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Abstract

A major challenge in the natural and engineering sciences is uncovering
dynamical systems that explain observed natural phenomena. Data-driven
equation discovery has emerged as a powerful approach to automate this
process. Existing equation discovery methods, however, typically pool data
across instances of systems they seek to explain, ignoring structural differ-
ences or reducing them to parameter variations within the same equation.
Yet, different instances of the same physical or biological system may be
governed by different equations. The challenge is to uncover structural com-
ponents that are universal across systems while distinguishing them from
individual-specific variations. To capture structural differences across sys-
tems, we introduce a Bayesian hierarchical approach to equation discovery.
We demonstrate across case studies in physics, ecology, and neuroscience
that this method recovers mechanisms of the data-generating processes while
capturing structural variability across systems. By explicitly modeling struc-
tural variability in equations, it establishes a foundation for data-driven au-
tomated model discovery at the population level, providing scientists with a
tool to separate universal principles from individual differences.
Keywords: data-driven model discovery, symbolic regression, automated
scientific discovery

1 Introduction

A central challenge in AT for science is the data-driven discovery of scientific
models—for example, dynamical systems that characterize natural phenomena.
Equation discovery refers to a family of methods that aim to automatically in-
fer interpretable equations from noisy data [Langley, 1987, DZzeroski et al., 2007,
Musslick et al., 2025]. A major obstacle for such approaches is the variability
across individual systems. Here, an “individual” denotes a specific instance of a
system—such as a circuit, a cell, or an ecological community—that is governed
by universal principles yet exhibits structural idiosyncrasies. For instance, while
nerve cells share common biophysical mechanisms, different instances may re-
cruit additional processes that uniquely shape their firing dynamics.

Most approaches to data-driven equation discovery impose a single model
structure for the same type of system. If data is pooled across different instances
of the same system (e.g., populations of the same species in different habitats)
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existing algorithms ignore structural variability across system instances or re-
duce differences to parameter differences [DzZeroski et al., 2007]. This risks
oversimplification on the one hand and overfitting on the other. To address this
gap, we introduce a hierarchical Bayesian framework for data-driven equation
discovery that models variability in the structure of dynamical systems while
enforcing sparsity for interpretability. Our method recovers universal mecha-
nisms alongside individual-specific variations, providing an automated tool for
disentangling universality and individuality in scientific models.

Related Work. Data-driven equation discovery (or symbolic regression) seeks
to discovery equations from data—for example, rediscovering physical laws from
measurements of physical quantities [Langley, 1987, Dzeroski et al., 2007]. A
widely used method is Sparse Identification of Nonlinear Dynamics (SINDy)
[Brunton et al., 2016], which casts equation discovery as sparse regression over a
library of (non-linear) candidate terms, yielding interpretable equations. To im-
prove inference under noisy data regimes, a Bayesian extension of SINDy places
sparsity-inducing priors (e.g., the Horseshoe [Carvalho et al., 2009, Piironen and
Vehtari, 2017]) on regression terms, enabling uncertainty quantification [Hirsh
et al., 2022]. Yet, most approaches to equation discovery—including Bayesian
variants—represent each system with a single set of equations, treating vari-
ability across systems as noise. This conflates measurement noise with true
structural differences across systems. A hierarchical Bayesian approach would
allow candidate terms to vary across individual systems while sharing statisti-
cal strength at the population level. Such methods are common in fields like
cognitive modeling [Wiecki et al., 2013] but have not been applied to equation
discovery. Here, we extend Bayesian SINDy with hierarchical priors, enabling
discovery of universal system components alongside individual variations.

