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Abstract
Small-angle X-ray Scattering (SAXS) provides crucial insights into the struc-
ture of cellulose fibres. However, extracting quantitative physical parameters
such as fibril diameter, orientation distribution, and porosity from SAXS
patterns is challenging due to signal complexity and model ambiguity. This
ongoing work presents deep learning and physics-informed neural network
(PINN) approaches that leverage both experimental SAXS data and the
underlying physical laws governing X-ray scattering.
Keywords: causal inference, physics-informed neural network, SAXS,
machine learning, deep learning, cellulose, lipid nanoparticles

1 Introduction
This is an early-stage research of the scientific application of machine learning
in the interdisciplinary project AI-SAXS at RISE.

Small-angle X-ray scattering is a versatile scattering method for characterising
materials in the order of nanometer scales ranging 1-100 nm. It is a non-
invasive reciprocal space characterisation technique that provides statistically
representative microstructural information about a material. By sending X-rays
through a sample and recording how they scatter at small angles, it reveals
details about the sample’s internal architecture, such as pore size, distribution,
and arrangement of particles or domains.

From Bragg’s law, nλ = 2d sin θ where λ is the X-ray wavelength, d = distance
between atomic planes in a crystal sample, and θ is the angle of incidence -
it is evident that with decreasing scattering angles, larger structural features
can be increasingly determined. The raw spatial arrangement of atoms or
nanostructures in the material creates a unique scattering pattern when X-rays
traverse it. In SAXS, the observed intensity profile is not a direct map of
distances, but rather a result of mathematical transformations (specifically, the
Fourier transform of the electron density distribution) which encodes information
about different structural parameters in the resulting scattering curve. These
include size distributions, shapes, and surface structures at the nanometer scale,
all “overlaid” as features within the measured intensity profile. Additionally, q in
a SAXS profile is directly proportional to frequency space ν, where q is given
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Figure 1: Schematic diagram of hierarchical structure of the wood cell wall from
(Penttilä [2013]).

by (4π sin θ)/λ, so the scattering profile becomes independent of the incident
wavelengths. So the SAXS profile of a material is a fingerprint of its structural
complexity.

Purely theoretical inference of the inverse mapping of the SAXS profile to
the parameter values of a material is a scientifically challenging task due to its
nature, as mentioned before. Machine learning (ML) models have opened new
avenues to this complex problem - the models can map within uncertainties
which parameters are the most dominant ones for a given region in a SAXS curve
(Röding et al. [2022], Anker et al. [2023]). However, one would also need the
distribution ranges of parameters for such a SAXS profile to better understand
the material behaviour, for example, in the manufacturing of paper straws.

2 Datasets: cellulose and lipid nanoparticles
The datasets in this project are cellulose fibres and lipid nanoparticles (LNPs).
Cellulose is the most abundant biopolymer on Earth, which has an anisotropic
structure with linear, unbranched fibres that form strong hydrogen-bonded
microfibrils. This implies that there is almost no structural symmetry, which
leaves us with a challenging simulated modelling of the SAXS profile.

LNPs represent a precise nanoscale assembly of lipids with programmable
chemical and physical properties for biomedical applications. A lipid nanoparticle
is a nanoscale assembly made up of multiple types of lipid molecules, forming a
structured carrier rather than a single molecule. Its typical diameter ranges from
10 to 1000 nanometers, and it is engineered to encapsulate genetic material or
drugs for delivery into cells. A lipid nanoparticle is simulated using a Gaussian
random field and an electron density. LNPs have inherent structural symmetry.



Figure 2: Fibril aggregates in cellulose model with two different area fractions.
The length scale of the fibres is obtained from the model fit. Image credit:
Sandra Barman.

2.1 Cellulose dataset
The cellulose dataset has two counterparts: experimental SAXS data collected
from the Max IV laboratory and its simulated dataset. The simulated SAXS
dataset contains physical parameters and generating properties of the spatial
model, including the mean half-size of crystals (alpha_mean), the associated
standard deviation, the spectral filter for the Gaussian Random Field (GRF)
function that generates the amorphous regions (pow_exp) and the smoothing of
the same at low q values, called µ. There are SLD values that are the relative
electron densities compared with the crystals (SLDcrystal = 1 is the default value).
The other parameters are the volume fractions of the three different phases:
crystals, GRF phase 1, and GRF phase 2. The last parameter is the surface area,
which is the total length of the boundaries between all phases. An example figure
of such a cellulose model is shown in figure 2. In total, we have 10 parameters
in the simulated dataset.

