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Abstract
Neural network (NN)-based analysis methods have the potential to acceler-
ate stability screening of modern power systems, but cannot guarantee accu-
rate and reliable stability predictions for unseen operating scenarios (OSs),
posing safety risks. To address this limitation, we propose a selective classifi-
cation framework leveraging deep ensembles for uncertainty and asymmetric
thresholding of predicted probabilities to identify safety-critical misclassifi-
cations. These uncertain OSs are then flagged for further analysis using
physical-based methods, ensuring safety and robustness. We validate the
proposed method both in simulation and on a physical system. This paper
is an aggressively abridged version of the interdisciplinary work by [Humblot-
Renaux et al., 2025], published in IEEE Transactions on Power Electronics.
Code is available at https://github.com/glhr/ibr-stability-ensemble.
Keywords: Power electronics, stability, neural networks, uncertainty, se-
lective classification.

1 Introduction
The decarbonization of global energy system accelerates the deployment of re-
newable energy resources, which are mostly connected to the power grid via
power electronic inverters. Those inverter-based resources (IBRs) may interact
with one another and with grid dynamics, leading to power system oscillations
or even blackout incidents that are increasingly reported in recent years [Wang
and Blaabjerg, 2019]. Hence, stability studies are of vital importance for trans-
mission system operators (TSOs) to guarantee the secure and reliable operation.

Thanks to their scalability and computational efficiency, NNs can enable the
assessment of all OSs within a reasonable timeframe, and have shown promising
results [Chatzivasileiadis et al., 2022, Liao et al., 2024, Li et al., 2024, Zhang
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and Xu, 2024]. However, NN-based stability analysis cannot guarantee 100%
stability prediction accuracy [Li et al., 2023]. Yet, incorrect stability estimation
in certain OSs can be safety-critical in practice and even lead to a blackout
event. In practice, it is crucial to identify OSs where NN predictions
cannot be trusted. Prior work using a single NN for stability assessment of
OSs achieves imperfect performance, yet does not consider uncertainty and does
not provide a mechanism for identifying NN errors [Zhang and Xu, 2024].

We propose an uncertainty-aware framework to systematically identify OSs
with unreliable predictions and flag them for further analysis using physics-based
methods. Different from standard selective classification approaches [Pugnana
et al., 2024] and recognizing that the false negative (FN) errors (misclassify-
ing a stable OS as unstable) are less critical (as all unstable cases will be re-
investigated in subsequent analysis), the proposed dual-thresholding approach
prioritizes the identification of safety-critical false positive (FP) errors (misclas-
sifying an unstable OS as stable, which will be ignored in subsequent analysis,
but might ultimately lead to blackout events in practice). The combination of
the NN ensemble (which reliably assigns high uncertainty to incorrect predic-
tions) and the dual-thresholding approach (which rejects uncertain predictions)
allows safety-critical errors to be avoided.

2 System and Dataset Description
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Figure 1: Grid-Following IBR connected to the weak ac system.

Fig. 1 illustrates the single-line diagram of the investigated IBR systems,
where the single IBR (Fig. 1a) and two-paralleled IBRs (Fig. 1b) connecting to
the weak ac grid are considered. In both cases, the IBRs are operated with the
standard grid-following (GFL) control [Wang and Blaabjerg, 2019]. The focus of
this work is the small-signal stability analysis of IBR-dominated systems, which
is affected by different power flows of each IBR, i.e., different combinations of
active/reactive power and PCC voltage [Xie]. Table 1 gives an overview of the
generated datasets. We refer to Humblot-Renaux et al. [2025] for details.

Dataset input dimension d num. OSs num. stable / unstable set

Single (sparse) 3 (V, P,Q) 9,261 3,044 / 6,217 train/val
Single (dense) 3 (V, P,Q) 3,232,080 1,141,933 / 2,090,147 test

Parallel 5 (V, P1, Q1, P2, Q2) 14,406 12,471 / 1,935 train/val/test

Table 1: Dataset overview



Figure 2: Flowchart showing how an OS is classified based on the predicted p.
The proposed NN ensemble and dual-threshold framework utilize the NN en-
semble itself to process the stability analysis of most OSs with high prediction
confidence, while the remaining small subset of OSs with low stability pre-
diction confidence from NN are identified for further verification using physics-
based stability analysis (like time-domain simulation). The proposed method
leverages the strengths of both machine learning and physical-based approaches.

