
Reinforcement Learning for Efficient
Quantum Circuit Equivalence Checking
via Tensor Network Contraction

Suhaib Al-Rousan1, Kim Guldstrand Larsen1,
Christian Schilling1, and Max Tschaikowski2
1Aalborg University, Aalborg, Denmark 2 Sapienza University of Rome, Italy

{suhaibar,kgl,christianms}@cs.aau.dk, tschaikowski@di.uniroma1.it

Abstract
Verifying whether two quantum circuits realize the same unitary is vital
for optimization and compilation. However, approaches based on tensor
network contraction often suffer from exponential blow-ups, not least since
finding an optimal contraction order is NP-hard. We address this by em-
ploying tensor decision diagrams and formulating contraction as a sequential
decision-making task. A reinforcement learning agent, trained via proximal
policy optimization with a graph neural network policy, learns contraction
orders to minimize both floating-point operations and peak memory. Our
evaluation shows that the learned policy consistently outperforms heuris-
tic baselines in running time while maintaining competitive memory usage,
highlighting the potential of AI for scalable quantum circuit verification.
Keywords: Quantum circuit, Tensor network, Decision diagram, Rein-
forcement learning, Graph neural network

1 Introduction
Quantum computing has the potential to solve problems that are intractable
for classical computers by leveraging the principles of superposition and en-
tanglement. As quantum systems grow exponentially in the number of qubits,
ensuring the correctness of quantum circuits becomes increasingly challenging.
Equivalence checking, the task of verifying whether two circuits implement the
same unitary, is essential for circuit optimization and compilation. Formally, it
requires verifying whether the unitary operators U and U ′ satisfy U = eiθU ′,
where θ is a global phase. Equivalently, one can check

UU ′† = eiθIn, (1)

where UU ′† is the product of one circuit’s unitary and the conjugate transpose
of the other, and In is the n-qubit identity operator.

A recent survey classifies equivalence-checking approaches into formal and
simulative methods, stressing the need for scalable hybrids [Wille and Burgholzer,
2024]. Decision diagram frameworks address this by exploiting structural reg-
ularities in large unitaries, yet standard heuristics still suffer from exponential

AI in Science (AIS), 2025, Copenhagen, Denmark

blow-ups. Another promising approach is the contraction of tensors in a net-
work corresponding to the circuit; however, finding the optimal order in which to
contract the tensors is NP-hard [Lam et al., 1997]. Decision diagrams and ten-
sors have recently been married in the form of tensor decision diagrams (TDDs)
[Hong et al., 2022], and corresponding contraction heuristics have been pro-
posed [Larsen et al., 2024], showing advantages in handling mixed-dimensional
tensors but still admitting worst-case growth. At the same time, recent work
on reinforcement learning (RL) suggests that learned policies can outperform
hand-crafted contraction heuristics [Meirom et al., 2022].

Building on these insights, we propose an RL approach to efficient quantum-
circuit equivalence checking using TDD contraction. Two circuits are concate-
nated (Eq. (1)) and then translated into a TDD network (TDDN). If the circuits
are equivalent, contracting the network to a single node yields the identity TDD.
We train a graph neural network (GNN) agent to learn a contraction policy that
aims to minimize both floating-point operations (FLOPs) and peak TDD size.

2 Methodology
We cast the contraction of TDDNs as a sequential decision-making problem,
with the goal to discover contraction orders that jointly minimize FLOPs and
peak memory. To this end, we formulate the task as a Markov decision process
and train an RL agent to guide the contraction. At step t, the environment is
represented by a weighted graph Gt = (Vt, Et, wt), where vertices correspond to
tensors and edges encode shared indices with weights indicating computational
cost. The agent performs an action at by selecting an edge (u, v) ∈ Et to con-
tract, after which the environment merges u and v into a single node (resp. con-
tracts these tensors), yielding the updated graph Gt+1. The instantaneous cost
ct = C(st, at), where st encodes the current graph state, reflects the contraction
cost, combining estimated FLOPs and memory usage. If edge e is contracted at
step t, its cost is wt(e), and the total cost of a contraction path P = (e1, . . . , ek)

is C(P) =
∑k

t=1 wt(et). We further extend this model by accounting for the
peak memory footprint across all contractions. The contraction-planning prob-
lem is then to identify a contraction order that minimizes the cumulative cost,
P ∗(G0) = argminP C(P).

