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Abstract

We investigate whether specially constructed text captions can capture
the same morphological information as radio galaxy images. Using the
MiraBest dataset, we generate captions with a domain-specific prompt and
evaluate their alignment with images through the SigL.IP-2 vision—language
model, with and without LoRA fine-tuning. Results show that caption-based
classification of FR-I and FR-II galaxies performs similarly to images, with
fine-tuning improving local coherence of embeddings but not global alignment.
Keywords: Astrophysics

1 Introduction

Vision-language models (VLMs) have demonstrated remarkable zero-shot gen-
eralization in natural image domains, learning joint embeddings of images and
text that enable retrieval, captioning, and reasoning tasks. In astrophysics, the
direct application of these models for scientific purposes is not straightforward,
as text is not a common data format in either observations or simulations. While
specialized large language models such as AstroMLab |Pan et al. [2024] and
AstroLLaMA [Pan et al.| [2024] capture domain-specific textual information from
literature and metadata, and self-supervised visual models such as |Lastufka et al.
[2024], Hayat et al.| [2021], |Slijepcevic et al.|[2024] extract features from images,
no studies to our knowledge investigate whether text representations can encode
the same morphological information as astrophysical image data.

Recent work in this direction includes AstroLLaVA|Zaman et al|[2025], which
aligns captions with pictures from NASA’s Astronomy Photo of the Day, and
CosmoCLIP [Imam et all |[2024], which uses BLIP-generated captions together
with scraped pictures for contrastive fine-tuning. Although these works feature
galaxies, planets, and astrophysical objects, they do not use scientific images; that
is, the type of image that a scientist would generally analyze. The generated or
written captions also reflect the popular audience, and contain global descriptions
rather than detailed morphological information. As an intermediate step between
catalog- or meta-data and images, perhaps natural language descriptions of source
morphology can enable commercial LLMs to be leveraged for scientific tasks.

In this work, we compare the captioning quality resulting from a specialized
prompt vs a generic prompt, and we investigate whether these synthetic text
representations can capture the same semantic information as images. We further
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3 EXPERIMENTS AND RESULTS

explore lightweight adaptation through LoRA fine-tuning of the vision and/or
language backbones, examining how alignment between image and text embed-
dings can be improved. By systematically evaluating similarity and classification
scores, we aim to quantify the information preserved in text embeddings and
eventually to assess their potential to enhance zero-shot capabilities of vision
models in astrophysical applications.

2 Data

Experiments use the small, curated MiraBest dataset [Porter and Scaife [2023],
which contains a roughly even split between Fanaroff-Riley type I (FR-I) and
type II (FR-II) morphologies. Images are sparse, featuring small areas of bright
to faint emission. The small sample is important for the ability to review the
quality of caption generation. Additionally, this dataset has been used in prior
studies, such as Mohale and Lochner| [2024], |Slijepcevic et al.[[2024], Lastutka et al.
[2024], Riggi et al.|[2025] enabling straightforward comparison. MiraBest sources
are labeled as Confident or Uncertain according to the majority vote of human
annotators’ morphological classification. For training, we exclude Uncertain
samples to reduce noise, resulting in 833 Confident images. A representative
subset of 104 Confident samples is held out as a test set.

To generate image captions, we employ Google’s proprietary Gemini 2.5-
Flash preview-05-20 model, using a domain-specific prompt designed to emulate
expert morphological analysis. A control prompt simply requests generation
of captions describing the images, while the experimental prompt asks for a
detailed morphological descriptionlﬂ Control captions exhibited a larger (~1.5x)
vocabulary than those in the experimental dataset, although they had less
morphological detail and often assumed incorrect descriptors. Captions produced
by the experimental prompt, henceforth referred to as the curated captions, were
manually controlled, and if need be, edited for the test set only.

Generally, curated captions were found to describe the key features of the
radio sources, without injecting too much interpretation. Many captions used
similar wording, but given the similarity of some of the images, this was likely
unavoidable due the limitations of the prompt. Overall, the captions were found
to be detailed and objective, similar to what a scientist might composeﬂ

3 Experiments and Results

We evaluated binary classification and similarity metrics using the open-source
SigLIP-2 ViT-Base/patch-16 model with 224x224 resolution. SigLIP-2 uses
sigmoid loss, which treats image-text matching as a binary classification problem,
together with location-aware captioners (LocCa), self-distillation and masked
prediction. For our LoRA fine-tuning, we evaluate only the sigmoid loss, as the

