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Abstract
High-throughput methods can accelerate food formulation design, where
combining ingredients to achieve desired textures and stability is central, yet
accessible tools for screening gelation are scarce. We present a workflow that
combines a 96-well plate platform with sphere displacement tracking and a
deep learning-based image analysis pipeline to map gelation behavior in par-
allel. A YOLOv8 model tracked spheres in each well. Gelatin was selected
as a model system to validate the approach. Sphere velocity decreased with
increasing concentration, capturing immobilization thresholds and system-
atic hysteresis between cooling and reheating. Validation against oscillatory
rheology showed strong agreement with sol–gel boundaries, with only mi-
nor deviations due to discrete temperature steps. This demonstrates that
deep learning–assisted sphere tracking provides a reliable, low-cost proxy
for rheology, offering a practical tool for rapid, automated food formulation
screening.
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1 Introduction
Gels are widely used in foods, cosmetics, biomedical devices, and coatings. In
foods, gelation governs texture, stability, and consumer perception, making it
central to product design. Their tunable properties also enable modifying tex-
tures, stability, and controlled release [Banerjee and Bhattacharya, 2012, Caló
and Khutoryanskiy, 2015]. Growing demands for healthier, more sustainable
products are increasing the need for faster formulation cycles, yet conventional
workflows remain slow, resource-intensive, and costly [Cao and Mezzenga, 2020].

Gelation is typically measured mechanically by rheology, which provides
detailed insights but is inherently low-throughput and requires large sample
volumes. High-throughput experimentation (HTE), originally developed in ma-
terials and pharmaceutical research, accelerates discovery through miniaturiza-
tion and parallel testing [Miracle et al., 2021]. However, applying HTE to soft
matter is challenging due to the non-Newtonian rheological properties and its
evolving microstructure [Deshmukh et al., 2016].

Artificial intelligence (AI) and machine learning (ML) can reveal formula-
tion–property relationships from high-dimensional data [Schmidt et al., 2019],
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and have already been applied to phase transitions in complex biological systems
[Arter et al., 2022, Liu et al., 2021].

Here, we present a scalable workflow that integrates a 96-well plate platform
with deep learning-based motion tracking to monitor gelation. Demonstrated
on gelatin, the method enables parallel, low-cost measurements under controlled
thermal cycling and validates gelation boundaries against rheology.

2 Method Development & Results
Formulation samples spanning the desired concentration range were prepared
in a 96-well plate, with a 3 mm stainless steel sphere placed in each well as
a mobility probe. The plate was subjected to controlled cooling and heating
ramps (60-5 °C, then reheating) under rotational agitation at 300 revolutions
per minute (RPM), while videos were recorded with a digital single-lens reflex
(DSLR) camera to capture sphere motion across all wells simultaneously.

2.1 Image Alignment & Tracking
You Only Look Once (YOLOv8) object detection model (Ultralytics; [Redmon
et al., 2016]) trained on 676 annotated corner markers (169 images × 4 markers,
mean average precision at 50% IoU (mAP50) > 0.99) which were placed on the
plate to enable rotation and translation correction. The dataset was compiled
from extracted video frames (1920 × 1080 px) spanning a range of concen-
trations, temperatures, and lighting conditions to capture variability. Markers
were manually annotated with bounding boxes in Roboflow, and the dataset
was split into 80% training, 10% validation, and 10% test sets. After alignment,
the images were cropped to the plate region for consistent analysis.

Sphere positions were detected with a second YOLOv8 model (mAP50 =
0.97) trained on >6,000 annotated examples using the same protocol and split.
Centroid coordinates were mapped to the 8 × 12 grid, and velocities (mm/s)
were computed over 25-frame windows. Mean velocity per condition served as
the gelation indicator.



Figure 1: Workflow for gelation screening: (a) concentration gradient in a 96-
well plate with spheres, (b) imaging setup, (c) YOLOv8 detections of spheres
and markers, (d) trajectories showing mobility at low concentration and immo-
bilization at high concentration.

2.2 Validation on Gelatin
Gelatin, a well-characterized gelling agent in foods, was chosen as a model
system to demonstrate the workflow. We hypothesized that sphere displace-
ment would decrease with concentration and temperature, reflecting the known
temperature dependence of gelatin gelation. Indeed, sphere velocity decreased
with increasing concentration, capturing the progression of the sol-gel transition
(Figure 2a). At high temperatures (30-60 °C), the decrease was gradual and
viscosity-driven, while at lower temperatures a sharp immobilization threshold
emerged. This transition occurred at lower temperatures when lower concen-
trations were used. This behavior is expected, as gelatin gelation is governed
by the helix-coil transition: lowering temperature promotes triple-helix forma-
tion and network percolation, leading to a loss of mobility [Bohidar and Jena,
1993]. Complete immobilization corresponded to zero velocity in the dataset,
providing a marker of gelation.

Cooling and reheating cycles revealed systematic hysteresis: reheated gels
consistently showed reduced mobility compared to freshly gelled ones, while par-
tially melted samples retained residual structure that slowed motion (Figure 2b).
This asymmetry highlights the kinetics of network formation and melting and
demonstrates that the workflow can resolve not only gelation thresholds but
also thermal history effects.



Figure 2: Sphere velocity vs gelatin concentration: (a) mean velocities at six
temperatures, (b) cooling (blue) and reheating (orange) cycles.”

To benchmark the workflow, oscillatory rheology was performed on identi-
cal gelatin samples, defining gelation by the storage (G′)–loss (G′′) modulus
crossover. These values trained a Support Vector Machine (SVM) with a radial
basis function (RBF) kernel to generate a phase diagram (Figure 3). Sphere
displacement boundaries closely matched rheology, confirming a reliable high-
throughput proxy. At low concentrations (1–2.5%), the raw sphere displacement
gelation points deviate from rheology because the imaging workflow was per-
formed in 10 °C intervals, limiting sensitivity to transitions occurring between
setpoints. This limitation could be addressed with finer temperature ramps for
more precise localization.Nevertheless, the fitted boundary captures the overall
sol-gel trend and agrees well with rheology, supporting integration into high-
throughput pipelines where rheology is a bottleneck.

Figure 3: Sol-gel phase diagram of gelatin. Boundaries from sphere tracking
(solid) and rheology (dashed) with experimental points and SVM transition
zone.
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