	 integrations, domain crawling, spec 		
	 reconstruction, response behavior, etc.

•	 Request a discovery scan on a known 	
	 domain and check if the tool identifies 	
	 undocumented endpoints.

•	 Test whether discovered APIs can be 	
	 added to scan targets directly.

•	 Evaluate if the tool highlights 			
	 discrepancies between discovered APIs 	
	 and existing definitions.

Why you need it
How to evaluate

An advanced tool should be able to detect
APIs passively (by observing traffic) and
actively (by crawling known domains and
looking for API behavior patterns). It should
also correlate discovered endpoints with
existing definitions to flag undocumented
APIs. If your applications use large
microservice architectures with centralized
API management, look for integrations with
your API management tools. Ideally, the tool
will also integrate discovery directly with
testing to automatically flag risky or unknown
APIs and queue them for scanning.

Features to look for Importance

High

https://docs.invicti.com/ie-is/api-discovery-overview

9AppSec Buyer’s Guide and Checklist

What security issues
can you find?

Depth

10Depth  |  AppSec Buyer’s Guide and Checklist

Risks of not having

•	 You may only catch what’s already 		
	 public knowledge.

•	 Custom code vulnerabilities can slip 		
	 through undetected.

•	 Attackers can exploit business logic gaps 	
	 that static tools miss.

Can the tool find both CVEs and
previously unknown vulnerabilities?

Why you need it
Application security isn’t just about known
threats. While CVEs represent documented
and publicly disclosed issues, many real-
world breaches are caused by vulnerabilities
that haven’t yet made it into any database –
issues in custom code, misconfigurations, or
flaws in business logic. If your tool can only
detect known CVEs, you’re likely missing the
unpublicized and less predictable weaknesses
that attackers still actively seek out.

Static tools, whether SAST or SCA, tend to
focus on known patterns and dependencies,
which means they’re good at flagging typical
insecure coding patterns and known CVEs in
open source components. However, purely
static testing inevitably falls short when it
comes to detecting unknown issues that only
show up in the way an application behaves
when it’s running. That’s where dynamic
testing shines.

Look for a tool that combines known
vulnerability checks with active testing
methods that simulate attacker behavior.
It should test both open source components
and the code behavior of your running
application. The ability to generate
customized payloads, analyze unexpected
responses, and flag previously unseen
patterns is key to uncovering unknown or
zero-day-level issues.

Features to look for

How to evaluate
•	 Ask whether the tool uses active checks
	 to go beyond CVE lookups alone.

•	 Request a breakdown of what types of 	
	 vulnerabilities the scanner has detected
	 in recent customer deployments.

•	 During testing, verify whether it identifies 	
	 expected vulnerabilities that aren’t tied to 	
	 published CVEs.

•	 Confirm whether the tool can flag both 	
	 dependency-level issues and 	runtime 	
	 behavior problems.

•	 Look at sample scan reports to see 		
	 how security issues are categorized
	 and explained.

Importance

Critical

11Depth  |  AppSec Buyer’s Guide and Checklist

Risks of not having

•	 Exploitable blind variants of vulnerabilities 		
	 like SSRF or XSS go undetected.

•	 Tools may miss issues that don’t show
	 up in direct responses.

•	 Security teams lack confidence in coverage 		
	 without OOB testing.

Does the tool check for all
common vulnerability types,
including out-of-band issues?

Why you need it
To get a complete picture of your security
posture, your testing tool must cover the full
spectrum of common web vulnerabilities, also
including those that don’t show up in standard
request-response cycles. Out-of-band (OOB)
vulnerabilities, like blind XSS or server-side
request forgery (SSRF), may not produce an
immediate response but can still be exploited
by attackers to steal data or gain access. If
your tool only checks for issues that show up
in direct responses, you’re leaving exploitable
paths open.

SAST tools, by design, are limited to what
they can infer from the codebase. They may
flag some issues theoretically but cannot
verify whether an attack path actually
works in a live environment – especially
for OOB behaviors that require delayed or
indirect confirmation.

Features to look for
A capable tool should test for all OWASP
Top 10 categories and beyond, including
injections, misconfigurations, business logic
issues, and other attack types. It should
support OOB testing by setting up callbacks
or traps to detect whether a payload was
successfully executed later. You should also
be able to configure detection thresholds and
enable deeper checks for higher-risk targets.

•	 Ask the vendor if their tool supports 		
	 out-of-band detection techniques and 	
	 what mechanisms it uses.

•	 Check which vulnerability classes are 	
	 covered by default and whether advanced 	
	 types require custom configuration.

