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Abstract

Generating novel, drug-like molecules with realistic synthetic pathways is
an essential goal in computer-aided drug discovery, yet generative models
often lack synthesis awareness, resulting in compounds that are di�cult or
impossible to produce. To overcome this limitation, models must optimize
not only molecular properties but also synthetic feasibility, which is not fully
meaningful unless it incorporates user-de�ned factors like preferred reactions
and available starting materials. Moreover, generating singleton compounds
without respecting possibilities for parallel synthesis greatly increases the
cost and complexity of synthesizing multiple proposed molecules. In practice,
medicinal chemistry work�ows group targets into families sharing coherent
synthetic strategies and common intermediates, enabling e�cient parallel
and automated synthesis. Here we introduce SynthSense, a reinforcement
learning framework that guides molecular design using retrosynthetic feed-
back. SynthSense o�ers extrinsic reward functions that assess molecule-level
feasibility, such as adherence to available building blocks and preferred reac-
tions, or synthesizability via prede�ned synthetic routes. It also implements
intrinsic, batch-level functions that enforce route coherence across gener-
ated compounds. In silico multi-parameter validation demonstrated clear
advantages over naïve approaches: SynthSense generated 6.2-fold more syn-
thetically feasible hits than the control trained without SynthSense, achieved
a 727-fold enrichment in hits synthesizable with a prede�ned synthetic route,
and populated 2.3-fold more virtual parallel synthesis plates. These results
demonstrate that by reframing synthesizability from a mere constraint into
an active design objective, generative AI can better support the realities
of modern medicinal chemistry by enabling personalized synthetic design,
accelerating SAR exploration and aligning more naturally with automated
parallel synthesis work�ows.
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1 Introduction

Discovering novel, drug-like molecules is a cornerstone of pharmaceutical inno-
vation, yet the scale of chemical space, estimated to contain over 1060 drug-
like compounds [Polishchuk et al., 2013], makes exhaustive experimental ex-
ploration impossible. Deep generative models, including variational autoen-
coders [Oestreich et al., 2024], di�usion models [Oestreich et al., 2025], and
reinforcement learning (RL)-guided frameworks [Olivecrona et al., 2017, Loef-
�er et al., 2024], have shown strong capabilities in producing chemically valid
and property-optimized molecules. Yet many in silico designs are impossible to
synthesize, limiting real-world impact.

Early approaches estimated synthetic accessibility via heuristics (e.g., SAs-
core, [Ertl and Schu�enhauer, 2009]) or machine learning predictors (e.g., SC-
Score, [Coley et al., 2018]). More recently, synthesis-conditioned generative
models such as SynFlowNet [Cretu et al., 2024] have emerged, embedding syn-
thesis biases during pretraining. While e�ective, these models hardwire syn-
thetic constraints, making it di�cult to adapt when project conditions shift,
such as changes in reagent availability, synthetic preferences, or evolving goals.
Retrosynthesis tools like AiZynthFinder [Loe�er et al., 2024] or ASKCOS [Co-
ley et al., 2017], which predict plausible synthetic routes by recursively breaking
down a molecule into purchasable or known precursors, are often applied post
hoc, evaluating molecules after generation rather than guiding design. Current
strategies therefore either constrain too early or intervene too late, failing to
capture the dynamic reality of medicinal chemistry.

We propose SynthSense, a framework for synthesizability through rein-
forcement learning (RL) reward engineering. By shifting synthesis awareness to
the post-training stage, SynthSense avoids the rigidity of synthesis-conditioned
pretrained models and the passivity of post hoc retrosynthesis evaluation. This
model-agnostic approach enables any pre-trained generator to adapt dynam-
ically to reagent availability, preferred reactions, and evolving project goals
without architectural modi�cation or retraining. Critically, we argue that gener-
ative models should not design singleton molecules but rather molecular families
with coherent synthetic strategies. In laboratory and robotic synthesis, grouping
targets that share route archetypes enables parallel synthesis, reuse of interme-
diates, and higher throughput. SynthSense combines extrinsic (per-molecule)
rewards with intrinsic (batch-level) rewards to align generation with practical
synthetic considerations, expanding AI-driven molecular design from chemical
space into synthetic space.

2 Methods

SynthSense leverages retrosynthesis information to guide molecular generation
via RL rewards. In RL, molecular generation is treated as a sequential decision-
making process: at each step, the generator constructs molecules token by to-
ken in SMILES format, producing a batch of compounds in each epoch. In each



Figure 1: Overview of SynthSense reward functions.

batch, SynthSense evaluates individual molecules with extrinsic rewards and the
batch as a whole with intrinsic rewards. These rewards are then used to update
the generator's policy via policy gradient reinforcement learning (REINFORCE)
algorithm [Williams, 1992], biasing future generations toward high-reward syn-
thetically desirable molecules.

For each molecule in a batch, AiZynthFinder enumerates possible synthetic
routes from available starting materials, and each reaction in a route is classi�ed
using NameRxn [NextMove, 2022]. Reward functions operate directly on these
retrosynthetic tree representations rather than heuristic proxies.

Extrinsic rewards evaluate individual molecules:

� Synthetic Feasibility Score (SFScore) quanti�es synthetic feasibility based
on user-speci�ed preferred reactions, starting materials, and route length.
The highest-scoring molecule's tree de�nes the molecule's SFScore.

� Reference Route Score (RRScore) uses Tree Edit Distance (TED) [Pawlik



and Augsten, 2015, 2016] to bias molecules toward a speci�ed synthetic
pathway.

