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Abstract
Differentiable physics is used to estimate acoustic fields from a limited
number of spatially distributed observations. The initial conditions of the
wave equation are approximated with a neural network, and the differential
operator is computed with a differentiable numerical solver. We introduce an
additional sparsity-promoting constraint to achieve meaningful solutions even
under severe undersampling conditions. Numerical experiments demonstrate
that the approach can reconstruct sound fields under extreme data scarcity.
Keywords: Differentiable physics, neural network.

Sound field estimation refers to the inverse problem of estimating a sound field
over time and space from a limited number of spatially distributed observations.
A main challenge is the large number of measurements required, which increases
with the domain size and the frequency. Efforts are devoted to developing efficient
models to reconstruct sound fields with minimal data [1, 2, 4, 5, 7, 7, 9, 13].

This study introduces a differentiable physics (DP) [11, 12] approach for
sound field estimation, where the initial condition is modeled with a neural
network, and a differentiable finite-difference solver is used to solve the wave
equation. We demonstrate that even if the network is trained for a given
discretization, the sound field can be reconstructed at higher resolutions, as the
network can be queried at any point in the domain. Furthermore, we propose a
sparsity-promoting constraint to the initial condition. In a series of experiments
we show that the proposed DP approach is robust, presents good convergence,
while achieving small errors.

1 Sound field estimation using differentiable physics
Let us consider the acoustic pressure field p(r, t) in the spatio-temporal domain
Ω× [0, T ], where Ω ⊂ R2, r ∈ Ω, and t ∈ [0, T ]. The pressure field is the solution
of the wave equation

D[p] := ∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= 0, (1)

with initial conditions, p(r, 0) = g(r) and ∂p
∂t (r, 0) = 0. In (1)D[·] is a differential

operator expressing the PDE, and c ∈ R is the medium wave speed, assumed to
be a known constant. The domain is considered unbounded, with no reflected
waves arriving from outside. To express this, a first-order absorptive boundary
condition [3] is considered

B[p] := ∇p(r, t) · n+
1

c

∂p

∂t
= 0 at r ∈ ∂Ω, (2)
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where n is the unit vector normal to the boundary ∂Ω.
The goal of sound field reconstruction is to estimate the entire pressure field

from noisy observations,

p̂mn = p(rm, tn) + emn for m = 0, . . . ,Mob − 1 and n = 0, . . . , N − 1, (3)

where r0, . . . , rMob−1 are the sensor locations, t0, . . . , tN−1 are the time samples,
and emn is additive noise. Measurements are typically performed using micro-
phone arrays or distributed sensors. Therefore, the pressure is finely sampled
over time, but only a few positions are sampled over space.

In the proposed DP approach a neural network gdp(r;θ) models the unknown
initial pressure. The physical constraints are imposed by applying a numerical
PDE solver to the network output. Training the DP neural network amounts to
solving the optimization problem

min
θ

{
λdataLdata(p

0,p1 . . . ,pN−1) + λspLsp(p
0)
}
, (4)

where p1, . . . ,pN−1 is the numerical solution of the PDE computed in a Mgrid-
dimensional discretization grid, and p0(θ) is obtained by sampling the neural
network gdp(r;θ) at the grid positions. Therefore, pn is a vector in RMgrid instead
of being a continuous function. For simplicity and without loss of generality, it
is assumed that for each observation position, r0, . . . , rMob−1, there is a point
in the discretization grid. A data fitting function, Ldata, that operates on the
discrete pressure can be expressed as

Ldata
(
p0, . . . ,pN−1

)
=

1

MobN

N−1∑
n=0

∥Mpn − p̂n∥2 , (5)

where M is a Mob ×Mgrid binary matrix that extracts the pressure values at
the observation positions, and p̂n ∈ RMob denotes the observations in Eq. (3)
arranged as a vector.

The finite difference method [6] solves the PDE numerically. The solution is
obtained by applying the explicit time integration scheme

p1 = p0 + 0.5Lp0, and pn+1 = 2pn − pn−1 + Lpn for n = 1, . . . , N − 1, (6)

where L = (c∆t/∆r)2L∆ and L∆ ∈ RMgrid×Mgrid is the central difference approx-
imation of the Laplace operator ∇2[·]. The scalars ∆t and ∆r are the sampling
period and grid spacing, respectively. To handle the unbounded domain, the
boundary condition of (2) is incorporated into the numerical solver. The finite
difference approximation of the absorptive boundary computes the values of
pn+1 at the boundary based on pn at the boundary and adjacent points, as well
as pn+1 at the adjacent points.

