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Abstract
The IceCube Neutrino Observatory instruments a cubic kilometer of Antarc-
tic ice with optical sensors to detect the light emitted by neutrino interac-
tions. Its data are used to reconstruct the direction, energy, and type of neu-
trinos for particle physics and astrophysics research. Although deep learning
has been successfully applied to these reconstruction tasks, existing methods
are typically supervised and require extensive labeled Monte Carlo simula-
tions. In this work, we develop PolarBERT, a foundation model for IceCube,
pre-trained without labels in a self-supervised manner. We show that it can
be fine-tuned for neutrino directional reconstruction in a sample-efficient
way, and that performance improves with a larger pre-training dataset.
Keywords: Foundation Models, Self-Supervised Learning, Neutrino Physics,
IceCube

1 Introduction
The IceCube Neutrino Observatory is a cubic-kilometer detector at the South
Pole, composed of 5,160 digital optical modules (DOM) embedded in Antarc-
tic ice Abbasi et al. [2009]. These DOMs detect Cherenkov light from charged
particles produced by neutrino interactions, with the primary goal of identi-
fying cosmic ray sources and studying neutrino properties. Traditionally, Ice-
Cube data analysis has relied on computationally expensive maximum likelihood
methods Aartsen et al. [2014].

Recently, deep learning methods have shown promise for IceCube data anal-
ysis Micallef [2021], Abbasi et al. [2022], Søgaard et al. [2023]. However, these
supervised models depend on vast amounts of synthetic Monte Carlo data, which
are resource intensive to generate. IceCube collects approximately 70 billion
events annually Tilav et al. [2020], and although most are atmospheric muons,
they share fundamental physics with the signal events. This abundance of real,
unlabeled data motivates a self-supervised learning approach. As a first step
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2 DATA AND MODEL

towards this vision, we propose PolarBERT, a foundation model for IceCube
trained on simulated data via a "masked DOM prediction" task, analogous to
BERT’s masked token prediction Devlin et al. [2018].

The concept of foundation models is gaining traction in particle physics, par-
ticularly for jet reconstruction at the Large Hadron Collider Finke et al. [2023],
Vigl et al. [2024], Birk et al. [2024], see also Barman et al. [2025]. The main
challenge is data representation. Approaches often involve converting raw data
into discrete tokens using techniques such as VQ-VAE Heinrich et al. [2024],
Birk et al. [2024]. For IceCube, the 5,160 DOMs provide a natural tokenization
scheme. Our model treats DOMs as tokens for the purpose of the pulse modeling
task used for pretraining, but supports two input schemes: i) embedding DOMs
as tokens or ii) linearly embedding their (x, y, z) positions, with the latter provid-
ing slightly better performance. Meanwhile, continuous features, such as pulse
time and charge, are linearly embedded after a transformation/normalization
step. This hybrid approach allows us to pre-train a powerful model that can
learn detector characteristics directly from data and then be fine-tuned for var-
ious downstream tasks like neutrino direction reconstruction.

2 Data and Model
IceCube Data. We use a public Monte Carlo dataset released by the Ice-
Cube Collaboration for a Kaggle competition Eller [2023], which contains 131
million simulated neutrino events. Each event consists of a series of pulses,
each characterized by its time, charge, originating DOM ID, and a quality flag
(auxiliary). As event sizes vary significantly (from 2 to 100,000 pulses), we
down-sample or pad them to a fixed sequence length of 128. We prioritize
high-quality pulses (auxiliary = False) during this process, a strategy that has
proven effective Bukhari et al. [2023].

Model Architecture. PolarBERT is an encoder-only Transformer model
inspired by BERT Devlin et al. [2018]. As shown in Figure 1, we process the
pulse data using a hybrid embedding strategy. Each of the 5,160 DOM IDs
is mapped to a trainable embedding vector or an affine transformation of its
coordinates. Continuous features (time, charge, auxiliary flag) are rescaled and
linearly projected into a separate vector. These two vectors are concatenated
to form the final input representation for the Transformer. We do not use
explicit positional encodings, as the pulse timestamps already provide temporal
ordering.

