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Abstract
Collecting data from human participants in cognitive experiments is a costly
and time-consuming aspect of behavioral science. One promising direction
is to fine-tune large language models (LLMs) on human behavior to act as
participant simulators. In this work, we outline key criteria such simulators
must satisfy and evaluate how well state-of-the-art fine-tuned LLMs meet
them. Our analyses indicate that although such LLMs achieve high predic-
tive accuracy, their generative behavior—a key requirement for simulating
participants—systematically diverges from human data. To probe this dis-
crepancy, we examine the role of experimental information provided to the
model. The results replicate prior work showing that LLMs primarily act
as autoregressive predictors: they excel at forecasting responses from prior
behavior but fail to integrate information about the experimental context,
leading to weak generative performance. These findings highlight both the
potential and methodological challenges of using LLMs as synthetic partic-
ipants, emphasizing the need for careful validation before integrating them
into behavioral research.
Keywords: automated scientific discovery | experimental design | auto-
mated cognitive science | cognitive psychology

1 Introduction
Simulators have revolutionized scientific practice across the natural sciences. By
generating data that reliably approximate real-world phenomena, they enable
scientists to accelerate hypothesis testing and optimize experimental designs
[Jumper et al., 2021, Krenn et al., 2016]. This is perhaps best illustrated by
AlphaFold, a Nobel-prize winning simulator in chemistry that predicts protein
structures from amino acid sequences, enabling rapid prototyping of molecular
interactions, drug targets, and protein functions [Jumper et al., 2021]. In the
behavioral sciences, a reliable participant simulator—a system capable of pro-
ducing human-like behavior across cognitive tasks—would represent a similarly
transformative advance, allowing for fast and cheap in-silico hypothesis testing
before slow and expensive in-vivo validation [Musslick et al., 2024].
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In this study, we assess how well LLMs fine-tuned to human behavior meet
a core criterion of participant simulators: the ability to generate human-like
behavior from scratch. We find that although fine-tuned LLMs show strong
predictive accuracy, their generative behavior diverges from human data. We
hypothesize that this divergence reflects their tendency to condition their pre-
dictions about future behavior primarily on past behavior instead of task-related
information.

2 Related Work
Recent work has explored using LLMs as simulators of human behavior [Hardy
et al., 2023, Manning et al., 2024, Strittmatter and Musslick, 2025, Binz et al.,
2023], for example in automated cognitive science [Musslick et al., 2024, 2025].
LLMs can reproduce human-like patterns in psychological tasks [Binz and Schulz,
2023] and, when fine-tuned to predict trial-by-trial human responses, even out-
perform domain-specific cognitive models in predictive performance [Binz et al.,
2025, Zhu et al., 2025]. However, analyses of Centaur—an LLM fine-tuned to
predict human behavior in cognitive experiments—suggest that its advantage
often comes from exploiting choice history rather than task structure: the model
outperforms cognitive baselines even without task descriptions, but underper-
forms when deprived of behavioral history [Xie and Zhu, 2025].

Importantly, predictive and generative performance can diverge. As Palminteri
et al. [2017] note, computational models may predict future behavior accurately
from past data yet fail to generate plausible behavior from scratch. This dis-
tinction is central to computational cognitive modeling and motivates our in-
vestigation: comparing the predictive and generative performance of Centaur
with its base LLM and domain-specific cognitive models.

3 Methods
To assess Centaur’s capacity as a participant simulator, we evaluated its pre-
dictive performance and generative performance across three cognitive tasks,
comparing it to Llama-Instruct and domain-specific cognitive models. Predic-
tive performance is defined as the likelihood that the model’s choices matches
the human choices given prior human choices and task information. Specifi-
cally, we computed the average negative log-likelihood of observed choices given
the models’ predictions. Generative performance is defined as the extent to
which the model reproduces human-like behavioral patterns when simulated
from scratch on the task. In this simulation, the models’ own past choices were
appended trial by trial, without anchoring it on prior human choices.
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Figure 1: Predictive and generative performance of Centaur, its base model
(Llama 3.1), and domain-specific models: Rescorla–Wagner model (RW) [Binz
et al., 2025], and sequential learning model (SL) [Bishara et al., 2010]. Models
were tested in a reversal learning task (A–B), horizon-dependent bandit task
(C–D), and Wisconsin Card Sorting Test (E–F). Predictive performance was
assessed in terms of negative log-likelihood (NLL; lower values indicate better
fits). Generative performance shows: (B) choice rate for bandit 1 (rewarded
80% until trial 50, then reversed); (D) proportion of optimal choices by horizon
length (1 vs. 6 free choices); and (F) accuracy and error type distributions in
the card-sorting task. Error bars/shaded areas show standard error of the mean
across participants or simulated instances.

