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Abstract
Policy-making requires comparing multiple scenarios involving many vari-
ables and uncertainties, assessing trade-offs between economic, environmen-
tal and social factors. To make informed decisions, policymakers often rely
on data from simulators, to frame the impacts of choices on a set of pos-
sible futures. These simulations, though, can be computationally intensive
and run over the course of days, if not weeks. This problem can become
an insurmountable barrier, for example, in tackling the climate crisis, which
requires long-term planning and the comparison of different policy trajecto-
ries on a large scale. We argue that to solve this problem, the generalizing
power of simulators has to be coupled with the computational efficiency of
machine learning solutions. In this position paper we detail how simula-
tors and non-parametric approaches can be enhanced through each other’s
strengths and how the results may increase the amount of scenarios that can
inform policy-making, while reducing uncertainties.
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1 Introduction
We present here the results from the first year of the APEX (Artificial Intelli-
gence for Policy Excellence in the Climate Crisis) project and the overarching
vision. APEX aims at providing policy-makers with more powerful tools to as-
sess not only few scattered data-points in the future, but complete trajectories
and a variety of scenarios not constrained by computational limits (for example,
in the case of environmental or mobility applications). It does so by combining
the domain knowledge and reliability of simulators with the speed of Machine
Learning (ML) solutions. The intuition behind the project is that ML solutions
are trustworthy if enough data is available to properly frame the dynamics of
a phenomenon in distribution (ID). Still, this is rarely the case for long-term
implementable policies, for which data cannot be obtained until the policy is
implemented (and thus, the related investment has been carried out). Besides,
for policies designed to tackle climate crisis scenarios (e.g. historical flooding
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in Copenhagen [Vandervoort et al., 2025]), data simply won’t be available until
it is too late to act and the dynamics of the problem won’t be the same as the
current ones (i.e. out of distribution - OOD1). This is where the generalizing
power of simulators can be harnessed to improve ML solutions. We argue that
ML solutions can be fully relied upon even when data is scarce, if the domain
knowledge and algorithmic structure of simulators is embedded in the ML ar-
chitecture [Xu et al., 2019], making them able to handle distribution shifts. To
achieve these results, the APEX project is built over three research streams:

• Embedding in the surrogate the first-principle dynamics (e.g. physics
laws) of the underlying phenomenon will improve its performance OOD

• Designing the architecture of the surrogate to mimic the algorithmic struc-
ture of a simulator will guarantee higher generalizing power

• By expanding the theory and applicability of causal abstraction we can
minimize Interventional Consistency Loss between surrogate and simulator

Each stream focuses on generalization but can then be exploited to speed up
experiments, by allowing to replace computationally expensive simulations with
surrogate runs, trusting the latter to perform OOD. In the following, we detail
the initial outcomes from each of the three research directions, with a specific
focus on neural network (NN) architectures.

2 Embedding dynamics to complement data
Physical laws and problem specific dynamics are usually framed through ordi-
nary (ODEs) or partial differential equations (PDEs). In hydrodynamics, for
example, one of the foundational relations is described through the Navier-
Stokes equations [Constantin and Foiaş, 1988], while diffusion phenomena can
be capture by the Bateman–Burgers PDE [Bonkile et al., 2018]. Still, it is not
intuitive how to embed these physical laws into surrogates in a way that does not
degrade the performance ID. We plan to address this gap by combining Koop-
man operator theory [Budišić et al., 2012] with a neural architecture (MixFunn
[Farias et al., 2025]) that is designed to integrate multiple parameterized nonlin-
ear functions, augmented with quadratic neurons to capture input interactions.
At the present stage, we applied Koopman theory to the SIR model [Hethcote,
2000] to predict the population susceptible to a specific illness and the share of
infected and recovered. It does so by providing a linear representation of nonlin-
ear dynamics in an infinite-dimensional space, which is approximated through
a finite set of dictionaries of functions. While the results with state-of-the-art
methods are promising (Fig. 1), the dictionary selection remains ad hoc and
problem-specific. We plan to use MixFunn to build Koopman dictionaries from
activation functions inspired by known solutions of ODEs and PDEs, increasing
interpretability and simplifying the embedding of physical laws and dynamics.

1Depending on the field, this phenomenon could also be defined as out of domain [Wald
et al., 2021]



Figure 1: Application of the Koopman operator to predict the SIR outputs 3
time steps in advance

3 Designing a NN with a specific algorithmic struc-
ture

Another approach to make surrogates more robust, is to align their architecture
with the algorithmic structure of the surrogate. The approach has already been
tested [Xu et al., 2019], but it has yet to be applied to a complex simulator.
We chose the Traffic Assignment Problem (TAP) as our first experimental use
case for a simulator and identify Graph Neural Networks (GNNs) as NNs whose
structure better aligns. Our first set of experiments indeed shows promising
results [Lassen et al., 2025]. In these experiments, a Message-Passing Neural
Network is tested OOD by running the surrogate in areas of the input space
where the state variables of capacity, free flow speed and demand are outside
the training intervals. The results reported in Fig. 2 show that the surrogate
succeeds in predicting flows when capacity is OOD. Still, the chosen MPNN
(with the GatedGCN as specific layer architecture [Bresson and Laurent, 2018])
struggles when the demand extends OOD. Additionally, the performance of
GNNs degrades when applied to modified graphs because they fail to capture the
true underlying dynamics. We plan to build an improved MPNN architecture



that mimics the simulator’s iterative structure such that the performance does
not degrade OOD.

Figure 2: Left: The road network, Right: MAE (y-axis) as a function of the
number of edges with capacity values OOD (x-axis)

4 Exploiting causal structures to ensure interve-
tional invariance

One key application of simulators is to assess and compare different interven-
tions [Christiansen et al., 2021], to identify the best policy. NNs cannot easily
replicate this behavior, as they cannot guarantee a consistent behavior under in-
terventions when different portions of the input space are modified. This makes
their application for policy comparison challenging. We plan to address this
limitation by expanding the theory and applicability of causal abstraction, an
approach that aims at minimizing Interventional Consistency Loss [Dyer et al.,
2025] between surrogate and simulator (Fig. 3).

Figure 3: Formal framework for Causal Abstraction, adapted from [Dyer et al.,
2025]. τ is a transformation mapping corresponding states of M and M ′ while
ω is a transformation mapping corresponding interventions. d is the abstraction
error.



The methodological improvement will focus on identifying the most promis-
ing interventions by: ensuring interventional consistency, extrapolating from
partial sets of interventions and designing the optimal subset for maximum
extrapolation. Once the surrogate behaves upon unseen interventions with the
same dynamics captured ID, the surrogate shall be applied to test multiple poli-
cies without the need to verify at each run that the surrogate has not steered
towards a portion of the OOD space where it generalizes badly.

5 Conclusions and outlook
The results from the first year of the APEX project are promising but the long
term vision, to be developed in the next 4 years, is wider. The three building
blocks will be developed to each tackle a limitation of surrogate modeling by
embedding different aspects of domain knowledge from simulators. Once this
is accomplished, the three streams of research shall converge to one and all
the developed solutions shall result into a methodology for developing reliable
surrogate models of a large-scale and computationally expensive simulator.
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