2 Methods

SINDy recovers dynamical equations from time-series data by expressing deriva-
tives X as sparse linear combinations of non-linear terms ©(X)Z [Brunton et al.,
2016]. Sparsity in Z identifies a small subset of candidate terms needed to fit
the time series. Bayesian SINDy extends this approach to noisy data, inferring
posterior distributions over coefficients and inducing sparsity via priors such as
the regularized Horseshoe [Hirsh et al., 2022]. However, this approach assumes
a single model structure if data is pooled from multiple instances of a system,
treating system variability as parameter noise. To capture structural variability
across system instances (“individuals”), we propose hierarchical Bayesian SINDy
as illustrated in Figure 1. Each individual ¢ is modeled as

where coefficients =; are drawn from population-level distributions over can-
didate equation terms. Zean follows a Horseshoe prior and Zgq follows a Half-
Normal distribution. Observation noise is represented as nZ, with 1 denoting
the noise magnitude and Z a random matrix drawn from the noise distribution.
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This hierarchical prior allows terms to be present in some individuals but absent
in others, while Horseshoe priors enforce sparsity at both individual and pop-
ulation levels. The resulting posterior distributions capture universal (shared)
structure across systems, individual-specific variations, and even multimodal
structures (e.g., subpopulations governed by distinct dynamics). We approx-
imate these posteriors using MCMC inference. Hierarchical Bayesian SINDy
thus disentangles noise-driven uncertainty from genuine structural differences,
providing a framework for equation discovery in populations of systems.
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Figure 1: The schematic process of Bayesian hierarchical SINDy. The posterior
distribution of coefficients of the library of candidate terms, = is computed
using MCMC as a sampling method, and the sparsity is leveraged by using the
Horseshoe distribution as the prior of the mean of each &.

3 Experiments

To evaluate our approach, we generated synthetic datasets from three estab-
lished dynamical systems in physics, neuroscience, and ecology: a damped forced
harmonic oscillator [Brunton et al., 2016], the FitzHugh—Nagumo model [Prokop
and Gelens, 2024], and the Lotka—Volterra system [Fasel et al., 2022] (Table 1).
For each system, multiple instances were instantiated by sampling equation term
coefficients from normal distributions, which in turn produced ground-truth dis-
tributions over candidate terms. This allowed us to specify which equation terms
were universal (present across all instances) and which were individual-specific.
We simulated time series data from these systems and applied hierarchical
Bayesian SINDy to recover governing equations. For comparison, we also fit the
flat Bayesian SINDy model proposed by [Hirsh et al., 2022], which assumes a
single structure across instances. Model comparison based on standard metrics
(ELPD-LOO and WAIC; [Vehtari et al., 2017, 2024|) consistently favored the
hierarchical approach across all systems. Moreover, posterior distributions over
candidate terms closely matched the ground-truth distributions, demonstrat-
ing that hierarchical modeling recovers both universal and individual-specific
components, whereas flat models conflate structural variability with noise.
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Table 1: Experimental systems used to evaluate hierarchical Bayesian SINDy:
[A] damped oscillator, [B] Lotka-Volterra, and [C] FitzHugh-Nagumo.

System Equations Coefficient Candidate Terms Samples
Distributions
[A] T =wv k,c, F ~ {Const., z, 500 individuals,
V= —%x - Zv+ hierarchical priors v, cos(wt), 1001 steps each
1% cos(wt) z*,v*, zv}
[B] X =aX — BXY a,B,7y,8 ~ {Const. X,Y, XY 100 individuals,
Y =0XY — Y hierarchical priors X2, Y2} 2002 steps each
. 3 e e
[C] V=v— % —w-—1 a,bo,by, I ~ {Const.,v, 03, w, 600 individuals,
w = abg +abiv — aw hierarchical priors v?, w2, vw} 1001 steps each
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Figure 2: Model fit and recovery of equation term distributions across use cases,
for both flat and hierarchical Bayesian SINDy.

4 Conclusion

We introduced hierarchical Bayesian SINDy for automated discovery of dynam-
ical systems that accounts for structural variability across individuals. Across
three domains—physics, ecology, and neuroscience—our method recovered the
correct governing terms while capturing full distributions of coefficients. Un-
like prior approaches, it separates universal mechanisms from individual-specific
variations rather than conflating them with noise. This enables population-level
representations of dynamics and provides an approach for uncovering structural
variability in equations describing complex systems.
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