
Towards Foundation Inference Models
that Learn ODEs In-Context

Maximilian Mauel2, Manuel Hinz12, Patrick Seifner12,
David Berghaus13 & Ramsés J. Sánchez123
1Lamarr Institute, 2University of Bonn, 3Fraunhofer IAIS

seifner@cs.uni-bonn.de

Abstract
Ordinary differential equations (ODEs) describe dynamical systems evolv-
ing deterministically in continuous time. Accurate data-driven modeling of
systems as ODEs, a central problem across the natural sciences, remains
challenging, especially if the data is sparse or noisy. We introduce FIM-ODE
(Foundation Inference Model for ODEs), a pretrained neural model designed
to estimate ODEs zero-shot (i.e. in-context) from sparse and noisy observa-
tions. Trained on synthetic data, the model utilizes a flexible neural operator
for robust ODE inference, even from corrupted data. We empirically verify
that FIM-ODE provides accurate estimates, on par with a neural state-of-
the-art method, and qualitatively compare the structure of their estimated
vector fields.
Keywords: System Identification, ODE Inference, Foundation Models,
In-Context Learning, Neural Operators, Simulation-based Inference

1 Introduction
Ordinary differential equations (ODEs) are a class of continuous-time dynamical
systems, modeling phenomena evolving deterministically in continuous space.
They are formally described by vector fields f : R+ × RD → RD, defining the
differential equation

dx(t) = f(t,x(t)) dt, (1)

with continuous solution trajectories x : R+ → RD. The ubiquitous presence
of these simple models throughout the natural sciences is remarkable, from
describing Newton’s laws of motion, to population dynamics in biological sys-
tems [Lotka, 1925, Volterra, 1926] and atmospheric convection in meteorology
[Lorenz, 1963]. Accurate ODE models characterize the underlying phenomena
(e.g. by fixed points or limit cycles) and can forecast future states.

In this work, we consider the ODE system identification problem: estimating
the ODE (i.e. a vector field) that best describes a system from time series obser-
vations only. Traditional approaches to this problem are either non-parametric
[Heinonen et al., 2018] or symbolic-regression-based [Dong and Zhong, 2025].
Recently, d’Ascoli et al. [2024] introduced ODEFormer, a pretrained neural sym-
bolic regression method, transforming (tokenized) time series observations into
(tokenized) equations.
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Foundation Inference Models (FIMs) are a general simulation-based frame-
work for inference of dynamical systems. These deep neural network models are
pretrained on synthetic data, generated from a class of dynamical systems, us-
ing a supervised train objective to match the target and estimated infinitesimal
generators of the processes. This framework has shown promising results in the
inference of continuous-time Markov chains [Berghaus et al., 2024], stochastic
differential equations [Seifner et al., 2025a], and point processes [Berghaus et al.,
2025]. If appropriate, it defaults to neural operators [Kovachki et al., 2023] for
continuous function estimates [Seifner et al., 2025b].

In this work, we introduce FIM-ODE, a FIM for the ODE identification prob-
lem, which uses a neural operator to model the vector field. Our model performs
better than ODEFormer on a synthetic test set and we argue that FIM-ODE’s flex-
ible neural operator yields more reasonable global vector field predictions.

2 Foundation Inference Model
The ODE inference problem is a special case of the stochastic differential equa-
tion (SDE) inference problem, tackled by FIM-SDE [Seifner et al., 2025a]. How-
ever, non-stochastic trajectories do not explore the space as much as stochastic
trajectories, providing less information about the global vector field. Neverthe-
less, because of the problem similarities, we stick to the architecture of FIM-SDE.

Synthetic Data Generation. Following Seifner et al. [2025a], we generate
synthetic training data from a broad distribution over ODE systems and initial
states of up to dimension D = 3. Each component of a vector field is sampled
from a distribution over multivariate polynomials of up to degree 3. We simulate
these systems, record the solutions at (irregular) grids and corrupt them by
additive noise to generate time series observations from them.

Inference Model Architecture. FIM-ODE estimates a vector field f̂ from
a set D = {yk}Kk=1 of time series yk = [(tk1,yk1), . . . , (tkL,ykL)] in-context,
without any further training or finetuning. The vector field estimate f̂ is im-
plemented by a DeepONet neural operator [Lu et al., 2021]. The branch-net
of FIM-ODE, a Transformer encoder, encodes D into K(L − 1) E-dimensional
representations D ∈ RE×K(L−1). Note that this retains individual encodings
for almost all observations, which a combination network (see below) can ac-
cess directly. The trunk-net is a linear map, encoding a location x ∈ RD into
h(x) ∈ RE . The combination network is a sequence of residual attention layers,
using D as keys and values, and h(x) as query, similar to a Transformer decoder.
A final linear projection yields the estimate f̂(x).