•	 During testing, include a target vulnerable 	
	 to blind XSS or SSRF and see if the tool 	
	 detects it.

•	 Review how the tool presents OOB 		
	 findings and whether it provides proof 	
	 of trigger or execution.

•	 Confirm if detection coverage extends 		
	 to misconfigurations and other runtime 		
	 vulnerabilities, not just code-based bugs.

How to evaluate

Importance

Critical

https://www.invicti.com/learn/blind-cross-site-scripting
https://www.invicti.com/learn/server-side-request-forgery-ssrf
https://www.invicti.com/learn/server-side-request-forgery-ssrf

12Depth  |  AppSec Buyer’s Guide and Checklist

•	 Ask how the tool detects context-		
	 dependent vulnerabilities such as
	 session handling issues or inconsistent 	
	 access control.

•	 Confirm whether the scanner identifies
	 and tests dynamically loaded components 	
	 and late-bound dependencies.

•	 Check how the tool handles multi-step 	
	 workflows, role-based behavior, and 		
	 session-specific variations.

•	 Test it against an application that includes 	
	 conditional logic, hidden routes, or
	 lazy-loaded modules.

•	 If looking at IAST, ask how it is
	 implemented, whether it requires code 	
	 instrumentation, and whether it enhances 	
	 dynamic scanning with runtime insights.

Can the tool identify runtime-
specific security issues?

Why you need it
Many of the most dangerous vulnerabilities
only appear when an application is running.
These include issues tied to execution
context, dynamic behavior, environment-
specific configurations, and user-specific
logic flows. Some components and third-
party dependencies only load or execute
under specific conditions at runtime, so if
your tool isn’t analyzing the live application,
it may completely miss vulnerabilities in
these dynamic dependencies.

Static tools like SAST can flag code-level
risks, but they won’t catch how components
behave in real-world environments or how
user context affects execution. You need a
tool that can actively probe the application as
it runs, following the same paths an attacker
would to find security misconfigurations and
more. Support for testing insights into the
application runtime, such as lightweight IAST,
can add precision in complex environments,
especially when integrated seamlessly with
dynamic testing.

The scanner should evaluate application
behavior in real time, detect vulnerabilities
tied to user interaction, application state,
or runtime logic, and identify dynamically
loaded components or code paths. Ideally,
it will also highlight risks from dependencies
or configurations that are only active at
runtime. Built-in IAST capabilities can
enhance accuracy and context-awareness
without requiring deep changes to your
environment (though keep in mind that some
IAST tools require code instrumentation).

Features to look for

Risks of not having

•	 Vulnerabilities tied to user state or logic 		
	 remain invisible.

•	 Dynamic dependencies may go untested 		
	 and unreported.

•	 Real-world behavior is left out of
	 security validation.

How to evaluate

Importance

High

https://www.invicti.com/blog/web-security/top-5-application-security-misconfigurations
https://www.invicti.com/learn/interactive-application-security-testing-iast

13Depth  |  AppSec Buyer’s Guide and Checklist

Risks of not having

•	 LLM-backed apps may be introduced and 	
	 run without visibility or security review.

•	 New classes of vulnerabilities can remain 	
	 untested and exploitable.

•	 Lack of LLM testing limits your ability to 	
	 prepare for emerging threats.

Can the tool identify and test
applications that use LLMs?

Why you need it
How to evaluateSoftware based on LLMs (large language

models) is rapidly finding its way into AI
features in production applications, whether
through chatbots, content generation,
analysis tools, or various assistants. In many
cases, these modules are added with little
security oversight and no consistent testing.
LLM-backed applications can be vulnerable
to entirely new categories of vulnerabilities,
from LLM prompt injection to data leakage
and indirect exploitation via integrated tools.
You need to know where LLMs are exposed
and whether they’re introducing new
attack paths.

Because LLM behavior is based on inputs,
context, and unpredictable language models,
these risks can’t be reliably found in code or
dependency scans. You need a DAST-based
approach that can detect LLM usage and
actively probe for real vulnerabilities. With the
space evolving quickly, tools that include LLM
testing will help future-proof your security
program while also addressing very real risks
already seen in the wild.

Features to look for
At a minimum, the tool should be able to
detect when an LLM is present and exposed
in the application. From there, it should
attempt common LLM-specific attacks –
such as prompt injection, command injection,
or insecure output handling – without relying
on source code access or instrumentation.
The tool should also support detection and
testing across any exposed entry point, not
just visible chatbot interfaces.

•	 Ask whether the tool includes
	 dedicated security checks for LLM-		
	 specific vulnerabilities.

•	 Confirm that detection is based on 		
	 behavior in the running application,
	 not just static analysis.