Intrinsic rewards operate at the batch level:

� Route Popularity promotes molecules that share a common synthetic strat-
egy.

� Fill-a-Plate extends Route Popularity with a route diversity �lter [Blaschke
et al., 2020] that memorizes route frequencies across batches. Once a
prede�ned �plate� capacity is reached, additional molecules following that
route are penalized, encouraging exploration of alternative synthetic strate-
gies.

All multi-parameter optimization (MPO) RL experiments were conducted
in triplicate using REINVENT with the ChEMBL-trained prior [Loe�er et al.,
2024, Mendez et al., 2019]. Training was run with a batch size of 128 for 1000
epochs.

For SFScore, reaction space was constrained to 3 NameRxn reaction classes:
Suzuki coupling reactions (3.1), amide formation reactions (2.1), and N-arylations
(1.3), with a maximum of 3 synthetic steps per route. Feasible hits were de�ned
as molecules synthesizable from those reaction classes using Enamine Building
Blocks as starting materials and exceeding ROCS > 0.6 (relative to the na-
tive COX-2 inhibitor SC-558 [Kurumbail et al., 1996, Dodds et al., 2024]) and
QED > 0.7 [Bickerton et al., 2012], establishing a pharmaceutically relevant
benchmark for synthesis-aware molecular design.

For RRScore, we used a �xed two-step reference route (2.1.10 Carboxylic
ester + amine reaction, 3.1.2 Chloro Suzuki coupling). Molecules were classi�ed
as reference route hits if they could be synthesized via this route from Enamine
Building Blocks, while also exceeding QED > 0.7 and ROCS > 0.6.

For Route Popularity, we quanti�ed its e�ect on route coherence within
batches. Route entropy was calculated as the Shannon entropy of the distribu-
tion of route signatures within each batch, providing a measure of route diversity
explored by the model.

In case of Fill-a-Plate, plate capacity was set to 1000, and hits were de�ned
as molecules synthesizable in maximum 3 steps from Enamine Building Blocks
while also exceeding QED > 0.7 and ROCS > 0.6.

In all experimental runs, RL optimization was performed against a geometric
mean reward comprising SynthSense, QED, and ROCS, each with equal weight.
In the control runs, the weight of SynthSense was set to 0. Thus, SynthSense
rewards were still evaluated to log synthetic metrics for comparison but didn't
contribute to the MPO score.

3 Results and Discussion

SFScore strongly enriched for synthetically feasible molecules relative to the
control baseline. Across triplicate runs, SFScore generated 6,237 ± 572 feasible



hits compared to 1,000 ± 290 for the control, representing a ∼6.2-fold increase.
Feasible hit accumulation analysis showed sustained linear growth over epochs
without saturation. Sca�old-level evaluation con�rmed that SFScore also ex-
panded feasible chemical space, producing 449 ± 31 unique feasible sca�olds
compared to 218 ± 18 for the control (∼2.1-fold improvement).

RRScore optimization successfully directed generation toward a two-step
user-de�ned pathway (2.1.10 carboxylic ester + amine reaction, 3.1.2 chloro
Suzuki coupling). The average TED between generated routes and the refer-
ence dropped from 8.5 ± 1.3 at the start to 0.05 ± 0.06 in the �nal epoch,
whereas the control TED even slightly increased to 9.7 ± 0.8. RRScore gen-
erated 727 ± 179 reference route hits, compared to just 1 hit in the control
(∼727-fold enrichment). Structural diversity remained high, with 22.3 ± 2.5
unique sca�olds identi�ed among reference route hits, compared to 1 in the
control (∼22-fold improvement).

At the batch level, intrinsic rewards shaped the synthetic distribution of
generated molecules. Route Popularity reduced route entropy within each batch,
concentrating design on fewer, productive synthetic strategies. Entropy values
decreased from 7.00 ± 0.11 bits at the start to 3.00 ± 0.41 bits in the �nal
epoch, nearly two-fold lower than the control (5.75 ± 0.55 bits), indicating faster
convergence on coherent synthetic solutions. In contrast, Fill-a-Plate promoted
exploration by expanding the number of distinct synthetic strategies pursued. It
�lled 26.7 ± 3.1 plates per run compared to 11.7 ± 2.1 for the control (∼2.3-fold
improvement), while maintaining a comparable hit density per plate (median 58
vs. 56). Although plates contained fewer sca�olds on average under Fill-a-Plate
(14 vs. 23), the much broader synthetic coverage resulted in greater overall
sca�old diversity.

Taken together, extrinsic rewards (SFScore, RRScore) enriched the synthetic
feasibility of individual molecules and their alignment with target synthetic
routes, while intrinsic rewards (Route Popularity, Fill-a-Plate) promoted route
coherence and diversi�cation. Across all rewards, SynthSense preserved drug-
likeness and ligand similarity while substantially increasing the proportion of
molecules meeting practical synthetic criteria, expanding generative design from
abstract chemical space into actionable synthetic space.

In conclusion, SynthSense o�ers a �exible way for embedding retrosynthetic
knowledge into generative molecular design. By combining intrinsic and extrin-
sic RL rewards, it transforms synthesizability into a controllable design param-
eter rather than a post hoc �lter. The demonstrated gains in feasible hit rates,
route coherence, and parallel synthesis potential highlight its practical utility for
real-world discovery work�ows. Future extensions could link SynthSense with
automated synthesis or reaction condition prediction tools, paving the way for
closed-loop design�make�test�analyze pipelines driven by generative AI.
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