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Abstract
Traditional epidemiological models struggle to capture how disease trans-

mission evolves due to policy interventions, behavioral shifts, and changing
testing strategies. We developed a hybrid AI modeling framework that uses
neural networks to automatically discover these time-varying patterns from
routine surveillance data alone. Applied to Germany’s COVID-19 data,
our method successfully reconstructed how transmission rates responded to
lockdowns and holidays, while simultaneously uncovering the hidden num-
ber of undetected infections as testing capacity evolved. Our AI system
works with just reported cases and deaths, making it broadly applicable for
real-time epidemic analysis. This approach offers public health officials an
interpretable ex-post tool to evaluate interventions and understand outbreak
dynamics.
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1 Introduction
Epidemiological transmission parameters evolve in response to public health
interventions, behavioral adaptations, and pathogen mutations. These exter-
nal forces challenge traditional epidemiological models which assume fixed pa-
rameters. Classical compartmental mean-field models, such as the SIR model
[Kermack and McKendrick, 1927], can only capture short periods with con-
stant parameters: Multi-month analyses therefore require explicit modeling of
temporal parameter variation.

Existing approaches to time-dependent epidemiological modeling fall into
two broad categories. Agent-based models incorporate individual behaviors but
require extensive, and often unavailable, data on population mobility and in-
teraction patterns, restricting them to small-scale outbreaks (e.g. [Truszkowska
et al., 2021]). Statistical methods can estimate varying reproduction numbers
from case data, but lack mechanistic grounding and thus cannot distinguish
true transmission changes from observation artifacts (e.g. [Xiao et al., 2023,
Cori et al., 2013]).

We present a universal differential equations [Rackauckas et al., 2020] ap-
proach that embeds neural networks into the differential equations of the SEIRD
model (see Fig. 1) to infer time-dependent parameters in the early COVID-19
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epidemic in Germany. Using ensemble methods (see next section), we were
able to handle noisy surveillance data and quantify the uncertainty of predic-
tions. In addition to reconstructing the temporal evolution of the transmission
rate, we also recovered the detection probability for all cases, revealing the true
number of hidden infections. Unlike approaches that require external behav-
ioral datasets (e.g. [Núñez et al., 2023]), our method relies solely on reported
cases and deaths, making it broadly applicable across different epidemiological
contexts and data availability scenarios.

2 Method
Our approach uses the universal differential equations framework, incorporating
neural networks as surrogates for time-dependent epidemiological parameters in
a mechanistic compartmental SEIRD model that includes a pre-death compart-
ment (UDE-SEIRD+, see Fig. 1). The time-dependent transmission rate β(t)
and case detection probability p(t) are modeled by the output of a single ANN
(2 hidden layers, 5 nodes each). Other model parameters were fixed following
standard epidemiological practices.

The combined UDE-SEIRD+ model1 was optimized to fit observed COVID-
19 case and death data from Germany in the first 17 months of the epidemic,
minimizing the mean squared error between predicted and observed cases and
deaths. To statistically validate individual fits, we selected one random day per
week as holdout, and performed training on the remaining 86% of the dataset.
We used an ensemble of n = 100 members fit on different neural network initial-
izations. This ensemble method allows us to quantify uncertainty in our predic-
tions [Schmid et al., 2025]. Reported results represent the ensemble median and
95% confidence interval of the ensemble. Individual ensemble members, even
with a moderately small ANN, can overfit the data. This method reliably fitted
the data and prevented overfitting of the final ensemble fit.

3 Results
We validated the UDE-SEIRD+ model on German COVID-19 surveillance data
from January 27, 2020 to June 30, 2021, encompassing the pandemic’s initial
phase including multiple surges and policy interventions. The dataset included
daily reported cases and deaths, preprocessed using 7-day moving averages to
remove weekly reporting artifacts.