Pre-training and Fine-tuning. We use a pre-training objective similar to
masked language modeling. We mask a fixed fraction of the primary pulses in
each sequence and train the model to predict the original DOM IDs. To help the
model learn a useful representation for downstream tasks, we add an auxiliary
regression task: predicting the logarithm of the total charge of all pulses in the
event. The total loss is the sum of the cross-entropy loss for DOM prediction
and the MSE loss for the total charge prediction.

For the downstream task of direction reconstruction, we replace the predic-
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Figure 1: A sketch representing how pulses are embedded into the model space.
Each DOM ID has a trainable embedding, alongside special embeddings for
masking and padding. Continuous features like time and charge are linearly
projected into the model space after being mapped to an appropriate range.

tion head with a small MLP that maps the output representation to a three-
dimensional unit vector representing the neutrino direction. We then fine-tune
the entire model using a mean angular error loss.

3 Model performance
PolarBERT is implemented in PyTorch with FlashAttention Dao et al. [2022].
We conducted a series of experiments to evaluate how its performance scales
with the number of training steps and the sizes of the pre-training and fine-
tuning datasets.

In order to consistently evaluate the pre-training performance at every epoch,
we employed a trapezoidal learning rate schedule, saving checkpoints regularly
throughout training, before annealing each of them with a cosine schedule. Fig-
ure 2 shows the cross-entropy validation loss as a function of training steps for
an 8M-parameter model. The loss L exhibits a clear scaling-law (see Kaplan
et al. [2020], Hoffmann et al. [2022]) with the number of pre-training events
seen D, consistent with the fit L ≈ 1.904 + 21557 ·D−0.62.

To evaluate the impact of pre-training on downstream performance, we then
fine-tuned models pre-trained for one epoch on datasets of varying sizes (5M,
10M, 20M, and 40M events) on the task of neutrino direction reconstruction.
Figure 3 shows the test mean angular error as a function of the numbers of
pre-training and fine-tuning events. We can observe two clear trends: i) for
any given pre-training size, the error decreases as more labeled data is used
for fine-tuning and, ii) models pre-trained on larger datasets perform better
when fine-tuned on a fixed number of events. We observe, however, diminishing
returns when scaling pre-training from 20M to 40M events, possibly due to the
limited capacity of the model. These experiments demonstrate the effectiveness
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Figure 2: The validation loss as a function of the number of pretraining events
follows a clear scaling trend.

of scaling up the unlabeled pre-training dataset for improving sample efficiency
and downstream performance on scientific tasks.
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Figure 3: Downstream performance on neutrino direction reconstruction. The
mean angular error (lower is better) decreases as the fine-tuning dataset size
increases. Models pre-trained on larger datasets (20M and 40M) achieve lower
error, demonstrating the benefit of large-scale pre-training. For comparison, the
2nd place model on Kaggle, trained for 4-5 epochs on the full 130M dataset,
reached an angular loss of 0.97.

https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/writeups/icemix-2nd-place-solution-neutrino-direction-predi
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4 Conclusions
PolarBERT is a first step towards a foundation model for the IceCube Neutrino
Observatory. It demonstrates the feasibility of self-supervised learning for neu-
trino event reconstruction. Our findings show that: i) a hybrid embedding and
masked DOM prediction strategy is effective for learning from low-level detec-
tor data; ii) the pre-training performance follows a predictable scaling law; and
iii) scaling up the unlabeled pre-training dataset significantly improves sample
efficiency and downstream performance. This work suggests that pre-training
on the vast amounts of real, unlabeled data available to IceCube could lead to
powerful models. Future work will focus on scaling up the models and apply-
ing them to real experimental data. We also plan to study transfer to other
simulated datasets Lazar et al. [2024].

Broader Impact Statement
This work demonstrates the potential of foundation models in experimental
physics and may encourage similar research in other scientific domains. Our
finding that performance scales with data and model size has important impli-
cations for the future of large-scale scientific data analysis.
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