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Abstract
Radiology reports contain rich clinical information for training imaging mod-
els without costly manual annotation. Existing methods have key draw-
backs: rules miss linguistic variability, supervised models need large la-
beled sets, and LLM-based systems often rely on closed-source or resource-
intensive models unsuitable for clinical use. They are also mostly English-
only and limited to single taxonomies. We present MOSAIC, a multilingual,
taxonomy-agnostic, and efficient approach for radiology report classification.
Based on the compact open-access MedGemma-4B model, MOSAIC sup-
ports zero-/few-shot prompting and lightweight fine-tuning, running on con-
sumer GPUs. Evaluated across seven datasets in English, Spanish, French,
and Danish, it achieves a mean F1 of 88 on chest X-rays, matching or sur-
passing expert-level baselines while requiring only 24GB GPU memory.
Keywords: Natural Language Processing, LLMs, AI in Healthcare

1 Introduction
Deep learning in medical imaging requires large expert-labeled datasets, which
are costly and scarce. Radiology reports, however, offer structured clinical
knowledge produced in routine care [Reichenpfader et al., 2024, Zhou et al.,
2014]. Earlier approaches include rule-based systems and BERT classifiers [Irvin
et al., 2019, Smit et al., 2020], which reach strong performance but demand
handcrafted rules or extensive labels, making adaptation to new taxonomies or
languages resource-heavy [Yang et al., 2023]. Recent LLMs enable zero-/few-
shot classification, reducing manual labeling and improving adaptability [Gu
et al., 2024, Dorfner et al., 2024]. Yet most rely on large or closed models, rais-
ing deployment and privacy concerns. Smaller open models are more practical
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Dataset Language Number of
Findings

Avg.
Chars Train Dev Test

MIMIC-CXR m en 14 760 535 50 100
PadChest-GR p es, en 49 115 1951 100 879
CASIA-CXR c fr 5 400 7677 100 3334
DanskCXR d da 48 312 1600 125 750
ReflacxI ri en 14 216 68 50 120
ReflacxII rii en 15 201 1046 52 1098
DanskMRI b da 3 1941 194 50 345

Table 1: Overview of the datasets used, including language, number of findings,
average characters per report, and data split.

for healthcare. We propose MOSAIC, a lightweight, multilingual framework for
radiology report classification. It runs locally on consumer GPUs, adapts to
diverse taxonomies and modalities, and is open-source1.

2 Methods
Few public radiological reports datasets are currently available, due to the risk of
de-anonymization of patients or clinicians. For high-quality results, we consider
only radiologist-validated sets: MIMIC [Johnson et al., 2019], PadChest [Cas-
tro et al., 2024], CASIA [Metmer and Yang, 2024], REFLACX [Bigolin Lanfredi
et al., 2022], DanskCXR [Schiavone, 2025], and DanskMRI [Beliveau et al., 2024]
(see Table 1). We compared Llama 3 (8B) [Grattafiori et al., 2024], MedGemma
(4B) and Gemma 3 (12B) [Google, 2025], selecting their instruction-tuned ver-
sions for better structured outputs [Zhang et al., 2025]. Each model is fine-tuned
on an NVIDIA RTX 4090 GPU (24GB) using its 4-bit quantized form along with
Rank-Stabilized LoRA adapters. All the prompts and findings sets are written
in English to leverage the models’ stronger alignment to English instructions.
The prompt structure is adapted based on the dataset’s label taxonomy. For
example, the prompt for CASIA is:

You are a helpful radiology assistant. Given a radiology report, classify
each abnormality into a class. Output a valid JSON with each abnormality
as key, and the class as value. The keys must be [’cardiomegaly’, ’mass’,
’pleural effusion’, ’pneumonia’, ’pneumothorax’]. The values can be one of
[-1, 1]. The values have the following interpretation: (1) the abnormality
was mentioned, even with uncertainty, in the report e.g. ’A large pleural
effusion’, ’The cardiac contours are stable.’, ’The cardiac size cannot be
evaluated.’; (-1) the abnormality was not mentioned in the report, or the
abnormality was negatively mentioned in the report; e.g. ’No
pneumothorax.’.

