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Abstract

Controlling a quantum computer requires the estimation of a number of
parameters for each qubit. Since the parameters fluctuate quickly over time,
there is a need for fast and efficient online estimation algorithms that can
adapt the measurement parameters to gain as much information as possible.
We present our ongoing work of developing an online Bayesian estimation
protocol for estimation of the decay-time of a transmon Qubit and extend it
to handle jump-diffusion models. We apply the algorithms both to simulated
data with known ground truth as well as real-world data.
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1 Introduction

Controlling a quantum computer requires the estimation of a large number of
parameters for each qubit, for example qubit rotation frequencies, but also life-
time parameters like qubit decoherence times. Due to quantum fluctuations in
the environment of a qubit, these parameters change over time and are corre-
lated on time-scales from sub-milliseconds to hours and days, see Miiller et al.
[2015], Carroll et al. [2022]. These fluctuations are believed to arise due to the
coupling of the qubit to other nearby two-level systems (e.g., an electron repeat-
edly moving between two locations), see Murray [2021] and are believed to be
an intrinsic property of the material. As a result, changes to the parameters are
not continuous, but rather the combined effects of many discrete jump events.
As the jump events cannot be observed directly, algorithms for parameter
estimation can also serve as a sensor that provides insight into the material
quality. Better materials have less noisy environments and thus should lead to
more stable device parameters. Current algorithms only provide limited insights
into the process. For example Klimov et al. [2018] track the fluctuations of qubit
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lifetimes over several hours, but obtaining a single parameter estimate required
several seconds. This is far too long to provide insight into the low time-scales
of interest for qubit operations.

Existing algorithms are slow because obtaining the measurements themselves
often requires an estimate for the parameter of interest - to obtain an estimate
for a qubit rotation frequency, we need to rotate qubits. However, since qubit
measurements result in binary outcomes, the wrong choice of parameters can
lead to uninformative results, when the probability to observe one state is almost
1 due to the choice of parameters. Thus, classical approaches that perform
measurements with parameters evaluated on a grid necessarily evaluate a large
number of uninformative settings.

As a result, Al driven online-learning algorithms are needed that not only
continuously update their estimate but also choose informative measurement
parameters. However, the real-time demands of the task require the algorithms
to run in the order of a few microseconds, and thus are implemented via FPGA,
which limits algorithm complexity. There have been a number of approaches
proposed for these algorithms, many of which follow the principle of Bayesian
estimation, for example see Gebhart et al. [2023]. Still, these algorithms usually
assume that the parameter is constant and thus need to be restarted to allow
tracking.

In the following, we will present our recently developed algorithm for esti-
mating the decay-time T; of the excited state of a transmon qubit (see, Berritta
et al. [2025]) that improved estimation frequency of qubit parameters by 2 or-
ders of magnitude and allowed the discovery of Lorentzian type noise on high-
frequency time-scales. We further extend it to Bayesian tracking by including a
drift model. We incorporate both a model of continuous drift, representing fast
noise components, as well as a jump noise model, for the estimation of high am-
plitude jumps. We demonstrate the applicability of the algorithm on simulated
data as well as on a real transmon qubit dataset.

2 Methods

For the basic algorithm, let A = 1/7; be the unknown inverse decay time.
After initialisation of the qubit to the excited state so = 1, we wait for time
T. During this time, the qubit might have decayed to the ground state, i.e.
s = 0. In the absence of noise, the time to decay follows an exponential
distribution, which means that the decay probability within time T" is P(sp =
0) = 1—exp(—AT'). We then obtain a measurement m of sp. This procedure can
be corrupted by state preparation and measurement errors, which are modelled
by error probabilities @ and 3 leading to the observational model

Pm=1T,\) =8+ (1—-8—a)e . (1)

Using a Bayesian approach starting from a prior pg(Ao) = I'(Ao; , ), where 0
is the inverse scale parameter, the algorithm progresses in iterations where in
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the kth iteration a waiting time T} is computed and a measurement my is per-
formed. After this, the algorithm computes a posterior approximation py(Ag).
Computing the exact posterior pg(Ag|mg, Tx) < P(mg|Tk, Ak )pr—1(Ag) is not
feasible within the device limitations, and therefore it is assumed that the pos-
terior distribution resembles a I'(Ag; &, 0 )-distribution, which is fit via moment
matching. Based on minimum variance considerations, the measurement time
Ti = 0.5/E[MAg—1], Ag—1 ~ T'(kg—1,0k—1) is chosen.

