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Abstract
Industrial drug discovery pipelines, such as the common design–make–test–analyze
(DMTA) cycle, are lengthy and resource intensive. While AI has begun to
accelerate and optimize these processes, we argue that further progress could
be achieved by incorporating academic innovations and fostering collabora-
tion through joint research positions and challenge initiatives that evaluate
models on industry-relevant datasets.
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1 Introduction
The discovery and development of new medicines has always been shaped by
advances in technology. Today, artificial intelligence (AI) is becoming one of
the most transformative forces in this field, reshaping how researchers generate,
evaluate, and optimize potential drug candidates [9]. The successful adoption
of methods like AlphaFold, REINVENT, and AiZynthFinder shows how AI
has begun to shape industrial practice, especially in the early discovery phases
focused on identifying and refining new molecules [20, 25, 32]. This is the
stage where small-molecule therapeutics, which continue to play a central role in
pharmaceutical portfolios, are developed through the design–make–test–analyze
(DMTA) cycle [29]. The DMTA cycle is a framework in which molecules are
proposed, synthesized, tested for relevant properties, and analyzed to guide
subsequent iterations [15].

However, despite these encouraging developments, the integration of aca-
demic AI research into the DMTA cycle remains limited. In practice, much of
the innovation that reaches pharmaceutical companies originates not directly
from universities but either through biotech startups that act as intermediaries
or is developed in-house within pharmaceutical companies [33]. This gap can be
explained by several barriers. The lack of standardized benchmarks makes it dif-
ficult to evaluate methods under conditions that reflect real-world use [44]. The
Polaris consortium represents a promising step toward addressing these chal-
lenges by offering standardized benchmarks shaped by a board of academic and
industrial leaders [44, 6]. However, such initiatives remain the exception rather
than the norm, and their broader adoption will be crucial to closing the gap.
Beyond benchmarking, academic implementations often lack the robustness,
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Figure 1: AI technologies have an impact in every aspect of the DMTA cycle
an essential drug discovery pipeline.

documentation, and usability required in industrial settings, forcing companies
to re-implement tools at considerable cost [10]. Insufficient interpretability adds
another layer of difficulty, as domain-experts must be able to trust and under-
stand AI outputs before integrating them into critical decision-making [17]. Fi-
nally, concerns about the confidentiality of costly, in-house datasets mean that
valuable resources remain inaccessible to academics, leaving researchers to rely
on smaller and less representative public collections when developing their tools
[21]. In this paper, we first examine how AI is already influencing the individual
stages of the DMTA cycle. We then outline solutions on how to better align
academic and industrial priorities in order to foster the development of methods
that are both scientifically novel and practically applicable.

2 AI advancements in the DMTA cycle

2.1 Design
In the drug discovery DMTA cycle, the design stage focuses on generating and
optimizing novel molecular structures that are predicted to interact effectively
with biological targets while maintaining favorable pharmacokinetic and safety
profiles [15]. This stage integrates medicinal chemistry expertise with computa-
tional approaches to propose new compounds that balance potency, selectivity,
and drug-like properties. In industry, AI tools are increasingly used to accel-
erate and guide this process. One example is the generative framework REIN-
VENT, which employs recurrent neural networks and transformers to generate
molecules [25]. Molecule generation can be steered toward desired properties us-
ing reinforcement learning, which requires scoring models to evaluate candidate
molecules. These scoring models assign numerical values that reflect how well a
molecule satisfies the target properties, and the generative model then learns to
produce molecules that maximize these scores. Scoring models thus represent a
core component of AI-assisted molecular design, with approaches spanning from
traditional machine learning (ML) to modern deep learning techniques [28, 23].
A notable example in industrial use is QSARtuna, an automated platform that
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builds robust predictive models for molecular property prediction and applies
them to guide molecule scoring [27].