We adopt Proximal Policy Optimization (PPO) [Schulman et al., 2017] as
the RL backbone and employ a GNN as the policy network (Figure 1), since
TDDNs are naturally represented as graphs. Our choice of PPO was motivated
by recent work by [Meirom et al., 2022]. The GNN leverages message passing
[Battaglia et al., 2018] to capture both local and global structural information,
enabling the agent to reason about contraction trade-offs.

To enable effective learning, we design a feature set that encodes informa-
tion at the node, edge, and graph levels. Node features include the number
of contractions a node has participated in, the number of 1-qubit and 2-qubit
gates associated with it, a one-hot encoding of accumulated gate types (from a
finite selection), and the size of the TDD representing the corresponding ten-

Figure 1: RL framework for TDDN contraction.

sor. Edge features estimate the contraction cost as described above. Global
graph features capture aggregate statistics over the entire network, namely the
averages of the node features and the average edge cost. By embedding these
features through message passing, the policy network integrates local connectiv-
ity, tensor structure, and global cost context, learning contraction policies that
consistently outperform hand-crafted heuristics.

Algorithm 1 outlines the training loop over a corpus of circuits spanning var-
ious sizes and gate patterns. We fix upper bounds on nodes and edges (Mn,Me)
for the policy, pad to these budgets, and mask inactive slots when smaller cir-
cuits are loaded; during contraction, the graph (and valid action set) shrinks
and masking is updated accordingly.

3 Evaluation
We evaluate our methodology on MQT Bench [Quetschlich et al., 2023], focus-
ing on algorithmic (level 1) and target-dependent (level 3) compilation levels,
which differ in gate sets and layouts and thus stress both contraction quality
and robustness. Our study spans five circuit families—Deutsch–Jozsa (DJ),
GHZ, Bernstein–Vazirani (BV), W-state, and Graph-state—instantiated for 2–
23 qubits (110 circuits in total). We compare against four established heuristics
from Gray and Kourtis [2021] implemented in CoTenGra [Gray, 2025], which
are also used as baselines in other works [Meirom et al., 2022, Larsen et al.,
2024]: Betweenness (community detection to expose hierarchical structure),
Random Greedy (sampling of multiple greedy paths and take the best), Greedy
(minimize immediate cost), and Hyper KaHyPar (hypergraph partitioning for
improved paths but higher planning time).

Across all benchmarks, our RL model consistently shows a lower contrac-
tion time while maintaining a competitive peak TDD size compared to the
baseline heuristics (Figure 2). For example, on the BV circuits, the RL model
achieves TDD sizes comparable to the hypergraph-based heuristics but is two
orders of magnitude faster. In other families, KaHyPar occasionally produces

Algorithm 1 Training of a GNN policy for contraction planning with PPO
Input: Circuit set S = {c1, . . . , ck}, maximal number of nodes Mn, maximal

number of edges Me, number of training steps s
Output: Trained policy πθ

1: procedure TrainPolicy(S,Mn,Me, s)
2: Initialize policy πθ, value net, and environment parameters
3: for i = 1 to s do
4: C ← Sample(S)
5: TN ← CircuitToTN(C); TDDN ← BuildTDDN(TN)
6: G← InitGraph(TDDN); E ← ResetEnv(G)
7: while |Edges(E)| > 0 do
8: o← Observe(E) ▷ GNN features over G
9: a← Sample(πθ(o)) ▷ Select edge to contract

10: (E , r)← Step(E , a) ▷ Contract and compute reward
11: StoreTransition(o, a, r) ▷ Append to PPO rollout buffer
12: UpdatePolicyPPO(πθ) ▷ Compute advantages; update

policy/value with PPO; clear buffer
13: return πθ

Benchmark Depth
(min–med–max)

Gates
(min–med–max)

% single-qubit
(mean ± sd)

DJ 12–32–54 17–134–249 83.31± 1.41
GHZ 6–27–48 6–27–48 20.69± 14.69
BV 9–18–29 18–68–128 84.81± 2.08
W-state 12–75–138 14–140–266 67.54± 1.01
Graph-state 13–19–33 18–78–138 66.67± 0.00

Table 1: Benchmark corpus characteristics for varying qubit counts. We report
per-family minimum/median/maximum for circuit depth and gate count as well
as the amount of single-qubit gates (mean and standard deviation).

slightly smaller TDDs, but only with significantly longer planning times. The
key advantage of our approach is that the RL agent learns a policy tailored
to contraction dynamics rather than relying on static heuristics. By combining
local structural cues with global context through message passing, the GNN can
anticipate long-term cost growth and avoid locally optimal but globally expen-
sive contractions. This allows our method to balance time and memory more
effectively than traditional heuristics, resulting in robust performance across
different circuit families.