To extend this model, we include a drift term p(Ax|Ag—1,7%), where the
dependence on T} includes the effects of the drift while a measurement is per-
formed. The resulting probabilistic model follows the Bayesian tracking formu-
lation and

pr(Ak|mi) o< P(m = 1|Tk,>\k)/p()\k\)\k—l,Tk)pk—l(Ak—l)d/\k—l . (2

pzred ()\k)

To model both jumps and continuous drift, we model p(Ag|Ag—1,Tk) as a mix-
ture distribution, where we assume that \; is drawn from py when a jump
happens and follows a continuous drift model otherwise. The probability of
jump follows an exponential distribution p(jump|T’) = 1 —exp(—~T), where 7 is
a rate parameter. For the continuous drift, we use the SDE proposed in Bibby
et al. [2005] which creates a stochastic process with autocorrelation time £ and
stable distribution I'(ko, 8p). We use a one-step Euler integration to the SDE,
compute the mean and variance of the resulting random variable and perform
moment matching to obtain another I'-distribution. Since the jumps adds the
prior as another mixture component in every iteration, this model is difficult to
implement on an FPGA. To make inference tractable, we only consider jumps
at every Mth iteration, and we only allow a maximum of two mixture compo-
nents in the posterior py(Ax) = (1 — wg)ps™ (Ax) + wiph F(Ax). When a third
component is added, we distribute the probability mass wj, of p}ﬂump between
™ (A;) and the new component py and perform moment matching on each
pair. We found that only moving 10% on the mass to p§°™ led to better results.

3 Experiments & Results

We perform two sets of experiments, the first is a simulated dataset with known
baseline and the second is the application of the estimator to the dataset gath-
ered in Berritta et al. [2025]. To be comparable, we also use T; = E[1/\] as
prediction and I'(3,450) as prior in all experiments.

For the first experiment, we simulated a jump-diffusion process and com-
pared the Bayesian estimation algorithm without drift-model and without restart-
ing (baseline), to the model with only using continuous drift and the one using
both continuous and jump diffusion. We chose @ = 5 = 0.01. We fitted the
model parameters on the simulation using grid-search and for the jump-model
we merged the mixture components every M = 50 iterations. We then ran
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Figure 1: fig:Preliminary results. a) b) show simulated results, while ¢,d shows
results on real Qubit data. See text for details
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10000 simulations for each algorithm for 500 iterations. In Figure 1(a,b), we
show the median and 90% percentile relative error between the true simulated
T, and the prediction T’l over the iterations. As one can see, the baseline with-
out restarting performs well for the first 50 iterations, after which a restart
is optimal. The continuous drift model is able to follow the trend with stable
error rate, but does not improve significantly on the error due to the required
fast drift to catch jumps. Lastly, for the full model we see a pattern of spikes
after every 50 iterations, due to merging, but can improve over the other models
afterwards.

In the second experiment, we use the data gathered by the baseline algo-
rithm, implemented on a Quantum Machine OPX FPGA. It was run for 100
iterations with error rates o = 8 = 0.12 before restarting. We merge the dataset
of 100 consecutive runs of the algorithm and compute trajectories of 7} using
our algorithms based on the concatenated sequences and compute the data log-
likelihood using T, as estimate. In Figure 1(c), we show example trajectories of
the Baseline with and without restarting, compared to our jump-diffusion model
for one example trajectory. The algorithm without restarting slows down, while
the other trajectories closely align. However, the log-likelihood estimate in Fig-
ure 1(d) does not show any difference between the algorithms. We hypothesize
that this is likely due to low informative of samples due to high error rates and
restarts leading to uninformative Tj.

4 Conclusions

Our preliminary work showed that online-learning based algorithms can inform
physics even in restricted quantum computing settings. We further show that
including drift models into the estimation process can improve over restarting on
simulated data, however we failed to see the same improvement on real data. We
propose to use less aggressive restarting strategies, not starting from the prior,
but taking the last estimate into account. Similarly, for estimation purposes,
running the algorithm for longer before restarting might allow us to collect more
informative data.
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