ColliderML: Enabling Foundation Models
in High Energy Physics Through
Low-Level Detector Data

Daniel Murnane'? and Paul Gessinger? and Andreas
Salzburger? and Anna Zaborowska®? and Andreas Stefl> and Stine
Kofoed Skov! and Marcus Raaholt!

University of Copenhagen 2CERN 3Berkeley Lab

Abstract

We introduce CoLLIDERML , an open dataset of one million fully simulated
proton-proton collisions at HL-LHC conditions, providing detector-level
measurements across ten physics processes. Unlike existing fast-simulation
datasets operating on high-level objects, COLLIDERML provides hits, energy
deposits, and reconstructed tracks from realistic detector geometry under
extreme pile-up (u =~ 200). We argue that foundation models trained on
such low-level data represent the future of collider physics, and present
CoLLIDERML as the infrastructure to realize this vision.

1 The Foundation Model Opportunity

Machine learning in particle physics stands at an inflection point. The field
has progressed from simple classifiers to sophisticated architectures [Lonnblad
et al|[1991], yet remains constrained by a fundamental limitation: most pub-
lic ML research operates on high-level physics objects rather than
raw detector measurements. This constrains the community to incremen-
tal improvements of existing reconstruction approaches rather than enabling
transformative end-to-end approaches.

Foundation models—large-scale models trained on comprehensive low-level
data—have revolutionized computer vision and natural language processing. In
particle physics, such models could learn detector response, particle interactions,
and physics signatures simultaneously, potentially discovering novel analysis
strategies impossible with traditional pipelines. However, realizing this vision
requires three prerequisites: (1) large-scale detector-level data, (2) realistic
experimental conditions, and (3) diverse physics coverage. No existing public
dataset satisfies all three.

Popular datasets like JetClass (100M events) and DarkMachines (1B events)
use fast simulation, producing high-level jets or particles directly |Qu et al.|[2022],
Aarrestad et al.|[2022]. While valuable for specific tasks, they preclude learning
detector response or low-level reconstruction. TrackML provided detector hits
but covered only 10k events in the tracker alone—sufficient for a Kaggle compe-
tition but inadequate for foundation model training, with observed overfitting
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2 DATASET DESIGN PHILOSOPHY

Amrouche et al.| [2019], Zhou et al. [2025]. Meanwhile, LHC collaborations
generate billions of fully simulated events internally but do not release them
publicly, creating a widening capability gap.

Recent work demonstrates the potential of end-to-end learning. The Mask-
former architecture reconstructs jets directly from hits |Gong et al.| [2023|, Higgs-
former performs signal searches from raw detector data |Zhou et al.[2025], and
GNN-based tracking shows competitive performance with traditional algorithms
Ju et al.|[2021],|ATLAS Collaboration| [2022]. These proof-of-concept studies hint
at a future where foundation models learn optimal representations from detec-
tor measurements, adapting to diverse downstream tasks without hand-crafted
features. COLLIDERMUL provides the infrastructure to systematically
explore this this new direction.

2 Dataset Design Philosophy

CoLLIDERML is designed around three core principles: realism, scale, and
accessibility.

Realism. All events use full Geant4 simulation |Agostinelli et al. [2003] through
the validated OpenDataDetector (ODD) geometry (Gessinger-Befurt et al.|[2023]—a
realistic, experiment-agnostic detector combining design elements from ATLAS
ITk, CMS HGCal, and future collider proposals. The inner tracker features pixel,
strixel, and strip layers with accurate timing. Electromagnetic and hadronic
calorimeters use realistic absorber materials and granular segmentation (5.1mm
ECal cells, 30mm HCal cells). Events undergo proper digitization with geometric
segmentation, thresholding, and detector response modeling.

Importantly, pile-up is generated uniquely for each event at mean p = 200,
matching HL-LHC conditions. Unlike common practice, we avoid resampling
pile-up events—a known source of train-test contamination ATLAS Collaboration
[2022]. Sub-event IDs are preserved, enabling controllable pile-up scaling for
curriculum learning and systematic studies of algorithm robustness.

