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Abstract

Machine learning has shown promise in enhancing protein engineering, par-
ticularly through guided selection in directed evolution. This study intro-
duces a Bayesian optimization alternative to directed evolution. We propose
using a Gaussian process with the recent Kermut kernel to guide the sugges-
tion of protein variants, leveraging uncertainty estimates through Thompson
sampling. Optimizing against established prediction tools for protein sta-
bility and solvent accessible surface area, we demonstrate that our Bayesian
optimization framework consistently identifies superior protein variants com-
pared to other methods, including traditional directed evolution, zero-shot
models, and existing ML-guided directed evolution procedures.
Keywords: Protein Engineering, Gaussian Process, Bayesian Optimiza-
tion

1 Introduction

Machine Learning has long been described as holding considerable promise to
advance protein engineering, particularly in actively learning frameworks that
leverage insights from past experiments to guide future ones. However, the feed-
back loop inherent in directed evolution — where the best candidate is selected
in each iteration from variants generated by random mutagenesis — establishes
a robust baseline even with the random introduction of mutations. Furthermore,
pre-trained models increasingly demonstrate strong zero-shot performance, fur-
ther enhancing non-adaptive approaches that do not update during experimen-
tal rounds. This raises a natural question: how much additional improvement
can be achieved by iteratively refining a surrogate function? Additionally, how
critical is the choice of regression algorithm, and are current models capable
of providing uncertainty estimates that are genuinely effective in a Bayesian
optimization context?

In this work, we propose KABOOM (Kermut-Aided Bayesian Optimization
Of Mutants); a Bayesian Optimization (BO) framework for batched optimiza-
tion of a wild type protein using Kermut as surrogate model. While many
existing BO methods for protein engineering (e.g. LaMBO of Stanton et al.
[2022a]) evaluate their acquisition functions in a local region of the latent space
around a reference protein, KABOOM explores the space of variants within a
number of mutations in a more exhaustive, greedy fashion. In this paper we
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Figure 1: Figure from Groth et al. [2024]. Overview of Kermut’s structure
kernel. Using an inverse folding model, structure-conditioned amino acid dis-
tributions are computed for all sites in the reference protein. The structure
kernel yields high covariances between two variants if the local environments
are similar, if the mutation probabilities are similar, and if the mutates sites are
physically close. Constructed examples of expected covariances between variant
x1 and X2 34 are shown.

present KABOOM and demonstrate how it can handle large search spaces of
protein variants. Moreover, we demonstrate that KABOOM achieves better
solutions than existing baselines including directed evolution.

2 Methods

We develop a Bayesian optimization procedure using Kermut as surrogate model
and a greedy variant of Thompson sampling as our acquisition function. See
[Frazier, 2018] for a tutorial on Bayesian optimization.

2.1 Kermut

To predict protein variant effects, we rely on Gaussian process regression using
the Kermut kernel [Groth et al., 2024]. For a comprehensive overview, see
Rasmussen and Williams [2006], which this section is based on.

Kermut [Groth et al., 2024] is a kernel designed for predicting the effects of
mutations on protein properties. The kernel is a weighted sum of two kernels
that take protein sequences as inputs: A sequence kernel ksoq and a structure
kernel kgiruct-

k(x,x") = mkstruct (X, X) + (1 — 7) kseq (%, X'). (1)

ksoq uses the RBF kernel on an embedding of the sequence obtained using a
protein language model (ESM2; Lin et al. [2023]).

kstruct compares the local environment of the mutated residues using the
structure of the wild type along with the distributions over amino acids given
by an inverse folding model.
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2.2 Handling the search space 3 RESULTS

For two variants having mutations given by the sets M and M’, kgiuct 1S
a double sum over the mutations, where kL .. operates on the single mutant
variants:

kstruct (X7 Xl) = Z Z ksltruct (Xi7 X/j) (2)
ieM jeM’

kL e compares the distributions at the mutated sites given by an inverse
folding model (ProteinMPNN; Dauparas et al. [2022]) using three components.
First, kg is the Hellinger kernel [Michael et al., 2024], which compares the
distributions at the mutated sites. Second, k, uses the exponential kernel to
compare the log probabilities of the amino acids to which the residues have been
mutated. Lastly, k; applies the exponential kernel to the euclidean distance
between the mutated sites.

ksltruct (X, X/) = AkH (X7 X/)kp (X, X/)kd (X7 xl)a (3)

All parameters are optimized using gradient descent.