Central to the proposed DP approach is the neural network, gdp(r;θ), to
model the initial condition as a continuous, smooth function that maps any
input coordinate within the domain to a corresponding output value. Therefore,
even if the PDE is solved on a fixed discrete grid during training, the resolution
can be increased by sampling the neural network on a finer grid, and then solve
the PDE with a higher resolution numerical solver.



Figure 1: Sound field consisting on a single pulse at the domain center. Each
column corresponds to a time frame. Row (a): reference solution. Row (b): DP
model estimation.

2 Numerical experiments
A 2+1D domain is defined, where the spatial domain is a square of side length
L = 1, the temporal domain has a duration of T = 0.343, and the speed of sound
is c = 1. The temporal domain is divided into n = 50 samples, giving a sampling
period ∆t = 7.0× 10−3. For the finite difference solver a regular discretization
grid of Mgrid = 1002 is defined.

Single pulse: Synthetic data for multiple sound fields is generated. For
the first one, the initial condition is a single Gaussian pulse of unit amplitude
and scale σ = 0.02 placed at the center of the domain,

g(r) = exp
(
−0.5∥r− r0∥2/σ2

)
, (7)

where r0 = (L/2, L/2). The observations used for the reconstruction conform
a pseudo-random array, shown in the first panel of Fig. 1(a), where the sensor
locations are sampled from the discretization grid within [0.1L, 0.9L]×[0.1L, 0.9L]
and with a minimum distance of 0.05 between sensors. The number of time
samples is N = 50 and the number of sensors is Mobs = 20. Additive Gaussian
noise is added to the data such that the SNR is 20 dB.

The observed data and reference values of the sound field are obtained from
the analytical solution of the acoustic wave equation in free field with a Gaussian
pulse as initial condition [10]. The reference sound field is computed on a grid
of twice the spatial and temporal resolutions of the DP finite difference grid.

Figure 1 shows the reference sound field and estimation for the single Gaussian
pulse. The DP results show an accurate reconstruction throughout the spatio-
temporal domain, with only noticeable differences at t = 0. The normalized
mean square error (NMSE) computed over all the spatio-temporal points on the
evaluation grid is 5.3× 10−3.

The reconstruction performance is analyzed by training the model in different
scenarios. As benchmark, a conventional phyics-informed neural network (PINN)
[8] is trained to solve the same estimation problem. The proposed DP model
largely outperforms the PINN for all tested SNRs, see Fig. 2(a), presenting
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Figure 2: Normalized Mean squared error vs (a) the SNR, (b) the source width,
(c) the pulse distance to the array center, and (d) the downsample factor between
the evaluation and training grids.

errors almost one order of magnitude smaller. Figure 2(b) shows the NMSE
as a function of the pulse scale σ, which is directly related to the frequency
content of the acoustic field. The PINN fails to reconstruct the sound field of
highest frequency (smallest σ), presenting a NMSE close to 1, while the DP
model consistently achieves lower errors. Note that the DP network has one layer
less and half the number of units per layer that the PINN. Figure 2(c) shows the
NMSE vs. distance between the pulse and the array center normalized by the
array aperture. The experiment serves to evaluate the extrapolation capabilities
of the models to areas where there is no observed data and the estimation relies
only on the physics of wave propagation. The PINN presents a large error as
soon as the source is outside the array aperture as the physics are only included
as a weak constraint. Conversely, the DP model output stratifies the underlying
physics by design. Since the initial conditions are approximated with a continuous
function we can upscale the estimation to any desired resolution. The NMSE
increases for lower training resolutions, which is caused by the accumulation of
numerical errors and the fact that coarser grids are not able to represent high
spatial frequencies present in the initial condition.

3 Conclusion
We propose a differentiable physics approach for sound field reconstruction.
Integration of a numerical solver in the training of a neural network enables the
incorporation of hard physical constraints robustly. The optimization is more
stable than in conventional PINNs, and convergence is achieved in a fraction
of the optimizer steps. Formulating the solver in a differentiable way using AD
makes the training process very simple since only the forward solver is required.
The DP approach is generalizable beyond the training discretization, and the
solutions obtained can be scaled to higher resolutions. The experiments show
that the DP model achieves accurate reconstructions and low errors even in
challenging, highly undersampled problems.
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