Fine-tuning is conducted using the Unsloth library [Han et al., 2023], while
inference is performed with vLLM [Kwon et al., 2023]. Before inference, the
LoRA adapters are merged into the base models in 16-bit precision. Cross-
entropy loss is used as the objective function. Training configurations, prompt-

1Code: github.com/aliswh/mosaic, Models: huggingface.co/AliceSch/mosaic-4b



Dataset m pE pS c d Average

Experiment ZS 3S ZS 3S ZS 3S ZS 3S ZS 3S ZS 3S

Llama-8B 54 61 77 76 69 67 70 75 61 63 66 68
MedGemma-4B 55 59 61 77 53 72 69 82 62 65 60 69
Gemma-12B 65 70 79 79 76 76 76 76 69 75 73 75

Gemma-27B ∗ 68 69 81 81 81 82 75 77 71 75 75 77
Llama-70B ∗ 69 72 78 79 74 70 68 79 68 73 71 75

Table 2: Classification performance of language models on chest X-ray radio-
logical free-text reports, measured in F1 and ordered by model family and size.
Models are tested under zero-shot (ZS) and three-shot (3S), with three examples
drawn from corresponding training sets. We indicate with ∗ models fine-tuned
on a 94GB H100, instead of a consumer-grade 24GB RTX 4090.
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m 87 86 84 74 78 80 71 71 76 82 77 81 58 65 69
mpE 78 89 85 92 95 95 84 85 91 83 74 80 65 65 70
mpE+S 80 82 84 93 94 95 92 94 94 83 76 79 61 61 69
mpE+Sc ⋆ 76 85 84 92 95 94 89 94 94 99 99 99 66 63 69
mpE+Scd 76 76 85 93 93 95 91 92 94 99 99 99 82 84 86

Table 3: F1 scores with incrementally expanded multilingual training configu-
rations on chest X-ray radiological reports. In bold, the best result over each
dataset. The symbol ⋆ indicates the training configuration used for MOSAIC.
M4= MedGemma-4B, L8= Llama-8B, G12= Gemma-12B

ing strategy and hyperparameters are documented in the accompanying code
repository. We use the mean macro F1 score to evaluate the extraction of find-
ings for positively mentioned findings.

3 Results
On five chest X-ray datasets, 3-shot prompting outperformed zero-shot (Ta-
ble 2). Gemma 12B gave the best overall results, while MedGemma 4B remained
competitive despite its size, occasionally surpassing larger models. Llama 8B
was stable but generally lower. Larger 27B/70B models further improved scores,
but require high-end GPUs. Multilingual fine-tuning improved generalization
across languages and taxonomies (Table 3). English-only training generalized
to Spanish PadChest, and adding more datasets further improved scores. CA-
SIA, with its large size and simple task, reached near-perfect performance. On
MIMIC, MOSAIC achieved similar results to rule-based, BERT, and CheXbert
baselines, achieving 0.88 F1 on positive findings.



m pE ri ⇒ri rii ⇒rii

77 100 Consolidation 67 91 65 92
93 Pneumothorax 90 100 84 93

68 Nodule 47 60
100 Hiatal Hernia 89 100

Emphysema 71 50
Enlarged Hilum 74 75

Figure 1: Taxonomy adaptation in English
of MOSAIC trained on mpE+Scd, mea-
sured in F1. Left columns show perfor-
mance on present findings in training sets m
and pE ; right columns show generalization
to unseen datasets ri and rii before and af-
ter fine-tuning (⇒r).
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Figure 2: Performance of
MOSAIC on the DanskMRI
dataset, measured as F1 across
three epilepsy-related abnor-
malities from MRI reports.

Table 1 looks at the performance of fine-tuned MedGemma-4B trained on un-
seen English datasets (riand rii), both before and after fine-tuning on new data
(⇒r). The left columns (m and pE) reflect the model’s initial task competency
on English-language findings. The red "X" marks indicate that these specific
findings are not present in that dataset taxonomy. On findings that are present
in only one of the training sets ("Nodule" and "Pneumothorax"), fine-tuning
improves the models’ ability to adapt their existing task competency to new
distributions. However, for findings not included in the initial training set tax-
onomy, the fine-tuned model shows a small improvement ("Enlarger Hilum")
or, in the case of "Emphysema" (N=6), fine-tuning hurts performance.

The DanskMRI dataset consists of Danish MRI reports annotated for three
epilepsy-related brain abnormalities. Unlike chest X-ray datasets, these findings
relate to neurological imaging, introducing both clinical and linguistic shifts.
As shown in Figure 2, adaptive fine-tuning on external chest X-ray datasets
(mpE+Sc) improves performance over the base model for Focal Cortical Dys-
plasia and Mesial Temporal Sclerosis. be+d is the same dataset, extended with
the same reports machine-translated to English. This data augmentation tech-
nique improves consistency across all findings. In particular, it recovers per-
formance on Hippocampal Abnormalities. These results highlight the benefit
of lightweight augmentation when adapting to new modalities, especially under
language and data constraints, as only 194 examples are provided for fine-tuning.

4 Conclusion
We introduce MOSAIC, a framework for classifying radiology reports across lan-
guages, taxonomies, and modalities. Built on compact open models, it runs on
consumer GPUs. Evaluations on English, Spanish, French, and Danish datasets
show robust performance comparable to previous methods. We invite the com-
munity to extend MOSAIC for broader clinical applications.
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