2.1.1 Generating the simulated SAXS dataset

Each simulated scattering profile (q vs I(q)) has a setting for each of the
generating parameters set of values. Each column consists of 500 sampled
values of the SAXS curve. There are 10000 different parameter settings and
corresponding 10000 SAXS scattering profiles. The ML model is trained on a
subset of this simulated dataset.

3 Preliminary results
For a pilot test to see how well a simple regressor ML model can learn about
the physical parameters from the SAXS data, we trained a model on a subset
of the parameter dataset and the corresponding SAXS data. We then test and
predict the physical parameters using this model.



Figure 3: Scatter plots showing the y_test vs y_pred for the parameters
alpha_mean (left), pow_exp (center), and µ (right).

We used randomly selected indices from the parameter dataset and the same
indices to select SAXS datasets for training our model. For regression tasks,
we utilised the XGBoost algorithm, implemented via the XGBRegressor class.
The model was configured with a squared error objective function, 100 boosting
rounds (n_estimators = 100), a learning rate of 0.1, and a maximum tree depth
of 5. These hyperparameters were selected based on preliminary tests to balance
model complexity and generalisation. To ensure reproducibility, we fixed the
random seed to 42. Hyperparameter tuning was performed using grid search
with cross-validation, optimising for mean squared error on the validation folds.

The y_test vs y_pred scatter plot from an XGBoost regressor visually
examines how well the model’s predictions align with the ground truth values.
This is shown in figure 3 for the three parameters, alpha_mean, pow_exp and
µ. Each point in the plot represents one observation, where the x-axis is the
predicted value (y_pred) and the y-axis is the true value (y_test). As is visible,
the model is not able to learn the pow_exp parameter well, but µ and alpha_mean
are better predicted, with better results in predicting the latter. Also, the model
does not inherently constrain predictions to the observed range, sometimes
resulting in predictions beyond realistic bounds, therefore, constraints on the
prediction parameter values can improve the performance of the model.

These observations emphasise that small-angle X-ray scattering (SAXS)
intensity profiles represent convoluted functions of the underlying cellulose
electron density. Consequently, reconstructing physical parameters such as
alpha_mean and µ from reciprocal-space scattering data I(q) constitutes an
ill-posed inverse problem, wherein the mapping from Fourier to real-space is
inherently unstable and non-unique.

We are working on a pilot study of using a physics-informed machine learning
model, where we do not use a parameter dataset for a given SAXS profile to
train our ML model, instead, we encode the structural guiding equation in the
loss function of the model. Physics-informed machine learning models have
been used in the wide-angle X-ray scattering region, benefiting from Bragg’s law.
The law is still valid in the small-angle regime; however, due to the small-angle
approximation sin θ ≈ θ, the resolution in the parameter space becomes quite



narrow, hence hard to distinguish between changes in the parameter values. We
are working on solving this issue in the SAXS regime.

4 Future work
By explicitly encoding SAXS scattering equations and structural constraints into
the model’s loss function, the PINN learns to predict relevant physical parameters
while maintaining consistency with the structural constraints of the material
sample and the physical theory of SAXS. Also, other neural network architectures
are being explored to estimate parameters directly from experimental datasets,
which reduces the need for simulated datasets and lowers the computation and
time required for this task (Molodenskiy et al. [2022], Wong et al. [2024]). These
approaches enable robust inverse modelling across diverse sample types, reduce
reliance on labelled datasets (such as parameters from simulated models), and
improve the interpretability of machine learning outcomes for cellulose fibre
analysis.

In upcoming publications, we intend to show how causal inference models can
predict the parameter distribution of the sample and predict other environmental
properties, such as relative humidity in a cellulose sample. Currently, this
information is available only from experimental SAXS data and is determined
only via fitting the SAXS curve with simulated datasets. We aim to determine
properties such as the relative humidity using a trained ML model on a simulated
dataset. This would be beneficial for better modelling cellulose and reducing
reliance on experimental measurements, in this case.
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