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Abstract
Accurate storm surge prediction is essential for coastal risk management and
climate adaptation, yet conventional hydrodynamic models are too compu-
tationally demanding for large ensemble analyses. We develop and validate
a machine learning framework for the North Sea and Baltic Sea, trained
on 58 years of wind and sea level data using a Long Short-Term Memory
(LSTM) architecture. The approach requires only a fraction of the resources
of physical models, enabling rapid forecasts across large domains and time
horizons. This efficiency makes ensemble-based climate impact assessments
feasible, offering a scalable alternative for projecting extreme water levels
and their statistical distributions under future climate scenarios.
Keywords: storm surge forecasting, long short-term memory (LSTM),
climate impact assessment

1 Introduction
Storm surges are among the most hazardous climate events (Merz et al. [2021]),
posing high risks to infrastructure, ecosystems, and population safety in the
North and Baltic Sea regions (Andrée et al. [2021]; Leszczyńska et al. [2025]).
Accurate forecasting is essential both for short-term warning systems and long-
term adaptation. However, the Baltic Sea and adjacent Danish waters present
unique challenges: their shallow, semi-enclosed basins exhibit long-lasting fill-
ing and flushing effects, making surge dynamics difficult and computationally
expensive to capture with conventional hydrodynamic models.

Traditional approaches divide into two categories: operational forecasts based on
hydrodynamic models and long-term projections using Extreme Value Analysis
(EVA). While hydrodynamic models are physically detailed, they are compu-
tationally intensive and difficult to scale. EVA, by contrast, depends heavily
on observational records and often assumes stationarity, which is problematic
under changing climate conditions (Slater et al. [2021]; Amante [2019]). As a
result, large uncertainties remain about how surge intensity, duration, and ex-
tent will evolve in a changing climate.

To address this, we develop a data-driven model based on Long Short-Term
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Memory (LSTM) networks, trained on 58 years of hindcast wind and water
level data, produced by a physically based 3D hydrodynamic model called HBM.
The model predicts surge levels directly from zonal and meridional wind com-
ponents, maintaining accuracy across a seamless range of lead times from hours
to decades. Once trained, it can generate forecasts within seconds, making
ensemble-based climate impact assessments computationally feasible.

2 Study Area and Data
The modeling domain covers the Danish West Coast, the Inner Danish Waters,
and selected locations in the Baltic Sea. This region forms a hydrodynamically
complex transition zone between the North Sea and the semi-enclosed Baltic
Sea, connected through the narrow Danish straits (Skagerrak, Kattegat, Øre-
sund, and the Belts). Along the Danish West Coast, storm surges are primarily
generated by extratropical cyclones, where strong westerly winds acting over
long fetches produce large and relatively fast water level variations. In contrast,
the water levels in the Inner Danish Waters and coastlines along the Baltic Sea
are influenced by both inflows from the North Sea and local wind forcing, re-
sulting in highly complex surge responses on longer time scales.

The study domain was divided into 15 regions (see Figure 1), chosen to re-
flect areas with coherent wind forcing relevant for surge generation. For each
region, wind data was averaged across all grid cells, resulting in spatially ag-
gregated time series of zonal (u) and meridional (v) wind components. This
approach captures the wind density over larger areas rather than isolated grid-
point fluctuations, thereby emphasizing the large-scale atmospheric patterns
most relevant for storm surge dynamics.

3 Methods
We employed a recurrent neural network based on Long Short-Term Memory
(LSTM) units to predict storm surge levels. LSTMs are well suited for this type
of prediction, because they are designed to capture temporal dependencies in
sequential data and can represent both short- and long-term dynamics. The
model was trained using a custom loss function designed to emphasize peaks
and extremes. A dynamic weight function wi was introduced to increase the
importance of peak and extreme events:

wi =


1, yi ≤ Tpeak,

max{1, speak(yi − Tpeak)}, Tpeak < yi ≤ Text,

max{1, speak(yi − Tpeak)sext}, yi > Text,

(1)



Figure 1: HBM model domain and grid (see zoomed in section) and areas (1 to
15) of regional averages.

where Tpeak and Text are thresholds for peaks and extremes, and speak and sext
are scaling factors. The total loss combined a weighted mean squared error at
the median quantile with a pinball (quantile) loss for predicting the distribution
around the central estimate:

L =
1

N

N∑
i=1

wi (yi − ŷi,q=0.5)
2
+

∑
q∈Q
q ̸=0.5

αq
1

N

N∑
i=1

ρq (yi − ŷi,q) , (2)

where Q = {q1, q2, . . . , qK} is the set of quantile levels, ŷi,q is the model predic-
tion at quantile q, αq is a scale factor for quantile q, and ρq is the pinball loss
at quantile level q. To evaluate performance during Bayesian hyperparameter
optimization, we applied the following Kling–Gupta efficiency (KGE) metric,
slightly modified to focus on peaks:

KGE = 1−
√

(r − 1)2 + (βpeak − 1)2 + (γ − 1)2

Here, r is the Pearson correlation between predictions and the target,γ =
σ(ŷ)/σ(y) is the variability ratio, and βpeak is the bias of the peaks, computed
over the top 10% of observed values. This framework ensure that model train-
ing is prioritizes accurate peak representation while maintaining skill across the
full distribution of storm surge levels. The modeling framework is illustrated in
Figure 2.
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Figure 2: Conceptual diagram of LSTM model framework.