•	 Include an LLM-backed feature in a
	 test target and verify whether the tool 	
	 detects it.

•	 Observe whether the scanner attempts 	
	 relevant payloads (e.g., prompt injection, 	
	 response manipulation) and reports
	 findings clearly.

•	 Ask how new LLM-related attack types
	 will be added to the tool’s testing scope.

Importance

Medium

https://www.invicti.com/white-papers/prompt-injection-attacks-on-llm-applications-ebook

14Depth  |  AppSec Buyer’s Guide and Checklist

•	 Ask what types of authentication are 	
	 supported (form-based, SSO, OAuth, 	
	 multi-factor).

•	 Test if the tool can maintain a session and 	
	 access authenticated content consistently.

•	 Check if it can handle workflows that 	
	 require stateful navigation, such as 		
	 shopping carts or multi-step forms.

•	 Evaluate whether it can fill out forms 		
	 intelligently without needing manual 		
	 field mapping.

•	 Try recording a business logic flow and 	
	 running a scan to see if the tool follows
	 it correctly.

•	 Review whether the tool identifies different 	
	 behaviors or risks for users with different 	
	 access levels.

Does the tool support authentication
and business logic flows?

Many of the most serious vulnerabilities lie
behind login screens or depend on specific
user interactions. If your testing tool can’t
authenticate into the application or navigate
real workflows, it won’t reach the functionality
that matters most: payment processing,
profile management, data exports, and other
logic-heavy areas. This is where real-world
attacks happen, and where generic scanning
often falls short.

Static tools can’t see workflows at all. Even
many dynamic tools stop at the login page
unless manually configured. Without the
ability to log in and move through your app
like a user would, your tests are incomplete
– and your coverage is dangerously limited.
To go deeper, tools need automation features
that simulate real user activity, including
intelligent form filling. AI-assisted form
handling can significantly boost coverage and
accuracy by interacting with inputs that would
otherwise require manual configuration.

Why you need it

Features to look for
A solid tool should support automated login
for both simple and complex authentication
mechanisms, including multi-step flows
and token-based schemes. It should allow
scripting or recording of business logic
sequences to ensure deep coverage. Look
for features that can automatically complete
forms, choose relevant inputs, and navigate
dynamic flows, making it easier to test real
functionality at scale.

How to evaluate

Risks of not having

•	 Vulnerabilities behind login screens or 	
	 complex forms go completely untested.

•	 Business-critical workflows are excluded 	
	 from security validation.

•	 Manual effort limits the scope and depth
	 of automated testing.

Importance

Critical

15AppSec Buyer’s Guide and Checklist

How good are the
results you get from
the tool?

Accuracy

16Accuracy  |  AppSec Buyer’s Guide and Checklist

•	 Ask how the tool distinguishes
	 between potential vulnerabilities
	 and exploitable ones.

•	 Request examples of reports for 		
	 vulnerabilities that the tool can verify 	
	 automatically, such as SQL injection
	 or XSS.

•	 Review how verified vulnerabilities are 	
	 presented in the report – are there 		
	 payloads, server responses, screenshots?

•	 During testing, introduce a known 		
	 exploitable issue and check if the tool 	
	 flags and proves it.

•	 Ask how the tool handles edge cases 	
	 or low-confidence findings – are they 	
	 marked clearly, mixed in with other 		
	 results, or perhaps silently dropped?

Can the tool verify if a vulnerability
is exploitable?

Finding vulnerabilities is only useful if you
can trust the results. Without confirmation
of exploitability, your team is left guessing,
which can lead to wasted time, missed
priorities, and unnecessary friction between
security and development. Verification is what
separates real, actionable threats from noise.

Static analysis tools can flag potential issues
but have no way of confirming whether
they can actually be exploited. That forces
security teams and developers to validate
findings manually, introducing delays and
uncertainty. A dynamic testing tool that
can automatically verify exploitability
gives you a major advantage: faster triage,
higher confidence, and better use of limited
remediation resources.

Look for a scanner that goes beyond pattern
matching or assumptions and performs live
tests to confirm vulnerabilities. This should
include proof-of-exploit for critical issues,
with clear, reproducible evidence that
demonstrates how the vulnerability works
in practice. Ideally, verification is built into
the scanning engine and doesn’t require a
separate step or tool.

Risks of not having

•	 Teams waste time chasing non-
	 exploitable issues.

•	 Developers lose trust in security tools.

•	 Real risks may get buried under noise
	 or deprioritized.

