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Abstract

Ultrasound (US) is widespread across medical specialities due to its non-
invasive nature, portability, cost-e�ectiveness, and real-time imaging ca-
pability. Nevertheless, portable and handheld US systems are limited by
speckle noise, low spatial resolution, and computational constraints, which
reduce diagnostic accuracy and broader clinical adoption. To address these
challenges, we introduce UltraUP, a hardware-software prototype for real-
time denoising and super-resolution of ultrasound data. UltraUP integrates
adaptive edge-preserving denoising with deep learning-based super-resolution
to suppress noise, reconstruct missing scan lines, and reveal �ne anatomical
structures. Optimised for both CPU and GPU platforms, the system delivers
low-latency performance suitable for clinical work�ows, while balancing res-
olution and penetration depth, particularly in deep tissue imaging. UltraUP
applies to both 2D images, videos, and volumetric acquisitions increasing
the �eld of view and frame rate, and supports device interoperability, re-
ducing operator dependence and standardising output quality. UltraUP is
designed for mobile and resource-limited contexts, including bedside diagnos-
tics, �eld hospitals, and telemedicine. Finally, UltraUP enhances diagnostic
con�dence, improves reproducibility, and enables integration into di�erent
healthcare settings.
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1 Introduction

Ultrasound (US) is widespread across medical specialities for its unique ad-
vantages over other modalities: it is non-invasive, cost-e�ective, portable, and
capable of real-time acquisition. The recent di�usion of portable US devices
has further expanded accessibility, supporting applications in remote patient
monitoring and personalised medicine. In point-of-care ultrasound (POCUS),
compact scanners allow physicians to perform bedside diagnostics, even in rural
clinics or domestic environments, shifting US from a predominantly secondary-
care tool to an essential component of primary care. POCUS is also integrated
with telemedicine, extending high-quality imaging to underserved regions, in-
cluding developing countries where trained specialists are often unavailable.
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Despite its advantages, US imaging still faces important technical and clini-
cal limitations. US images are a�ected by speckle noise, a granular artefact that
reduces contrast, obscures anatomical boundaries, and interferes both with hu-
man interpretation and automated analysis (e.g., segmentation). Another major
challenge is the limited spatial and temporal resolution of images, particularly
with low-cost handheld probes or high-frame-rate acquisitions. Achieving real-
time imaging while simultaneously applying advanced processing tasks such as
denoising or super-resolution requires highly optimised algorithms and e�cient
hardware. Moreover, strict memory constraints are necessary to keep portable
systems a�ordable and compact. These trade-o�s between image quality, pen-
etration depth, acquisition speed, and device cost constrain the performance of
portable US imaging.

AI has greatly advanced US imaging in denoising and super-resolution. Self-
supervised approaches (e.g., Noise2Noise [Lehtinen et al., 2018], Noise2Void [Krull
et al., 2019], Noise2Self [Batson and Royer, 2019]) enable a good denoising qual-
ity, complemented by CNN-based methods integrating regularisation [Fang and
Zeng, 2020], low-rank representations [Fu et al., 2021], wavelet CNNs [Wu et al.,
2020], and hybrid models like BM-CNN [Ahn et al., 2018, Zhang et al., 2017].
For super-resolution, the �eld evolved from dictionary-based models [Peleg and
Elad, 2014] to CNNs (e.g., SRCNN [Dong et al., 2014, 2015], EDSR [Lim et al.,
2017]) and GAN-based architectures such as SRGAN [Ledig et al., 2017], ESR-
GAN [Wang et al., 2019], and ESRGAN+ [Rakotonirina and Rasoanaivo, 2020],
which improved perceptual �delity and e�ciency [Yu et al., 2020]. A broader
overview of supervised, unsupervised, and domain-speci�c methods is provided
in [Wang et al., 2020, Cammarana and Patanè, 2025].

To address the limitations of portable US systems, we introduce UltraUP
(Sect. 2), a hardware-software prototype for real-time super-resolution and de-
noising of US images and videos. Designed for mobile and resource-limited
scenarios (e.g., bedside diagnostics, �eld hospitals, telemedicine), UltraUP im-
proves image quality, resolution, and acquisition frequency while preserving
anatomical �delity. Its modular and AI-based framework combines adaptive
denoising, edge-preserving enhancement, and super-resolution to remove noise,
reconstruct non-acquired scan lines, and preserve �ne anatomical details. Ul-
traUP is general with respect to the device type (e.g., ultra-handheld probes),
anatomical district (e.g., cardiac, abdominal), and image properties (e.g., pen-
etration depth, �eld of view, image resolution). Furthermore, UltraUP is com-
pliant with real-time industrial and clinical requirements (Sect. 3).