As the first cognitive task, we considered an adaptation of a two-armed
reversal learning paradigm on which Centaur was trained [Eckstein et al., 2022].
On every trial in this task, participants choose between two bandits: one yielding
an 80% reward probability and the other 20%. The reward contingencies reverse
in the middle of the experiment (trial 50), requiring participants to adapt their
choices. Humans and animals typically reverse their choices several trials after
the reward reveral [Eckstein et al., 2022, Izquierdo et al., 2017]. Therefore, we
examined whether Centaur exhibited a similar delayed reversal pattern in its
generative behavior. As the second cognitive task, we considered the horizon-
dependent bandit paradigm, which was also included in Centaur’s training set.
In this task,participants again chose between two bandits but faced different
time horizons—either 1 or 6 free choices—requiring them to balance exploration
and exploitation. Humans and animals tend to forego the highest expected-value
action more often in longer horizons to explore options they can later exploit



[Wilson et al., 2014]. Thus, we examined whether the models exhibited a similar
horizon-dependent exploration pattern. Finally, we evaluated Centaur on the
Wisconsin Card Sorting Test (WCST) [Steinke et al., 2020], which was not
included in its training set. In this task, participants must infer and apply an
unstated card-sorting rule (e.g., based on color, shape, or number of objects)
from feedback, and flexibly switch when the rule changes unexpectedly. Humans
generally perform well on this task but commit two characteristic types of errors:
perseveration errors (failure to adapt to a new rule) and set-loss errors (failure
to maintain the current rule). We therefore examined accuracy and error types
to assess the similarity of Centaur’s performance to that of human participants.

We evaluated each model’s performance against ground-truth data gener-
ated by a Rescorla–Wagner agent in a reversal learning task, as well as against
behavioral data from human participants in the horizon task [Wilson et al.,
2014] and the Wisconsin Card Sorting Test [Steinke et al., 2020]. In addition,
we analyzed Centaur’s and Llama’s performance in the reversal learning task
under two prompting conditions: (a) a baseline condition, in which the model
received task instructions, choice history, and reward feedback; and (b) a partial-
feedback condition, in which the model received instructions and choice history
but no reward feedback.

4 Results and Discussion
Our findings suggest that while Centaur achieves high predictive performance
on tasks it was trained on, it still struggles to reproduce human-like behavior
in those tasks, including the qualitative hallmarks of behavior that the tasks
themselves were designed to measure (i.e., reversals, horizon effects; Figure 1).
Moreover, on the task outside its fine-tuning set, it performed worse than the
domain-specific model.

Strikingly, removing task-relevant information had little effect on Centaur’s
predictive accuracy (Figure 2); the model continued to outperform a standard
cognitive model (Rescorla–Wagner) in the reversal learning task. This result
aligns with previous findings suggesting that Centaur may rely heavily on par-
ticipants’ past choices to predict behavior [Xie and Zhu, 2025], achieving high
predictive accuracy even in absence of task-related information. However, when
required to perform a task from scratch, the model’s failure to incorporate task-
relevant information leads to poor generative performance.

By contrast, removing task-relevant information had a stronger effect on base
LLM Llama. Curiously, removing this information (partial feedback) improved
Llama’s predictive performance. This counterintuitive improvement arose be-
cause full task information led to overconfident choices (probabilities spiking
near 0 or 1), whereas partial feedback scattered its predictions, introducing
uncertainty that better aligned with human choice patterns overall (Figure 2C).

Taken together, these results point to a potential limitation of fine-tuning
LLMs to predict human behavioral data: while fine-tuning enhances predictive
alignment with observed human data, it may achieve such alignment by learning



autoregressive biases (i.e., overrely on past choices while ignoreing task-relevant
information). The latter is known to hamper generative performance [Palminteri
et al., 2017].
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Figure 2: Predictive and generative performance in the reversal learning task
under different prompt conditions. (A) Predictive performance in terms of neg-
ative log-likelihood (lower values indicate better fits). (B) Generative perfor-
mance shown as the proportion of choosing bandit 1 (80% vs. 20% reward)
across trials, with reward probabilities reversed at trial 50. (C) Token distribu-
tion for the base model LLama-3.1-70B.

5 Conclusion
While Centaur, an LLM fine-tuned to human behavior, achieves strong predic-
tive accuracy, its generative behavior diverges systematically from human data.
Consistent with prior work [Xie and Zhu, 2025], our results suggest that conven-
tional fine-tuning may bias LLMs to overrely on past behavior rather than task
information, mirroring the autoregressive nature of human behavior in cognitive
tasks. Approaches such as weighted fine-tuning, which emphasizes trials diag-
nostic of task-dependent behavioral signatures, may help steer LLMs toward
more reliable participant simulators, bringing us closer to a transformative tool
for AI-driven discovery in the behavioral sciences.

6 Data and Code Availability
Data and code for all reported analyses all figures are available at the following
repository: github.com/sabrinaholmes/centaur_eval_simulator.
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