Why you need it
How to evaluate

Features to look for

Importance

Critical

https://www.invicti.com/learn/sql-injection-sqli
https://www.invicti.com/learn/cross-site-scripting-xss

Importance

Critical

17Accuracy  |  AppSec Buyer’s Guide and Checklist

•	 Ask for the tool’s reported false positive 	
	 rate (and how it defines a false positive).

•	 Test the tool against a known clean 		
	 application with no vulnerabilities to 		
	 see if it reports something anyway.

•	 Look at how findings are ranked and 		
	 whether “confirmed” issues are backed 	
	 by evidence.

•	 Review whether reports provide enough 	
	 context to verify results without digging 	
	 through logs.

•	 Ask what safeguards the tool uses to 	
	 prevent false alerts in edge cases or 		
	 noisy environments.

Can the tool generate reliable
results without wasting your time
on false positives?

Why you need it
How to evaluate

Features to look for

False positives are one of the biggest
drains on AppSec efficiency. When a tool
generates alerts that turn out to be incorrect
or irrelevant, it erodes trust and consumes
valuable time that could be spent fixing real
issues. If developers stop taking reports
seriously, your security program loses
credibility and risk goes unmanaged.

Static tools are particularly prone to false
positives because they rely on pattern
matching and assumptions without knowing
how the application actually behaves.
A dynamic tool that tests the running
application and confirms vulnerabilities
in context can dramatically reduce noise,
helping teams focus on what matters.

An accurate tool should use techniques like
evidence-based scanning, context-aware
detection, and runtime validation to minimize
false positives. Look for features that help
differentiate confirmed issues from low-
confidence flags, including automated exploit
testing and clear evidence. It’s even better
if the tool can adapt to your environment to
avoid reporting known safe behaviors.

Risks of not having

•	 Developer time is wasted on chasing 	
	 down non-issues.

•	 Security alerts are ignored due to a poor 	
	 signal-to-noise ratio.

•	 Real vulnerabilities can be overlooked 	
	 amid the noise.

•	 Developers lose trust in security
	 reports and start ignoring or bypassing 	
	 security testing.

https://www.invicti.com/white-papers/false-positives-in-application-security-whitepaper
https://www.invicti.com/blog/web-security/cutting-through-uncertainty-proof-based-scanning-announcing-white-paper

18Accuracy  |  AppSec Buyer’s Guide and Checklist

•	 Ask which testing types the tool supports 	
	 natively and how they work together.

•	 Check whether findings from SAST, 		
	 SCA, or IAST are aggregated or
	 reported separately.

•	 Review whether DAST results are
	 used to validate or filter findings from 	
	 other tools.

•	 Confirm if you can enable or disable 		
	 specific testing types depending on
	 the environment.

•	 Look at a report that includes multiple
	 test types and evaluate whether it 		
	 enhances clarity or creates confusion.

Can the tool run more than one type
of security testing?

No single testing method can cover
everything. DAST excels at identifying
real, exploitable vulnerabilities in running
applications, but it won’t catch issues in
code that never makes it to production.
SAST can help catch those, but it doesn’t
show you what is actually exploitable. Static
SCA identifies known issues in open source
components – but again, without runtime
context. If your tool can’t combine multiple
perspectives, you risk blind spots and
redundant tooling.

A unified solution that brings together DAST
with complementary testing methods like
SAST, IAST, or SCA can give you broader
coverage, eliminate overlaps, and reduce the
need to juggle multiple tools and workflows.
As a major bonus, if DAST is used as the
verification layer, it helps reduce noise
across the board by checking reachability
and exploitability.

Why you need it

Features to look for
Look for a platform that integrates dynamic
testing with at least one additional method,
such as IAST for runtime insights or SCA
(static, dynamic, or both) for component-level
risk. It should allow you to view and manage
findings from multiple sources in a unified
interface. Ideally, the interface and reporting
should stay consistent across test types to
avoid context switching.

How to evaluate

Risks of not having

•	 You miss issues that one testing method 	
	 alone can’t detect.

•	 Tool sprawl and uncorrelated data slow 	
	 down response.

•	 You lack a complete, prioritized view
	 of risk.

Importance

High

https://www.invicti.com/learn/software-composition-analysis-sca

Importance

High

19Accuracy  |  AppSec Buyer’s Guide and Checklist

•	 Ask how the engine works under the
	 hood and what types of environments
	 it supports.

•	 Request customer references
	 or case studies involving large,
	 complex applications.

•	 Run test scans on applications with
	 modern tech stacks, authentication,
	 and edge-case behaviors.

•	 Review how frequently the engine
	 is updated and how it handles new 		
	 vulnerability classes.

•	 Ask how the engine is tested and 		
	 validated internally before each release.