Lfor full prompts, see Appendix
2examples of images and captions are in Appendix
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3 EXPERIMENTS AND RESULTS

full SigLIP-2 loss function is not yet implemented. We evaluate models using
F1 score from linear probes and k-nearest neighbors (KNN) classifiers on frozen
embeddings, as well as embedding similarity metrics (Recall@1, Top-5 Recall,
and class-level Recall@1). These metrics allow us to examine the separability of
embeddings for classification tasks, as well as the alignment of image and text
latent spacesﬂ

Parameter-efficient fine-tuning was performed using LoRA [Hu et al.l [2021].
We experimented with fine-tuning only the vision encoder ("Vision" column,
0.17% of total parameters trainable), only the text encoder ("Text" column
0.16% of total parameters trainable), and both vision and text encoders ("Full"
column, 0.33% of total parameters trainable). LoRA parameters of R=8 and o =
16 were used, together with a learning rate of 2.5e-5. Training was performed for
a maximum of 50 epochs, with early stopping implemented using loss calculated
on a small validation subset of the training set (~100 samples). Results are
displayed in Table [I, with the difference in performance between using the
curated and control captions displayed in parentheses, when applicable.

Table 1: Evaluation results

Metric Frozen Vision Text Full
Linear probe F1, images 0.90 0.92 0.91 0.89
(-0.01) (0.01) (0.02)
Linear probe F1, text 0.90 0.92 0.91 0.91
(0.01) (0.01) (0.02) (0.02)
Linear probe F1, concatenated 0.88 0.88 0.87 0.88
(0.01) (0.01)
Mean image-text cosine similarity 0.14 0.13 0.13 0.14
(-0.01)
Recall@1 0.01 0.03 0.03 0.01
(-0.03) (-0.08) (-0.05) (-0.03)
Top-5 Recall 0.06 0.13 0.23 0.06
(-0.12) (-0.23) (-0.14) (-0.12)
Class-level Recall@1 0.53 0.66 0.69 0.53
(-0.05) (-0.12) (-0.05) (-0.05)
KNN-classifier F1, images 0.81 0.86 0.81 0.81
KNN-classifier F1, text 0.69 0.69 0.73 0.69
(-0.02) (-0.02) (-0.06) (-0.02)
KNN-classifier F1, concatenated 0.79 0.83 0.74 0.79

(-0.04)  (-0.11)

3for full definition and interpretation of chosen metrics, see Appendix
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Figure 1: Cosine similarity between image and text embeddings for the MiraBest
test set.

4 Discussion and Conclusions

Linear probe metrics confirm that both images and text carry sufficient informa-
tion to separate FR-I and FR-II galaxies. "Scientific" captions only provide a
small boost in performance relative to generic (and sometimes incorrect) ones.
LoRA fine-tuning can improve discriminability, although perhaps best applied
to one modality at a time, since full fine-tuning did not consistently outperform.
Interestingly, although validation metrics showed higher F1 scores when using
the concatenated image and text features, test metrics did not show any im-
provement. This may reflect overfitting to correlations in the training data or
redundancy between modalities, where concatenation adds noise rather than
complementary signal.

The sigmoid loss function does not optimize for classification, rather trying
to unify image and text representations. However, fine-tuning did not increase
the average cosine similarity, although the distributions became more dense,
suggesting suggesting that embeddings were pulled closer together within classes.
Both class-level recall@1 and top-5 recall improved significantly through fine-
tuning. Recall metrics were higher for the control set of captions, likely due to
its larger vocabulary, which increases the chance of retrieving a unique caption
for a given image.

Finally, the KNN-classifier results demonstrate how samples are grouped in
latent space. Fine-tuning the text model led to noticeable improvement (F1 score
+0.04), indicating that embeddings became locally more coherent. Together with
the denser similarity distributions, this suggests that fine-tuning improves class-
level structure even if global alignment remains limited. To continue this study,
we will use a model with a generative component to examine how captions evolve
with alignment, and explore incorporating fully fine-tuned vision or language
blocks, as in , to better unify image—text representations.

These preliminary results suggest that caption-based embeddings can encode
meaningful morphological information from radio galaxies and are a viable
complement to image-based representations, although making the content of
captions more "scientific" does not lead to great improvement in the case of this
small, two-class dataset.
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B DATASET EXAMPLES

Figure 2: Examples of FR-I, FR-II, FR-I, and FR-II galaxies from the MiraBest
training dataset. Captions are listed below.