Training. Adhering to the FIM framework, we use a supervised training ob-
jective L(x,D, f) = ∥f̂(x)− f(x)∥2, matching the predicted to the ground-truth
vector fields on x sampled “close” to the observation values in D. We pretrain
a single FIM-ODE with roughly 20M parameters on 600k synthetic equations1.

1For comparison, ODEFormer is trained on 50M equations and has 86M parameters.



Table 1: Comparison of R2-accuracy on polynomial vector field data, given a
single trajectory as context.

Model Reconstruction Task Generalization Task

ODEFormer 0.65 0.19
FIM-ODE 0.90 0.26
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Figure 1: Vector field estimates of FIM-ODE from 1, 5 and 9 context trajectories
of the same system. The estimates improve, given more trajectories.

3 Experiments
For our experiments, we sample 4000 ODEs with polynomial vector fields of up
to degree 3 and up to dimension 3. We simulate 9 trajectories with initial states
sampled from N (0, 1) from each ODE, recording 200 observations on a regular
grid with inter-observation times ∆τ = 0.05. Following d’Ascoli et al. [2024],
we measure performance by the R2-accuracy, the percentage of R2 scores larger
than 0.9. We compare our pretrained FIM-ODE to a pretrained ODEFormer2

on two tasks: a reconstruction task, in which performance is measured on the
reconstruction of the context trajectory, and a generalization task, in which per-
formance is measured on the reconstruction of held-out trajectories. Note that
ODEFormer can only process a single context trajectory, so we restrict to that
case in direct comparisons.

Reconstruction and Generalization Performance. Table 1 contains
the R2-accuracy for both tasks on the polynomial test set. Note that the poly-
nomial test data is in the training distribution of both models, but ODEFormer
was trained on a broader distribution than FIM-ODE. Our model performs well
in both tasks, even better than ODEFormer. The large difference is R2-accuracy
shows that generalization is inherently more difficult than reconstruction.

Multi-trajectory Context. FIM-ODE is designed to process multiple tra-
jectories of the same system simultaneously. Figure 1 depicts vector field es-
timates of FIM-ODE with varying counts of context trajectories. For a single

2Source of pretrained ODEFormer weights: https://github.com/sdascoli/odeformer

https://github.com/sdascoli/odeformer
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Figure 2: Comparison of vector field estimates to the ground-truth, given a
single trajectory. ODEFormer predicts a complex global pattern, while FIM-ODE
focuses on accurate predictions near the provided trajectory.

trajectory, vector field estimates are inaccurate at locations distant from the
observations. With more trajectories covering the space, FIM-ODE corrects these
estimates, extracting and combining all available information effectively. Such
accurate global vector field prediction is particularly beneficial for generalization
tasks — as well as for interpretability in scientific settings.

Local and Global Predictions. In Figure 2, we visually compare vector
field estimates of FIM-ODE and ODEFormer from a single trajectory. Locally, at
the observations, FIM-ODE predicts a complex pattern to reconstruct the trajec-
tory. Globally, far away from the observations, the predictions are much simpler.
Compared to the ground-truth, ODEFormer predicts a more complex vector field.
This results in complex global pattern predictions, largely unjustified by the
single, quite simple observed trajectory. The stark difference between the two
models is explained by the different vector field parametrizations. ODEFormer
is restricted to predict (rational) polynomial symbolic equations, which, given
sparse or noisy observations, might not default to simple expressions. The neural
operator of FIM-ODE can handle these situations more flexible.

4 Conclusions
In this work, we introduced FIM-ODE, a pretrained foundation inference model
that estimates ODEs from time series observations, utilizing a neural opera-
tor. In our preliminary experiments, it demonstrates better performance than
ODEFormer, a state-of-the-art neural symbolic regression approach. We find
structural differences between the vector fields predicted by these approaches
and argue that FIM-ODE’s global predictions are more justifiable.

In future work, we will compare these methods on ODEBench, a ODE in-
ference benchmark dataset of 63 hand-selected ODEs. We will also explore the
discovery of latent dynamics using a pretrained FIM-ODE, with possible applica-
tions in neural population and chemical reaction dynamics [Duncker et al., 2019],
and the evolution of natural language content [Cvejoski et al., 2023, 2022].
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