2.2 Make
Beyond the accelerated design of drug-like molecules, AI also holds significant
potential in translating these designs into experimental reality. AI-driven ret-
rosynthesis tools can predict synthetic routes, proposing combinations of reac-
tants that yield desired products [14, 26, 40, 5]. These approaches not only
streamline synthetic planning but also highlight alternative pathways that hu-
man bias might overlook. Yet, identifying reactants alone is insufficient. Reac-
tion conditions, the physicochemical parameters that define the reaction envi-
ronment, remain notoriously difficult to optimize [41, 7]. Here, ML approaches
can provide valuable guidance, whether by suggesting promising starting points
[13, 34, 43] or by prioritizing future experiments [18, 35, 36, 42] that accelerate
the discovery of novel compounds. Bringing together these predictions of both
reactants and conditions, ML tools can estimate the likelihood of reaction suc-
cess, with the potential to increase yields while reducing wasted time, resources,
and effort by prioritising reactions most likely to lead to positive outcomes.

2.3 Test
In the next step, synthesized molecules are tested in biological assays against
target biomolecules that are linked to disease mechanisms, such as protein re-
ceptors, and AI can support target identification [30]. Increasingly, self-driving
labs powered by AI are being developed to minimize human involvement during
testing and to accelerate experimental cycles [16]. Complementing these ad-
vances, fully in-silico approaches such as high-throughput virtual screening [11]
and digital twins [45] enable the exploration of molecular interactions before, or
in some cases instead of, committing resources to physical experiments.

2.4 Analyze
In the analyze step of the DMTA cycle the experimental results are interpreted,
structure–activity relationships (SAR) are extracted, and hypotheses are gen-
erated to guide the next design iteration. Traditionally, this involves medici-
nal chemists manually examining property trends to decide which scaffolds or
analogs to prioritize and AI has already begun to support this stage [12]. In-
dividual studies have shown that Explainable AI (XAI) [19, 17] can improve
the quality of insights fed back into the design stage by uncovering interaction
points of biomolecules and explaining why certain modifications could succeed
or fail, for example by highlighting structural motifs [46] or using counterfactual
analysis of molecule pairs [39]. However, the integration of XAI into industry
pipelines is still far from common practice, even though it offers additional ben-
efits such as increasing trust in predictions and supporting regulatory approval
by providing transparent mechanisms of action and clear decision rationales [4].
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3 Impact and collaboration
In AI research, industry tends to exceed academia in impact, while academia
often leads in novelty [24]. In drug discovery, technological advances are more
often generated in academic labs, with startups bridging the gap to bring them
into big pharma [8]. This path is lengthy and typically involves financial de-
bates, prolonged negotiations, and confidentiality agreements, which slow the
translation of new technologies to industry standards. To shorten the path
from idea to impact, integrated industry–academia doctoral programs, like the
Horizon Europe–funded AIDD and AiChemist consortia [2, 1], are established,
allowing students to conduct research within academic groups while also gaining
experience in industry during their PhD. Projects are co-designed to meet both
scientific novelty and translational relevance. The interdisciplinary combination
of AI research with concrete drug discovery tasks helps the next generation of
researchers see the bigger picture, enables direct discussion with domain experts
in both fields, and can ultimately accelerates progress in drug discovery. Ex-
amples of how the AiChemist program has already contributed to bridging the
gap between academia and industry include our recent work on addressing pri-
vacy concerns related to sharing industry-developed AI models [21], exploring
the practical challenges of achieving impactful improvements in reaction condi-
tion prediction [7], demonstrating how explainability can enhance both model
development and deployment [17], and developing a new foundation model for
molecular scoring [23].

Beyond advancing these efforts, we call for more open yet industry-relevant
datasets, particularly for reaction data [38, 31] and for benchmarking explain-
ability methods [37, 17] as well as a more systematic engagement of the scientific
community. A powerful precedent is the Critical Assessment of Structure Pre-
diction (CASP) challenges [22], which provided a standardized and prestigious
platform for benchmarking protein folding methods. By aligning public funding
with industrial needs, CASP fostered rigorous comparison, incentivized inno-
vation, and ultimately catalyzed the breakthrough model AlphaFold [20]. In a
similar way, there is a need for a broader scope of challenges that address the
different applications of AI in the DMTA cycle [3], including a retrosynthesis
challenge, which to the best of our knowledge does not yet exist. We believe
collaborative, challenge-driven research will accelerate innovation and transform
both academic exploration and industry practice.

4 Conclusions
We showed how AI is already integrated in the design-make-test-analyze cycle,
a common drug discovery framework and advocated for more collaborative and
industry-relevant datasets, challenges and research positions.
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