2.2 Handling the search space

The space of protein variants within a limited number of mutations from a wild
type constitutes a vast combinatorial space. For a protein sequence of length
L, an amino acid alphabet of 20 characters, and a mutation limit of 6, the total
number of possible variants is given by (é) (20—1)%+ (é) (20—1)°+...+ (%) (20—
1)!. For L = 50, this number exceeds 1014

One approach to explore this immense space is to use a differentiable model
that operates on a continuous embedding of the protein sequences. However, if
the model works directly in the discrete protein space, standard Bayesian opti-
mization (BO) becomes computationally infeasible, as evaluating the acquisition
function for all possible variants would be prohibitively expensive.

Our proposed solution employs a greedy approach to efficiently sample can-
didates for acquisition function evaluation. Initially, the acquisition function
is evaluated for all single-mutant variants of the wild type, and the highest-
scoring candidate is selected as the basis for generating second-order mutants.
Subsequently, the acquisition function is evaluated on all second-order mutants
derived from the best first-order mutant, and the process is repeated iteratively.

Once variants with six mutations are identified, we revisit and reevaluate
the first five mutations in a random order to search for improved variants that
incorporate the other mutations. This greedy approach significantly reduces
computational requirements, as it only involves L - 20 - (6 + 5) evaluations. For
L = 50, this corresponds to approximately 10* evaluations, making it computa-
tionally feasible.

3 Results

Wet-lab experiments are often expensive and time-consuming, making compu-
tational proxies a practical alternative for benchmarking optimization methods.
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4 CONCLUSIONS

The Poli library provides computational proxies for protein stability and solvent-
accessible surface area (SASA), based on FoldX [Schymkowitz et al., 2005, Stan-
ton et al., 2022b, Gonzalez-Duque et al., 2024]. We use these proxies as oracle
functions and maximize their values for a given wild type protein by applying
substitution mutations. To prevent generating dysfunctional proteins that de-
viate significantly from the wild type, the search space is typically restricted to
a maximum number of mutations. In our case, we limit the search space to six
mutations. Additionally, as wet-lab experiments are often conducted in batches
of size 96 [Tsuboyama et al., 2023], we adopt this as our batch size.

We optimize the stability and solvent accessible surface area (SASA) for two
wild type proteins from the ProteinGym dataset: DNJA homolog and RfaH
carboxyterminal domain.

Table 1: Best value found for four different computational protein engineering
oracles averaged across ten repetitions (higher is better). Standard error is
shown in parenthesis. KABOOM finds the most optimal protein variants across
all four tasks.

| DNJA (Stability) DNJA (SASA) RfaH (Stability) RfaH (SASA)

KABOOM 34.9 (0.2) 5374.0 (14.7) 15.7 (0.2) 4533.8 (3.6)
DE 32.8 (0.3) 5301.4 (13.5) 14.6 (0.2) 4439.7 (11.9)
LaMBO-2 26.9 (0.4) 5196.8 (17.9) 9.4 (0.3) 4227.8 (17.2)

Table 1 presents the results for KABOOM, Directed Evolution (DE), and
LaMBO-2 across four protein engineering tasks. KABOOM outperforms both
DE and LaMBO-2 consistently across all tasks, with DE achieving the second-
best performance.

4 Conclusions

Our study investigates the application of Bayesian Optimization (BO) with
Gaussian Process (GP) regression, leveraging the recent Kermut kernel, to en-
hance the efficiency of protein engineering. The primary comparison centers on
the proposed BO framework, KABOOM, against LaMBO-2 and Directed Evo-
lution (DE). KABOOM finds the best candidates among the tested methods.

The study illustrates the significant potential of Bayesian optimization in
protein engineering, providing a robust alternative to traditional directed evo-
lution methods. The results advocate for the broader application of BO in
experimental design, particularly where budget constraints and the need for
efficient exploration of large combinatorial spaces are critical factors.
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