Physics Coverage. One million events span ten processes: six Standard
Model channels (tt, Z — ee, Z — uu, vy, ggF Higgs, di-Higgs) and four BSM
scenarios (SUSY gluinos, Z’, heavy neutral leptons, hidden valley). NLO matrix
elements with modern shower matching ensure state-of-the-art parton modeling.
Additionally, 1M single-particle gun events (e~, u~, 7, K*, 7) enable detailed
detector response studies.

Accessibility. Data is provided in two formats: EDM4hep ROOT files ( 100TB)
for full truth preservation, and HDF5 files ( 1TB) for ML workflows. A lightweight
Python library handles downloads and data manipulation. All simulation and
reconstruction code is open-source, with comprehensive documentation for repro-
duction. Data is mirrored across US (NERSC) and European (EOS) facilities.
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(a) An example event showing inner (b) Hit multiplicities closely match pre-
tracker hits, reconstructed tracks, and  dicted ATLAS ITk occupancy |Aad|[2025],
calorimeter deposits under p = 200 pile- unlike simplified datasets.

up.

Figure 1: ColliderML provides realistic detector complexity for foundation model
development.

3 Foundation Model Research Directions

CoOLLIDERML enables several transformative research directions previously
inaccessible to the public ML, community.

End-to-End Reconstruction. Traditional pipelines decompose reconstruc-
tion into stages: tracking, clustering, particle flow, jet finding, and analysis. Each
stage introduces assumptions, inefficiencies, and information loss. Foundation
models could learn optimal representations directly from hits and energy deposits,
jointly optimizing for downstream physics tasks. FEarly work shows promise—we
demonstrate GNN-based tracking approaching ACTS performance (?7?), and the
inclusion of timing information further improves efficiency, validating detector
R&D priorities.

Multi-Task Learning. A single foundation model pre-trained on COLLID-
ERML could simultaneously perform tracking, clustering, jet reconstruction,
and signal classification. This amortizes the computational cost of learning
detector response while enabling transfer learning across tasks. The diverse
physics coverage (SM and BSM processes) provides rich supervision for learning
general representations.

Controllable Complexity via Pile-up Scaling. Unlike datasets with fixed
complexity, COLLIDERML events can be downsampled from the hard-scatter
vertex plus n pile-up vertices. This enables systematic studies of algorithmic
scaling behavior and curriculum learning strategies—training first on low pile-up,
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4 BROADER IMPACT AND FUTURE DIRECTIONS

then progressively increasing difficulty. We propose this as a standard protocol
replacing arbitrary energy cuts or simplified geometries.

Robustness and Domain Adaptation. Real detectors exhibit calibration
drifts, dead channels, and alignment uncertainties. Foundation models trained
on comprehensive low-level data could learn robust features less sensitive to such
variations. Future COLLIDERML releases could include systematic variations,
enabling research on domain adaptation for deployment in real experiments.

4 Broader Impact and Future Directions

Beyond technical capabilities, COLLIDERML democratizes access to realistic
collider simulation. Historically, only collaboration members with institutional
computing resources could perform such studies. By providing this data publicly
with minimal barriers to entry, we enable:

e Algorithm innovation from the broader ML community, unconstrained
by collaboration computing policies

e Education and training for students entering the field, who can experi-
ment with realistic data before joining experiments

e Reproducible research with standardized benchmarks, facilitating fair
comparisons across methods

e Cross-pollination between HEP and other domains (astronomy, medical
imaging) facing similar reconstruction challenges

Planned Extensions. Release 2 adds calorimeter topoclusters, Pandora parti-
cle flow objects, and reconstructed jets with flavor tagging and energy regression
baselines—enabling research on higher-level reconstruction while maintaining
access to low-level data. Future releases will incorporate muon detection, expand
physics coverage, and potentially include systematic variations for robustness
studies.

Community Engagement. We envision COLLIDERML as living infrastruc-
ture. The dataset is version-controlled, and improvements to simulation or
reconstruction can be propagated to future releases. We encourage community
contributions of baselines, tutorials, and novel architectures.

Data Access. Full documentation, download instructions, and reproduction
recipes available at https://www.colliderml.com.
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https://www.colliderml.com
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