Does the tool use a mature
and proven scan engine?

Accuracy, depth, and reliability all depend
on the quality of the underlying scan engine.
An engine that’s immature, underdeveloped,
or powered solely by some unspecified AI
tech might miss vulnerabilities, flood your
reports with false positives, or break on
complex modern applications. Over time, that
creates friction, erodes trust, and slows down
your security program. A proven engine, by
contrast, can handle real-world applications
at scale – giving you the consistency and
confidence needed to embed security into
your workflows.

A strong scan engine also reflects years
of refinement in crawling, testing, and
interpreting application behavior. It’s not
just about raw speed or coverage but
how well the tool handles edge cases,
modern technologies, and production-like
environments without breaking, stopping
dead at the first auth hurdle, or generating
excessive noise.

You want a scan engine with a track
record of successful use in enterprise
environments. Look for support for
modern frameworks, proven performance
across complex apps, and clear evidence
of ongoing maintenance and tuning.
Features like intelligent crawling, robust
authentication handling, and built-in
verification methods are all signs of a
mature foundation.

Why you need it
How to evaluate

Features to look for

Risks of not having

•	 Scans may miss critical issues or report 	
	 unreliable findings.

•	 New app technologies may break the 	
	 scanner or reduce coverage.

•	 Tool instability undermines trust and slows 	
	 down remediation.

20AppSec Buyer’s Guide and Checklist

How does the
tool work with
automated
workflows?

Automation

Importance

High

21Automation  |  AppSec Buyer’s Guide and Checklist

•	 Ask which CI/CD platforms are supported 	
	 and whether integrations are built-in
	 or custom.

•	 Try running a scan automatically
	 during a pull request or deployment in
	 a test project.

•	 Review how scan failures are handled:
	 can you customize thresholds or rules?

•	 Check whether the tool supports scanning 	
	 pre-production environments or ephemeral 	
	 test apps.

•	 Evaluate the learning curve: can developers
	 trigger and interpret scans without relying 	
	 on security teams?

Can you use the tool in your SDLC?

Application security testing is only truly
effective if it fits the way your teams build
and ship software. If your tool can’t run in
development pipelines, support shift-left
workflows, or trigger scans during CI/CD
processes, it will be sidelined or run too late
to prevent costly late-stage remediation.
Modern AppSec requires automation because
manual, after-the-fact scans just don’t scale.

Static tools were built with code toolchains
and CI/CD in mind, so SAST is a natural
fit there. However, dynamic testing often
gets left out due to outdated assumptions
about speed, accuracy, or integration
complexity. A modern DAST tool should
prove those assumptions wrong by
fitting cleanly into your SDLC without
disrupting development velocity.

Look for native support for CI/CD
integrations (like GitHub Actions, GitLab CI,
Azure DevOps, or Jenkins), with the ability
to run scans automatically on code merges,
deployments, or releases. The tool should
also provide flexible scan configurations
and pass/fail logic based on custom
thresholds so teams can block builds only
for actionable issues.

Risks of not having

•	 Security testing is delayed until
	 after deployment.

•	 Teams work around the tool instead
	 of adopting it.

•	 You lose the opportunity to fix issues early 	
	 when it’s cheaper.

Why you need it

Features to look for

How to evaluate

https://www.invicti.com/white-papers/security-at-the-speed-of-software-dast-in-the-sdlc

Importance

High

22Automation  |  AppSec Buyer’s Guide and Checklist

Risks of not having

•	 Scans are disabled or ignored due to
	 time constraints.

•	 Security becomes a bottleneck rather than 	
	 a safeguard.

•	 Vulnerabilities go undetected until late in 	
	 the cycle.

Is the tool fast enough to work in
dev pipelines?

If a security scan takes longer than your
build or delays your release, developers will
bypass it or turn it off completely. To be part
of a modern SDLC, a testing tool must be
fast enough to keep up with development
pipelines, whether it’s running on every
commit, nightly builds, or a pre-release gate.

Speed matters because it directly affects
adoption. A tool that provides the needed
results quickly for a specified subset of assets
can catch issues early without slowing things
down. Full scans should still run on a schedule
or at predefined trigger points, but pipeline
integration requires performance that doesn’t
block progress.

A pipeline-friendly tool should support
incremental or targeted scanning based
on the scope of recent changes. It should
provide tunable scan profiles and clear
options to balance speed with depth. Also
important are smart defaults that avoid
redundant work and provide actionable
results early in the process.

•	 Ask how long typical scans take
	 for different application sizes and 		
	 environments.

•	 Run a scan during a test pipeline and 	
	 measure the impact on build times.