Our ensemble approach successfully fitted both reported cases and deaths
with a high degree of agreement between ensemble members (see Fig. 2 A).
We achieved this by recovering an interpretable time-dependent effective repro-
duction number Rt = S(t)β(t)

Nγ (see Fig. 2 B), showing clear signatures of pol-
icy interventions: sharp decreases coincided with lockdown implementations,
gradual increases during reopening phases, and distinct spikes around holidays

1https://github.com/SirLukeSchande/time-dependent-epidemiological-models.git
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Figure 1: Modeling approach. We use an artificial neural network (ANN, cen-
ter) to fit time-dependent parameters in a classical ODE-based compartmental
model(the SEIRD model, bottom). The population is divided into Susceptible,
who on contact with Infectious individuals get Exposed to the disease, subse-
quently turn infectious themselves, before either becoming Recovered or being
isolated (pre-death) and afterwards Deceased. Cumulative Cases are discov-
ered when entering the Ii compartments (rate αE) with a certain probability.
Parameters of the model are transition rates between compartments, we fit
time-dependent transitions from S to E, β(t), and time-dependent detection
probability p(t). The ANN is trained by comparing reported cases and deaths
to real data and backpropagating through the hybrid UDE-SEIRD+ model.

when contact restrictions were temporarily relaxed or ignored. Strikingly, our
estimated reproduction number Rt decreased slightly before lockdown measures
were imposed. Consistent with other analyses, this suggests that the public was
broadly decreasing contacts before policy makers were convinced to mandate
this behavior.

Our method simultaneously identified the time-dependent detection proba-
bility p(t) from reported data alone, reflecting the evolution of Germany’s testing
strategy (see Fig. 2 C). During the first wave (March—May 2020), the detection
probability remained below 15%, indicating substantial underestimation of true
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Figure 2: Reconstructed model. A: The model fits reported case and death
data to very high precision and ensemble member agreement, which is indicated
by narrow confidence intervals. B: The estimated reproduction number Rt fol-
lows the overall trend of the data-derived reproduction number Rt,4 = ∆Ct

∆Ct−4
,

while showing greater coincidence with countermeasures. C: The model si-
multaneously estimated detection probability p(t) shows very low variability in
periods with high incidence and high variability when incidences were low.

cases when testing was limited to symptomatic cases. Over the summer of 2020,
p(t) increased as testing capacity expanded, but the upper bounds of confidence
intervals exceeding 100% indicate higher false positive rates during periods of
low-incidence.

The ensemble members demonstrate a high degree of agreement in the model
output and loss on the holdout dataset did fall in parallel to the training loss.
Beyond this statistical validation, the close temporal alignment of changes in
the inferred time-dependent parameters and the timing of lockdown measures
(see Fig. 2 at the top) offers qualitative support for our model.

4 Discussion and Conclusion
We have demonstrated that neural networks in a hybrid modeling approach
can serve as effective surrogates for time-dependent epidemiological parameters,
enabling data-driven discovery of disease dynamics from routine surveillance
data, as well as the analysis of derived metrics, such as the reproduction number
and the average contact rate. Our ensemble approach addresses key challenges
in epidemiological modeling: handling noisy, incomplete data while providing



uncertainty quantification and estimates of transmission rate changes dependent
on surveillance reliability grounded-in-data.

The framework’s ability to jointly estimate transmission rates and detec-
tion probabilities represents a significant advance over existing methods that
typically assume one parameter is fixed and constant [Kharazmi et al., 2021].
However, parameter identification becomes challenging towards the end of the
fitting period, because we do not know how many of the current infections in
this period will lead to deaths. This increases variability in the model and
limits direct application to forecasting. Future extensions may address this by
including predictors for the recovered transmission and detection rates.

While classical assessment of epidemic outbreaks relies on reported incidence,
this metric lags behind the actual changes in human behavior. In contrast, our
approach estimates the real-time transmissibility of a pathogen, which enables
more accurate temporal linking between observed changes in disease spread,
real-world events and interventions. As an ex-post analytical tool our approach
is also suited to compare these dynamics across different countries 2.

This work establishes universal differential equations as a powerful tool for
data-driven epidemiological modeling, providing a new method to identify un-
derlying, context-specific, and time-specific variations in the transmission and
observation processes.
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