Table 1 presents a task-specific comparison: producing a 30-year, hourly water-
level time series at a single location. The physically based HBM computes
hydrodynamics on a spatial grid (multiple variables over many cells) on an HPC
system, while the LSTM is trained once and then predicts a single-point time
series on a workstation. The comparison isolates the workload for the stated
task. Framed this way, the LSTM attains comparable single-point predictions
with orders-of-magnitude lower computational demand, making it well suited
for long-term or ensemble applications focused on point estimates.

Table 1: Computational performance comparison between the physically based
hydrodynamic model (HBM) and the LSTM model for site-specific water level
prediction. The comparison is task-oriented rather than model-to-model, as the
two systems output different variables. Results are preliminary but indicate that
the ML approach can achieve comparable site-specific predictions at a fraction
of the computational cost.
Model Description and performance metrics
Physically based
model (HBM)

∼24 h wall-clock per simulated year on 8 nodes ×
32 CPUs = 256 CPUs; equivalent to ∼6,144 core-hours
per simulated year.

Machine learning
(ML) model

Hardware: HP Z2 (Intel i9-14900K, 64 GB RAM). ∼2–
3 minutes total to train and simulate 30 years (excluding
Bayesian optimization for hyperparameter tuning); equiv-
alent to ∼4–6 seconds per simulated year.

Result (relative
performance)

∼14,400–21,600× faster in wall-clock; ∼120,000–
170,000× lower in core-hour cost (assuming full use of all
32 threads).



4 Results and future work
The LSTM model reproduced storm surge dynamics across the Danish West
Coast, Inner Danish Waters, and Baltic Sea with high accuracy when compared
to hindcasted water levels from the HBM. Peak water levels were captured well,
with KGE exceeding 0.95 at most of the 15 stations. The model effectively
represented both rapid surge events in the North Sea (KGE = 0.98 in Esbjerg)
and the longer filling–flushing processes characteristic of the Baltic Sea (KGE
= 0.98 in Køge). Unlike the deterministic HBM model, the LSTM also esti-
mates quantiles that showing the probability distribution around the forecast.

Importantly, predictive skill was maintained from short-term forecasts (hours to
days) through long-term projections (years to decades) with a relatively small
reduction in performance and without altering the model architecture. Once
trained, the framework generated multi-decade time series at hourly resolution
within seconds, demonstrating computational efficiency orders of magnitude
higher than conventional hydrodynamic solvers. An example of a high-water
level event in Køge (a coastal town around 30km south of Copenhagen) is shown
in Figure 3.

Figure 3: Predicted storm-surge time series with a 36h lead time at Køge com-
pared with the HBM hindcast water levels. Shaded bands indicate LSTM pre-
dictive quantiles (probability distribution around the central estimate).

The framework offers several opportunities for collaboration and future devel-
opment. It can be tested in operational settings to assess real-time forecasting
performance. Future work includes geographically scaling the model to ad-
ditional regions and conducting systematic cross-site evaluations. Extensions
could couple the model with waves, atmospheric pressure, and river discharge
to represent compound extremes. Finally, the computational efficiency enables
climate-scenario experiments to analyse storm-surge behaviour in a warmer cli-
mate and supports adaptive planning.



References
C. J. Amante. Uncertain seas: probabilistic modeling of future coastal flood

zones. International Journal of Geographical Information Science, 33(11):
2188–2217, 2019. doi: 10.1080/13658816.2019.1635253.

E. Andrée, J. Su, M. A. D. Larsen, K. S. Madsen, and M. Drews.
Simulating major storm surge events in a complex coastal re-
gion. Ocean Modelling, 162:101802, 2021. ISSN 1463-5003. doi:
https://doi.org/10.1016/j.ocemod.2021.101802.

K. Leszczyńska, H. Alexanderson, L. Clemmensen, A. Giza, S. Lorenz,
D. Moskalewicz, P. Oliński, D. Paprotny, A. Rosentau, A. Rutgersson,
K. Stattegger, W. Szczuciński, P. Terefenko, G. Uścinowicz, S. Uścinow-
icz, and T. Wolski. A review of storms and marine coastal flooding in
the baltic sea – insights from instrumental, historical and sedimentary
record. Earth-Science Reviews, 266:105137, 2025. ISSN 0012-8252. doi:
https://doi.org/10.1016/j.earscirev.2025.105137.

B. Merz, G. Blöschl, S. Vorogushyn, F. Dottori, J. C. J. H. Aerts, P. Bates,
M. Bertola, M. Kemter, H. Kreibich, U. Lall, and E. Macdonald. Causes,
impacts and patterns of disastrous river floods. Nature Reviews Earth &
Environment, 2(9):592–609, 2021. ISSN 2662-138X. doi: 10.1038/s43017-
021-00195-3.

L. J. Slater, B. Anderson, M. Buechel, S. Dadson, S. Han, S. Harrigan, T. Kelder,
K. Kowal, T. Lees, T. Matthews, C. Murphy, and R. L. Wilby. Nonstation-
ary weather and water extremes: a review of methods for their detection,
attribution, and management. Hydrology and Earth System Sciences, 25(7):
3897–3935, 2021. doi: 10.5194/hess-25-3897-2021.