3 Approach
The approach is summarized in Figure 2. The non-linear relationship between
OSs and stability is modelled by fully connected layers (2 hidden layers with 64
neurons each) and logistic sigmoid activations. The output is the predicted prob-
ability p ∈ [0, 1] that the OS is stable. Instead of training a single NN [Zhang
and Xu, 2024], we leverage deep ensembles [Lakshminarayanan et al., 2017],
as they have shown not only to improve predictive performance compared to
a single NN, but also to provide reliable uncertainty estimates. Each NN is
initialized with a different random seed and trained independently on the full
training set Dtrain, thus providing a different plausible solution to the stability
learning problem. The intuition is that combining different viewpoints from a
group of experts offers more balanced, nuanced predictions than any single ex-
pert could provide. During testing, a stability estimate p is obtained by taking
the average over the ensemble outputs: p = 1

M

∑M
m=1 fθm(x) where fθm(x) is

the output of a single member of the ensemble. The estimate p approaches 0.5
when the disagreement between individual NN increases, or when all NNs’ es-
timates individually approach 0.5. This indicates a high prediction uncertainty
that requires further analysis with physical-based methods.

To enable selective classification, we apply two thresholds Tunstable and
Tstable which define the range for which the estimated p is not trusted and
should be rejected, as shown in Fig. 2. The rejection rate r is the proportion of
OSs in Dtest for which Tstable < p < Tunstable. Ideally, r should be as small as
possible, but without compromising classification performance. Rejected OSs
are excluded from evaluation. For the remaining (non-rejected) OSs, classifi-
cation performance is evaluated by comparing predicted stability vs. known



small-signal stability in terms of Precision and Recall. Classifying an unsta-
ble OS as stable (False Positive) is a safety-critical issue, and must be strictly
avoided. The thresholds Tunstable < Tstable are tuned on a validation set Dval

based on a desired rejection rate rtarget as follows:

1. Find the highest possible threshold for which the model achieves 100%
Recall on Dval. Set this to be Tunstable.

2. Find the lowest possible threshold for which the model achieves 100%
Precision on Dval. Set this to be Tstable.

3. Check the resulting rejection rate rval - that is, the proportion of Dval

classified with Tunstable < p < Tstable. If rval < rtarget, increase Tstable

until rval = rtarget%. This ensures that at minimum, rtarget of validation
OSs fall between the two thresholds.

4 Results
Figure 3 summarizes the quantitative and qualitative results, considering both
a Single NN and Ensemble. With the proposed dual-thresholding approach, the
Ensemble can successfully reject all unstable OSs whose stability predic-
tions are unreliable (with a rejection rate around 20-21%.), thereby guar-
anteeing 100% precision on the remaining OSs. On the other hand, while the
precision of Single NN is also high under the dual-thresholding approach, there
are still safety-critical errors, especially for the Parallel dataset.

Single NN Ensemble x100

Single dataset

Precision 99.962% (±0.143%) 100% (±0%)
Recall 97.945% (±4.957%) 99.216% (±1.418%)
Rejection 27.327% (±12.590%) 21.209% (±0.799%)

Parallel dataset

Precision 96.889% (±16.575%) 100% (±0%)
Recall 96.516% (±16.231%) 99.862% (±0.018%)
Rejection 28.732% (±20.875%) 20.107% (±1.385%)

No False Positives

Figure 3: Left: Mean (± std dev) test set classification performance across
30 runs. Right: Ensemble’s estimated p (top) and stability analysis after dual-
thresholding (bottom) on unseen OSs from a 2D slice of the dense Single dataset
(V = 99.22). Note that False Positives (red) are safety-critical.

We also validate the approach on a real IBR system, assessing two OSs in
the single and parallel set-up [Wu et al., 2025]. These cases are confidently mis-
judged as stable by the standard single NN (safety-critical), but rejected due
to uncertainty by the proposed approach. These results highlight the impor-
tance of both reliable uncertainty estimation and effective thresholding to avoid
safety-critical prediction errors. We refer to Humblot-Renaux et al. [2025] for
experimental details and further analysis.
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