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Abstract

Piloting behavioral experiments is a critical yet resource-intensive step in
behavioral research. Behavioral scientists often rely on intuition and re-
peated data collection before arriving at experimental designs that elicit
desired behavioral phenomena. To address this challenge, we introduce a
large language model (LLM)-driven framework for in silico prototyping of
behavioral experiments. The framework involves an iterative interaction
between an experimentalist LLM, that proposes candidate designs, and par-
ticipant LLMs, that engage with them. We formalize this interaction as
a black-box optimization problem, where the experimentalist LLM aims
to minimize a loss function defined over behavioral metrics of interest by
iteratively revising its proposals. We illustrate this approach in the context
of task framing—the narrative explanations used to introduce participants
to experimental tasks. Using the Wisconsin Card Sorting Test, a canonical
psychological paradigm for studying cognitive flexibility, we demonstrate
that the framework can discover framings that systematically shift the be-
havior of synthetic participants along a spectrum of cognitive stability and
flexibility. Our findings demonstrate the potential of LLM-based in silico
experimentation to accelerate the design cycle in behavioral research, en-
abling cost-effective exploration of experimental design spaces prior to in
vivo validation with human participants.

Keywords: cognitive science, automated scientific discovery, optimal
experimental design

1 Introduction

Al-powered simulators have transformed the natural sciences by enabling in silico
modeling, making experiment piloting and hypothesis testing faster and more
cost-effective. For example, high-accuracy predictions of protein structure as
accomplished by AlphaFold accelerated experiment prototyping and hypothesis
testing in chemistry [Jumper et al., 2021]. In contrast, in behavioral and social
sciences, most experiments are still piloted in vivo with human participants,
slowing the experimental design cycle. A “synthetic participant” would let
researchers explore experimental designs in silico before committing to real-world
studies [Musslick et al., 2024], thus accelerating iteration, expanding design
spaces, and reducing the costs associated with identifying experiments that
reveal behavioral phenomena of interest.

We introduce a framework for in silico prototyping of behavioral experiments
using large language models (LLMs) as both synthetic participants and exper-
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iment designers. The framework formalizes their interaction as a closed-loop,
online, optimization process, enabling automated exploration of experimental
conditions that shape behavior. This addresses a central challenge in human
behavioral research: researchers often tailor experimental designs to elicit specific
behavioral patterns, such as novel hypothesized effects or existing effects from
the literature, e.g., for testing interactions with other factors. Our framework
automates this process, enabling the identification of experimental designs that
yield desired behavioral patterns in synthetic participants, thereby generating
candidate designs that may translate to human studies.

To make this concrete, consider a researcher investigating how acute stress
influences cognitive flexibility—the ability to adapt behavior and shift strategies
in response to changing environmental demands [Diamond, 2014]. Instead of
conducting multiple costly pilot studies with human participants to fine-tune
stress-level manipulations, our framework can systematically explore, in silico,
narrative framings and task features (e.g., time pressure, competitive instructions,
task difficulty) to identify which combinations elicit the desired stress responses
and corresponding changes in flexibility metrics among LLM-based participants.
Through iterative feedback, the experimentalist LLM explores task configurations
based on observed synthetic behaviors, narrowing down candidate designs that
may later be validated with human participants and accelerating the early stages
of experiment design.

As proof of concept, we demonstrate the approach on the Wisconsin Card
Sorting Test (WCST), a canonical paradigm of cognitive flexibility, showing how
our method discovers task framings that systematically modulate the behavior
of participant LLMs along their flexibility—stability spectrum.

2 Relevant Work

LLMs have been proposed as human participant simulators that generate be-
havioral outputs from natural language task descriptions [Hardy et al., 2023,
Manning et al., 2024, Strittmatter and Musslick, 2025]. In some cases, LLMs
have been shown to reproduce key human behavioral patterns in psychological
paradigms [Binz and Schulz, 2023, Aher et al., 2023, Zhu et al., 2025]. As with
other simulators in the natural sciences, an LLM need not provide a mechanistic
account of cognition to be useful, but rather reliably generate observable behavior
across experimental contexts [Namazova et al., 2025].

Recent work has also explored LLMs for experimental design. Manning
et al. [2024] introduced a framework where LLMs act both as scientists and
participants in social science experiments, using structural causal models to
formulate hypotheses and design experiments. However, their approach generated
experiments in a one-shot manner, restricted to fixed set of experimental variables.
Our framework instead optimizes experimental design to elicit targeted behavioral
phenomena, operating over open-ended spaces of text-based task narratives.
This approach fits within the broader methodological space of LLMs as iterative
optimizers [Yang et al., 2023, Chen et al., 2023].
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3 Methods

Our framework for in silico experimental prototyping of behavioral experiments
formalizes the interaction between an experimentalist LLM and participants
LLMs as an iterative optimization process (see Figure 1). An experiment is
defined by a pair (x,7), where € € X denotes the fixed component of the
experiment (e.g., the task structure or stimuli), and v € I" denotes a configurable
component (e.g., task framing, instructions or experiment duration). In each
round ¢ of piloting, (1) the experimentalist 7 proposes a configuration ;, (2)
the participants p-, complete the experiment under this configuration, and (3)
their responses y; are evaluated using a task-specific loss function £ : } — Rx.
This loss encodes a behavioral objective, for example, how closely the synthetic
responses align with a target behavioral pattern or theoretical construct such as
accuracy, bias, or flexibility. The resulting score d; = L(y;) thus quantifies the
extent to which the observed behavior matches the desired behavioral criterion.
This feedback d;, coupled with the configuration ~; that produced it, is recorded
in the experimental history, which influences the subsequent proposals of the
experimentalist.
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Figure 1: In-silico experimental prototyping loop.