Speedups diminish with growing qubit counts as graphs densify and FLOP
growth dominates, yet the median speedup stays positive. The peak TDD size
varies more because the agent sometimes accepts brief growth for later savings.

Figure 2: Performance comparison of the RL-based model and baselines across
all benchmark families (log scales). The RL model consistently achieves lower
contraction time, while the peak TDD size is less stable but overall similar.

4 Conclusions
We presented an RL framework for quantum-circuit equivalence checking via
TDDN contraction. A GNN policy trained with PPO learns contraction orders
that jointly minimize FLOPs and peak memory. The message-passing architec-
ture, together with carefully designed node, edge, and global features, enables
the agent to reason over both local structure and global cost context.

On five MQT Bench circuit families, the learned policy consistently reduces
contraction time while keeping peak TDD size competitive with established
heuristics. In particular, it outperforms greedy methods in runtime and ap-
proaches the quality of hypergraph-based planners without their planning over-
head.

This work highlights the promise of combining decision diagrams with RL
for contraction-order optimization. Looking ahead, we aim to scale to larger
circuits and integrate hardware-aware features. This is a first step: we are
broadening benchmarks (layouts, entanglement patterns, gate sets) to expose
richer contraction regimes. Training across wide size ranges remains open—our
current setup fixes node/edge budgets (Mn,Me) and masks inactive slots as
graphs shrink. While this stabilizes the action space, it may under-use small
cases and constrain large ones; adaptive budgets and curriculum-style scaling
are natural next steps.

Acknowledgments
This work was supported, in part, by the Danish e-infrastructure Consortium
(DeiC) under reference number 4316-00006B, the Danish National Research
Foundation (DNRF) through the Center CLASSIQUE under grant number 187,
and the Villum Investigator Grant S4OS under reference number 37819.

References
P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi,

M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

J. Gray. Cotengra documentation. https://cotengra.readthedocs.io/en/
latest/, 2025. Accessed: 2025-10-13.

J. Gray and S. Kourtis. Hyper-optimized tensor network contraction. Quantum,
5:410, 2021. doi: 10.22331/Q-2021-03-15-410.

X. Hong, X. Zhou, S. Li, Y. Feng, and M. Ying. A tensor network based decision
diagram for representation of quantum circuits. ACM Trans. Design Autom.
Electr. Syst., 27(6):60:1–60:30, 2022. doi: 10.1145/3514355.

C. Lam, P. Sadayappan, and R. Wenger. On optimizing a class of multi-
dimensional loops with reductions for parallel execution. Parallel Process.
Lett., 7(2):157–168, 1997. doi: 10.1142/S0129626497000176. URL https:
//doi.org/10.1142/S0129626497000176.

C. B. Larsen, S. B. Olsen, K. G. Larsen, and C. Schilling. Contraction heuristics
for tensor decision diagrams. Entropy, 26(12), 2024. doi: 10.3390/e26121058.

E. A. Meirom, H. Maron, S. Mannor, and G. Chechik. Optimizing tensor net-
work contraction using reinforcement learning. In ICML, volume 162, pages
15278–15292. PMLR, 2022. URL https://proceedings.mlr.press/v162/
meirom22a.html.

N. Quetschlich, L. Burgholzer, and R. Wille. MQT Bench: Benchmarking soft-
ware and design automation tools for quantum computing. Quantum, 7:1062,
2023. doi: 10.22331/Q-2023-07-20-1062.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

R. Wille and L. Burgholzer. Verification of quantum circuits. Handbook of
Computer Architecture, pages 1413–1440, 2024.

https://cotengra.readthedocs.io/en/latest/
https://cotengra.readthedocs.io/en/latest/
https://doi.org/10.1142/S0129626497000176
https://doi.org/10.1142/S0129626497000176
https://proceedings.mlr.press/v162/meirom22a.html
https://proceedings.mlr.press/v162/meirom22a.html

	Introduction
	Methodology
	Evaluation
	Conclusions