•	 Ask about automated retesting when
	 a vulnerability fix is submitted.

•	 Try configuring a partial or lightweight scan 	
	 for use during active development.

•	 Confirm whether the tool supports scan 	
	 resumption or differential scanning.

•	 Review how quickly initial results are 	
	 available and whether they can be acted
	 on before the scan completes.

Why you need it
How to evaluate

Features to look for

Importance

Critical

23Automation  |  AppSec Buyer’s Guide and Checklist

•	 Ask how the tool ensures accuracy in 	
	 automated workflows and how it avoids 	
	 false positives.

•	 Run a scan in a test pipeline and review 	
	 how many issues are flagged – and how 	
	 many of those are actionable.

•	 Look for options to configure fail
	 conditions based on issue severity, 		
	 confidence, or type.

•	 Evaluate how findings are verified:
	 are there proofs, payloads, or
	 context included?

•	 Try scanning multiple projects in
	 parallel to see how the tool handles
	 scale and consistency.

Is the tool accurate enough
for scalable automation?

Why you need it
How to evaluateAutomation only works if you trust the results

enough to act on them without manual
oversight. If your tool frequently raises false
alarms or misses critical issues, you can’t
safely use it in a pipeline or CI/CD workflow.
To scale application security, you need
a tool that consistently delivers accurate,
actionable findings without requiring
constant human review.

Scalability means more than just performance.
It means the tool can run unattended across
many applications, environments, and teams
without flooding systems with noise or
breaking builds over questionable findings.
The more confidence you have in the results,
the more you can automate.

Features to look for
Look for a track record of high accuracy,
especially around key vulnerability classes.
Features like evidence-based scanning,
exploit verification, and context-aware
detection reduce false positives and build
confidence. The tool should also offer flexible
rules and thresholds so that only meaningful
results affect pipeline decisions.

Risks of not having

•	 Automation breaks down under noisy
	 or low-quality results.

•	 Manual triage becomes a bottleneck.

•	 Developers lose trust and security 		
	 coverage suffers.

https://www.invicti.com/blog/web-security/close-automation-gap-in-enterprise-app-sec

24AppSec Buyer’s Guide and Checklist

Does the tool
help you reduce
actual risk?

Risk reduction

Importance

Critical

25Risk reduction  |  AppSec Buyer’s Guide and Checklist

Risks of not having

•	 Teams focus on less impactful issues
	 while bigger risks go unaddressed.

•	 Vulnerability overload leads to alert
	 fatigue and inaction.

•	 Security efforts fail to reduce actual 		
	 business risk.

Can the tool show you which
vulnerabilities need to be fixed first?

Why you need it
How to evaluateNot every vulnerability is equally dangerous.

If your security tool flags everything as
urgent, your teams won’t know where to
focus – and real risks may get buried under
lower-priority issues. Prioritization is essential
to enable work that reduces actual risk rather
than just ticking boxes.

Effective prioritization means looking beyond
severity scores and labels to consider
exploitability, business context, and asset
value. Tools that provide this insight help
security and development teams work
smarter, fix the right things first, and make
the most of limited time and resources.

Look for risk-based prioritization capabilities
that go beyond CVSS scores. The tool should
account for exploitability (confirmed using
methods like evidence-based scanning),
asset exposure, and business criticality.
Bonus points for using predictive models
or adaptive scoring to highlight the riskiest
findings across your environment, not just the
highest-rated ones.

Features to look for

•	 Ask how the tool determines which issues 	
	 are most urgent.

•	 Check whether exploitability is factored 	
	 into issue ranking.

•	 Review whether you can tag or categorize 	
	 applications by business importance.

•	 Test how the tool ranks vulnerabilities in 	
	 high-traffic vs. low-impact apps.

•	 Ask whether prioritization adapts
	 as your environment changes or new
	 scans complete.

Importance

Medium

26Risk reduction  |  AppSec Buyer’s Guide and Checklist

Risks of not having

•	 High-risk apps may be overlooked
	 during planning.

•	 Scan schedules may not align with
	 actual risk.

•	 Resources are spent on fixing
	 low-risk targets while bigger risks
	 remain unaddressed.

Can the tool provide a risk estimate
before you do any testing?

Why you need it
Running a scan gives you visibility into
current vulnerabilities – but what if you could
estimate risk even before testing begins?
Having pre-scan risk insight helps prioritize
targets, plan scan schedules, and allocate
remediation resources more effectively. It’s
especially valuable for large environments
where not everything can be scanned
immediately, and not every scan result can be
actioned right after testing.