For fixed x, the experimentalist policy m(-) acts as a black-box optimizer,
sequentially exploring I to identify the configuration v* that best elicits the
target behavior, that is, the configuration yielding the minimal loss:

~* = arg {/nel{} £(p7(w)).

4 Experiment

As a proof of concept, we instantiated our framework on the Wisconsin Card
Sorting Test (WCST), a canonical paradigm of cognitive flexibility [Grant and
Berg, 1948, Nyhus and Barcelo, 2009]. In this task, participants must match
cards based on the shape, color, or number of depicted elements. This requires
them to infer and adapt to card hidden sorting rules (e.g. color- versus shape-
based classification) based on trial-by-trial feedback (correct versus incorrect).
Behavior is typically quantified by accuracy, perseveration errors (failure to
adapt to a new rule), and set-loss errors (failure to maintain the correct rule).
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Figure 2: WCST experimental prototyping results. (A) For each model,
accuracy and perseveration-error rate are shown for neutral baseline (Round 1)
and for the round with the highest perseveration rate (lowest loss), indicating
reduced flexibility. Error bars represent standard error of the mean across
simulated participants. (B) Example prompt change from neutral instructions
to a cover story illustrating contextual framing alterations between rounds for
Llama. (C) Stability-aligned loss (£ = 1— perseveration-error rate) across T=6
rounds for each model. Shaded areas indicate 95% confidence intervals.

We adapted the task for LLMs by representing all stimuli and feedback in
natural language and using the trial sequences from Steinke et al. [2020]. For this
instantiation, the overall task structure was kept constant, while the configurable
component of the experiment, ~y;, corresponded to the system prompt specifying
task instructions and a cover story designed to bias behavior. In this application,
the optimization process therefore operated over narrative framings, although
in principle other components of an experiment, such as trial length, stimuli or
responses modalities, could be parameterized in the same way.

Following Steinke et al. [2020], we simulated N = 26 participants over R = 70
trials each. The same simulated participants and trial sequences were used
in all optimization rounds. As our target metric, we focused on perseveration
errors as an index of cognitive flexibility, with higher error rates indicating
reduced flexibility. The experimentalist LLM aimed to maximize perseveration,
generating framings that induced more rigid behavior among participant LLMs.
The feedback signal was therefore based on the complement of the perseveration-
error rate, treated as the loss to be minimized in this specific application. Over
T = 6 optimization rounds, the experimentalist received this aggregated loss
and proposed revised cover stories in response, iteratively exploring framings
that modulated flexibility.
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We conducted three closed-loop runs, each using a different instruction-
tuned model (Llama-3.1-8B [Meta AI, 2024]|, Qwen2-7B [Team Qwen, 2024],
Mistral-7B-v0.3 [Mistral AI, 2024]) serving simultaneously as experimentalist
and participants. In all models, we observed systematic modulation of the
perseveration-error rate, demonstrating that LLM-generated cover stories can
influence simulated cognitive flexibility. The magnitude of the effects varied by
model, and loss trajectories across rounds were non-monotonic, showing both
increases and decreases rather than steady improvement. We report results from
the round with the lowest loss, as our focus is on the configuration that best
elicits the target behavior (Figure 2).

While preliminary, these findings validate the feasibility of closed-loop in silico
prototyping and suggest the potential for in silico exploration of experimental
designs prior to costly in vivo studies.

5 Discussion and Conclusion

We introduced an Al-driven framework for in silico prototyping of behavioral
experiments, formalizing experimental piloting as a black-box optimization
problem in which an experimentalist LLM iteratively adjusts experimental
configurations, instantiated here as task framings, to steer participant LLMs
toward desired behavioral patterns. Applied to a canonical paradigm of cognitive
flexibility, the framework demonstrated that variations in task framing can
systematically bias synthetic participants toward reduced flexibility. While
exemplified on a cognitive control task, the approach is general: any behavioral
experiment expressible through natural-language instructions, such as decision-
making tasks, or social interaction games, can in principle be instantiated
within the same optimization loop. Extensions involving multi-agent setups or
multimodal systems (e.g., using vision-language models for visual stimuli) may
broaden applicability to tasks involving social or perceptual processes.

The framework’s effectiveness, however, depends on how well LLMs capture
the behavioral constructs under study. Potential limitations include overfitting
to linguistic artifacts in prompts, model-specific biases that fail to generalize
to human cognition, instability of the optimization process due to stochastic
LLM responses, and sensitivity to the definition of the loss function used to
operationalize behavioral goals. Moreover, the present study does not establish
that in-silico-optimized designs directly translate to human behavior; empirical
validation remains essential to assess predictive validity.

Critical next steps involve benchmarking the black-box optimization pro-
cess against alternative approaches (e.g., random sampling), extending the
framework’s application across diverse behavioral phenomena and, crucially, as
mentioned before, validating whether in silico optimized designs predict outcomes
in human participants. Pending results from future analyses, this framework
opens paths toward automated experimental design [Musslick et al., 2025], en-
abling behavioral scientists to explore complex design spaces more efficiently
and at lower cost before committing resources to human studies.
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