A Caption-generating Prompts

For the control captions, the following prompt was used:
"Please use 50 words or less to write a caption describing this image."
For the curated captions, the following prompt was used:

"You are acting as an expert observational radio astronomer. Exam-
ine the following image and describe it in a concise manner. Look for
bright centroids of flux and where in the image (left, right, top, bot-
tom, center) they are located. Are there any lobes or jets associated
with the flux centroids? From where do they originate and where do
the end? Are there any sources in the image that are not associated
with the central galaxy? Only describe morphology, leaving out any
assumptions about the nature of the emission. Use 50 words or less."

B Dataset Examples

Figure shows samples from the MiraBest dataset. Below, we list both the control
and curated captions. Inaccuracies are highlighted in bold text, and irrelevant

text in italics.

B.1 Left image, FR-I
Control caption:

This radio image shows a powerful radio galaxy with a bright central
active galactic nucleus (AGN). It emits two opposing jets of plasma
that expand into large radio lobes, extending far into space.

Curated caption:

A bright, compact central source emits two opposing, collimated
structures. These jets extend horizontally, broadening into diffuse,
extended lobes terminating on the far left and right. No other distinct,
unassociated sources are present.
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B.2  Second image, FR-IT B DATASET EXAMPLES

B.2 Second image, FR-II

Control caption:

Three bright, blurry objects, seemingly connected, are visible against
a dark background. This image could depict distant celestial bodies
or an out-of-focus view of faint lights in space.

Curated caption:

Two bright, closely spaced flux centroids are seen slightly top-right
of center. They are surrounded by a fainter, diffuse, and irregular
emission. Distinct lobes or collimated jets, with clear origins and
ends, are not discernible from these centroids. No other significant
radio sources are present.

B.3 Third image, FR-I

Control caption:

A distant, irregularly shaped celestial body, possibly an asteroid or
comet, appears as a blurry white object against the dark background
of space. Its two-lobed structure suggests it might be a contact
binary.

Curated caption:

A bright, irregular source is slightly above image center. Its dominant
flux centroid is upper-left, from which an elongated structure extends
diagonally to the lower-right, blending into the source’s diffuse emis-
sion. A fainter centroid lies within this extension. Several faint point
sources are visible across the field.

B.4 Right image, FR-II

Control caption:

Soft, blurry white glows emerge from a vast dark background. The
clustered lights evoke deep space, distant phenomena, or abstract
energy sources, creating an enigmatic view.

Curated caption:

Multiple bright flux centroids appear clustered slightly left of center,
with two possibly blended. Another component is above and right,
and a fainter one is to the far right. No distinct large-scale lobes
or collimated jets are evident. Several very faint, unresolved point
sources are scattered throughout.
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C Evaluation Metrics

The F1 score is the harmonic mean of precision and recall.

C.1 Linear Probe F1 Score

A linear probe is a lightweight classifier trained on frozen embeddings, which tests
whether embeddings preserve sufficient morphological information to distinguish
between FR-I and FR-II galaxies.

C.2 KNN Classifier F1 Score

A k-nearest neighbors (KNN) classifier assigns labels based on the majority
class of the k closest points in the embedding space. Unlike linear probes, KNN
performance reflects local clustering properties of embeddings. Strong KNN F1
suggests that similar sources occupy compact neighborhoods, which is desirable
for similarity-based discovery.

C.3 Cosine Similarity

Cosine similarity measures the average alignment between paired image and
caption embeddings. Higher similarity values indicate that the model places
corresponding images and captions closer in the joint embedding space.

C.4 Retrieval Metrics: Recall@l and Top-5 Recall

Retrieval metrics evaluate whether an embedding from one modality can identify
its paired counterpart in the other modality. Recall@1 reports the fraction of
cases where the correct caption is the top-ranked match for an image (or vice
versa), while Top-5 Recall extends this to the top five matches.

C.4.1 Class-level Recall@1

This evaluates retrieval at the class level rather than the instance level. A
prediction is counted as correct if the retrieved sample belongs to the correct
morphological class, even if it is not the exact paired caption or image. Higher
class-level recall suggests that text embeddings encode morphology sufficiently
to cluster FR-I and FR-IT galaxies, even if fine-grained instance-level alignment
is lacking.



	Introduction
	Data
	Experiments and Results
	Discussion and Conclusions
	Caption-generating Prompts
	Dataset Examples
	Left image, FR-I
	Second image, FR-II
	Third image, FR-I
	Right image, FR-II

	Evaluation Metrics
	Linear Probe F1 Score
	KNN Classifier F1 Score
	Cosine Similarity
	Retrieval Metrics: Recall@1 and Top-5 Recall
	Class-level Recall@1