While traditional tools wait for a scan
to generate any insight, more advanced
platforms can analyze external signals,
metadata, or historical trends to estimate
which applications or APIs are likely to be
riskier. That gives security teams a head start
on managing exposure.

Look for a platform that can assign preliminary
risk scores to assets based on characteristics
like exposure, technology stack, age, and
past vulnerability history. These estimates
should be visible in dashboards and usable
for prioritizing discovery, scanning, and
remediation planning.

Features to look for

How to evaluate
•	 Ask whether the tool provides any 		
	 predictive risk scoring or similar insights 	
	 before scans are run.

•	 Review how pre-scan risk levels are 		
	 calculated. What signals or heuristics
	 are used?

•	 Check whether some unscanned assets
	 are already flagged as potentially high risk.

•	 Test whether any provided risk estimates 	
	 help you plan which targets to scan first.

•	 Ask how pre-scan risk insights are
	 updated over time or integrated into 		
	 broader reporting.

https://docs.invicti.com/ie-is/predictive-risk-scoring-introduction

Importance

High

27Risk reduction  |  AppSec Buyer’s Guide and Checklist

Risks of not having

•	 No way to track risk reduction or
	 program coverage.

•	 Stakeholders lack visibility into what’s 	
	 being secured and why.

•	 Insights are disconnected from real
	 testing data.

Does the tool provide centralized
visibility for security testing data?

Without a central view of your security
posture, it’s easy to miss patterns, overlook
risk, or duplicate efforts. If testing data is
scattered across tools, teams, or formats,
you can’t track progress, measure coverage,
or make informed decisions. Centralized
visibility turns raw scan results into actionable
insights that security leaders can use to guide
priorities and demonstrate accountability.

This is where application security posture
management (ASPM) concepts and features
really start to matter. A platform that brings
together data from across your applications,
environments, and teams while anchoring
that data in reliable, built-in testing gives you
both visibility and control. Such a testing-
first approach is distinct from “pure” ASPM
solutions that only aggregate data from
connected tools because it ensures that
what you’re seeing reflects actual risk, not
just metadata.

Look for a platform that consolidates findings
from DAST, SAST, SCA, and other testing
tools into a single, unified view. It should
support filtering by business context, tagging
by team or risk category, and tracking
of vulnerability trends over time. Built-in
dashboards and reporting should allow for
both operational and executive-level insights
without requiring separate tools or exports.

Why you need it

Features to look for

How to evaluate
•	 Ask whether the tool offers a centralized 	
	 dashboard that spans all testing and
	 asset data.

•	 Review how assets, scans, and findings 	
	 are grouped, e.g., by application, team,
	 or business unit.

•	 Check if findings can be filtered, tagged, 	
	 and tracked across time and teams.

•	 Alongside centralized vulnerability 		
	 management, ensure you are also getting 	
	 solid security testing tech in the box (and 	
	 vice versa).

•	 Test how the platform surfaces high-risk 	
	 areas or applications at a glance.

•	 Ask whether visibility includes both raw 	
	 scan results and contextualized risk views.

https://www.invicti.com/product/application-security-posture-management-aspm
https://www.invicti.com/product/application-security-posture-management-aspm

Importance

Medium

28Risk reduction  |  AppSec Buyer’s Guide and Checklist

Risks of not having

•	 Audit preparation becomes manual,
	 time-consuming, and error-prone.

•	 Gaps in documentation raise red flags 	
	 during compliance reviews.

•	 Stakeholders lack proof that security
	 work is being done.

Can the tool generate reports
to support compliance efforts?

Even though your priority should always be
real risk reduction, compliance still matters.
Whether it’s SOC 2, PCI DSS, HIPAA, or
internal policy enforcement, you need to
demonstrate that applications are being
tested regularly, vulnerabilities are managed,
and security posture is improving. Without
clear, reliable reporting, audits become a
scramble – and leadership lacks visibility.

Security testing tools should support
compliance not just by ticking boxes but by
showing evidence of real, ongoing efforts.
The best tools generate reports that map
findings to compliance requirements and give
auditors, executives, and stakeholders the
assurance they need without extra overhead
for your team.

Look for built-in compliance report
templates aligned to common standards,
with the ability to filter by application,
timeframe, or remediation status. Reports
should be exportable, shareable, and
easy to generate on demand. Ideally, they
should include proof of testing activity,
vulnerability trends, and confirmation of
issue resolution.

Why you need it

Features to look for

How to evaluate
•	 Ask whether the tool includes report
	 templates for specific frameworks and 	
	 industry standards (for example, PCI DSS, 	
	 OWASP Top 10, HIPAA).