2 UltraUP: real-time US super-res & denoising

UltraUP (Fig. 1) is a tool related to the �eld of biomedical image processing,
speci�cally to a hardware/software prototype for the real-time super-resolution
and denoising of US images and videos acquired by portable US systems. It
addresses a critical limitation in existing imaging solutions: the low quality of
US data produced by compact and mobile US devices due to physical, tech-
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nical, and computational constraints. UltraUP has been developed to support
diagnostic imaging in scenarios with limited infrastructure or mobile use cases,
such as bedside diagnosis, �eld hospitals, and telemedicine. UltraUP addresses
real-time denoising and super-resolution of US 2D/3D images and videos, which
(i) take into account the high variability of US signals, (ii) are general for the
underlying anatomical (e.g., muscle-skeletal, abdominal, cardiac) districts, and
(iii) comply with industrial requirements in terms of computational cost and
memory requirements (e.g., on commercial US machines). UltraUP can op-
erate as a standalone or integrated tool, improving image quality, resolution,
and acquisition frequency, while preserving anatomical features and assisting
physicians in both diagnosis and treatment stages. It addresses the following
fundamental challenges in US imaging.

Figure 1: Our UltraUP prototype.

Concerning denoising and enhance-

ment, e�ective suppression of noise
while preserving �ne anatomical
structures and tissue texture is crit-
ical for both clinical interpretation
and automated analysis. The Ultra-
UP prototype employs adaptive al-
gorithms to remove noise without
introducing artefacts, ensuring edge
preservation and the retention of di-
agnostically relevant details. This
feature not only improves the visual
quality perceived by the physician

but also enhances the performance of downstream post-processing methods,
such as segmentation and quantitative analysis. Concerning super-resolution,
current US probes face a trade-o� between acquisition frequency and spatial
resolution, with higher frequencies often resulting in reduced resolution. The
Ultra-UP prototype tackles this limitation by reconstructing non-acquired scan
lines and increasing image resolution through super-resolution techniques. Ap-
plied to low-resolution, high-frequency US videos (e.g., cardiac imaging), this
approach reconstructs high-resolution 2D sequences where each frame exhibits
enhanced spatial detail. It allows the visualisation of �ne anatomical and func-
tional features that are otherwise inaccessible, thus overcoming one of the pri-
mary hardware constraints of conventional probes.

Through the combination of hardware and a modular, AI-based software
library for denoising, enhancement, and super-resolution, UltraUP solves the
following challenges. In terms of deep tissue imaging and resolution, US su�ers
from an inherent trade-o� between penetration depth and resolution: high fre-
quencies yield sharper images but are quickly attenuated, while low frequencies
penetrate deeper but lose detail. These limitations are particularly critical in
obese patients or when imaging deep organs. UltraUP addresses this challenge
by combining advanced signal processing with super-resolution techniques to
improve penetration without sacri�cing image quality. In addition, integration
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with innovative transducer designs can further optimise the balance between
depth and resolution. In terms of real-time performance and extended �eld of

view, delivering high-quality images at clinical frame rates is essential for real-
time US. However, the simultaneous demands of denoising, super-resolution,
and image reconstruction often introduce latency. UltraUP employs e�cient
algorithms optimised for CPU and GPU execution, ensuring low-latency pro-
cessing and real-time rendering. Furthermore, it extends beyond traditional 2D
imaging to process 3D and 4D acquisitions, broadening the �eld of view and en-
abling more comprehensive diagnostic assessments. In terms of standardisation,
interoperability, and operator support, US examinations are highly dependent
on operator expertise, and variations across devices further reduce consistency.
UltraUP is designed to be device-agnostic, supporting interoperability across
systems and healthcare platforms. By guiding acquisition, assisting interpre-
tation, and standardising output quality, it reduces operator dependency and
improves reproducibility. Moreover, its modular framework can be adapted to
specialised modalities, such as Doppler and contrast-enhanced US, to enhance
sensitivity in blood �ow and tissue characterisation.

3 Validation and further developments

UltraUP results are validated on the international US datasets trackless 3D

freehand ultrasound reconstruction (TUS-REC) [Li et al., 2023] and breast ul-

trasound images [Al-Dhabyani et al., 2020] through pixel-wise, structural, and
functional quantitative metrics (e.g., PSNR, SSIM, FSIM). UltraUP applies a
real-time denoising and enhancement with an average accuracy of 97% with
respect to state-of-the-art non-real-time methods (e.g., [Ahn et al., 2018]), and
applies real-time super-resolution with an accuracy of 99% (2X up-sampling)
and 95% (4X up-sampling) with respect to high-resolution target images. For
further details on the experimental validation and comparison with state-of-the-
art methods, we refer the reader to [Cammarasana and Patane, 2022] and [Cam-
marasana and Patanè, 2025]. UltraUP is available for proof-of-concept and can
be applied through a user interface with US 2D and 3D images and 2D videos
acquired by any US probe and from any anatomical district. As further de-
velopments, we are validating UltraUP in clinical and industrial contexts with
di�erent types of data (e.g., PET, MRI) and applications (e.g., focused US, spine
segmentation). We refer the reader to the supplementary material for additional
examples and demonstrations https://drive.google.com/file/d/1XwqkDM_

n_1JdpYr6xuRNyeexeFhspQIU/view?usp=sharing.
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