•	 Generate a report based on a recent scan 	
	 and review how findings are presented.

•	 Check if reports can include
	 remediation history, scan frequency,
	 and compliance status.

•	 Confirm whether reports can be scheduled 	
	 or automated for recurring audits.

•	 Review whether reports are
	 understandable to non-technical 		
	 stakeholders and auditors.

29AppSec Buyer’s Guide and Checklist

You’ve seen what to look for in a capable, scalable, and risk-focused
application security tool. Now it’s time to use that insight to guide your
evaluation process.

Summary: How to get the best out
of this guide and checklist

Define what you’re
looking for
Start by identifying your highest-priority
needs, whether that’s expanding test
coverage, reducing noise, integrating into
pipelines, or preparing for audits. Then use
the checklist to focus on capabilities that will
deliver immediate impact without locking you
into a narrow toolset.

Ask pointed questions
As you evaluate vendors and solutions,
don’t just compare features. Ask practical
questions that will most affect your
day-to-day operations:

•	 How does the tool integrate into our 		
	 existing workflows?

•	 Can the tool scale with my team
	 and organization?

•	 How much manual work on triage and 	
	 verification will be needed for the results?

•	 Will the tool help us find, prioritize, and fix 	
	 the issues that matter most?

•	 How long will it take to go from 		
	 deployment to meaningful results
	 and value?

•	 What industry experience and product 	
	 track record does the vendor have with 	
	 application security?

•	 Does the vendor offer onboarding or do we 	
	 need to figure out everything ourselves?

Tools that look similar on paper often behave
very differently in practice, so request live
demos, test real apps during proof-of-
concept trials, and look for evidence that the
tool and vendor can deliver on their promises.

Use the checklist that follows to run a
structured, confident evaluation – and choose
a solution that works for your team, not just
your budget.

Think about
tomorrow’s needs
Finally, keep the future in mind. Application
security isn’t static. The right product should
not only solve your current problems but also
support your roadmap, whether for tighter
DevSecOps integration, better visibility, tool
consolidation, or improved automation. And
be sure to ask the vendor about their product
roadmap to make sure it exists and aligns with
your own direction.

Trust the checklist

30AppSec Buyer’s Guide and Checklist

AppSec Buyer’s Checklist

Yes No Partly Notes

Coverage

Can the tool crawl and scan
running applications?

Can the tool scan APIs?

Can the tool discover web applications?

Can the tool discover APIs?

Depth

Can the tool find both CVEs and
previously unknown vulnerabilities?

Does the tool check for all
common vulnerability types,
including out-of-band issues?

Can the tool identify runtime-specific
security issues?

Can the tool identify and test applications
that use LLMs?

Does the tool support authentication and
business logic flows?

31AppSec Buyer’s Guide and Checklist

Yes No Partly Notes

Accuracy

Can the tool verify if a vulnerability
is exploitable?

Can the tool generate reliable
results without wasting your time
on false positives?

Can the tool run more than one type of
security testing?

Does the tool use a mature and proven
scan engine?

Automation

Can you use the tool in your SDLC?

Is the tool fast enough to work in
dev pipelines?

Is the tool accurate enough for
scalable automation?

Risk reduction

Can the tool show you which
vulnerabilities need to be fixed first?

Can the tool provide a risk estimate before
you do any testing?

Does the tool provide centralized visibility
for security testing data?

Can the tool generate reports to support
compliance efforts?

Invicti Security provides a centralized application security
platform that helps organizations prove and reduce real
application risk with zero noise. Combining application
security posture management (ASPM) with discovery and
scanning, Invicti gives security and development teams a
single, correlated view of exploitable vulnerabilities across
their application frontends and APIs. With its best-of-
breed dynamic application security testing (DAST) acting
as the fact-checker, Invicti integrates into CI/CD pipelines
to deliver proof-based results supported by AI-powered
prioritization and remediation. Built on more than 20 years
of DAST innovation through Acunetix and Netsparker and
further strengthened by the acquisition of Kondukto ASPM,
Invicti operates globally across more than 11 countries and
serves over 4,000 customer organizations.

Find Us      LinkedIn      X (Twitter)      Facebook      Instagram      invicti.com      Contact Us

Invicti’s solutions automate application vulnerability
identification, confirmation, and management to help keep
sensitive information and critical infrastructure secure.

ARE NOW

https://www.linkedin.com/company/invicti-security
https://x.com/InvictiSecurity
https://www.facebook.com/Invicti-Security-100090617259790/
https://www.instagram.com/invictisecurity?igsh=ajgxMnR2YjRyczIx
https://www.invicti.com
https://www.invicti.com/contact

