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Abstract
Mosquito-borne diseases such as malaria, dengue, and yellow fever have
been spreading across African cities, placing more than 126 million resi-
dents at risk of large-scale outbreaks. Poor housing quality is a key driver
of mosquito-borne diseases, yet the role of the urban built environment in
shaping the transmission dynamics of these diseases remains understudied.
Therefore, we assess the risk-factors from the built environment and how
they are related to vector-borne diseases. To do so, we extract these risk-
factors from high-resolution remote sensing imagery with deep learning to
identify high-risk areas and to inform targeted intervention strategies. Here,
we present initial results on mapping some of the high risk-factors from drone
imagery. Our findings demonstrate the ability to capture fine-grained urban
details, such as roof materials and small water-holding containers, which are
critical indicators of vector habitats.
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1 Introduction
Mosquito-borne diseases are transmitted by the bite of mosquitoes. Malaria is
such a disease spread through infected female Anopheles mosquitoes. It ranks
among the world’s most serious public health problems and is a leading cause of
mortality and disease in many developing countries. Therefore, it is crucial to
improve the prevention, control, and surveillance measures of malaria, partic-
ularly in sub-Saharan Africa [Venkatesan, 2024, WHO, 2023]. Mosquito-borne
diseases, which also include dengue, chikungunya and Zika, pose a major pub-
lic health problem and a growing concern in urban areas of endemic countries.
Transmitted by Aedes mosquitoes, these viruses are responsible for major out-
breaks and are spreading into new regions, driven by rapid urbanization, climate
change, altered vector ecology, and increasing insecticide resistance [Weetman
et al., 2018, WHO, 2022, Ramphal et al., 2024, Mweya et al., 2016, Situma et al.,
2024]. Urban environments with informal settlements are particularly vulnera-
ble, as Aedes mosquitoes preferentially exploit man-made water containers and
other artificial habitats, making densely populated cities especially high-risk for
transmission [Mustafa et al., 2024, Vairo et al., 2016].

Using deep learning, we can extract risk factors from remote sensing data
that indicate where these diseases are transmitted and where mosquitoes breed
and increase their population (e.g., water-filled tires on rooftops), particularly
those contributing to the above-mentioned diseases. In particular, we study
low-quality housing and breeding sites of Aedes mosquitoes. Low-quality hous-
ing built of natural materials, for example, having a thatched roof of grass or
palm,is associated with an increased risk of malaria infection [Dlamini et al.,
2017]. Substandard housing has more mosquito entry points and most malaria
transmissions in sub-Saharan Africa occur inside dwellings while the inhabitants
sleep [Tusting et al., 2020, 2017, Jatta et al., 2018, Tusting et al., 2019]. Houses
with metal roofs are hotter in the daytime than houses with thatched roofs,
which may reduce mosquito survival and inhibit parasite development within
the mosquito. Thus, the proliferation of modern construction materials in sub-
Saharan Africa may have contributed decisively to the reduction of malaria cases
[Tusting et al., 2019]. Anopheles mosquitos breed in sunlit, larger water bodies,
while Aedes mosquitoes prefer small artificial containers [Venkatesan, 2024]. In
our recent pilot study in Dar es Salaam, we found that there are more Aedes
mosquitoes than Anopheles. Therefore, we are interested in smaller containers
that are breeding sites for the Aedes mosquitoes.

In the following, we present our initial results for (1) Roof material classi-
fication in Nacala, Mozambique [Guthula et al., 2025] and (2) Larval breeding
site mapping in Dar es Salaam, Tanzania.

2 Data and Methods
Roof material data. We gathered drone imagery of the Nacala region in
Mozambique. We annotated all buildings on drone imagery along with the roof



material of that building. We distinguished five main types of roof materials
in Nacala, namely metal sheet, thatch, asbestos, concrete, and no-roof, and
delineated 9776, 6428, 566, 174, and 1010 roofs of these classes. The region
is dominated by metal sheets and thatch roofs. Fig. 1 shows buildings with
different roof materials with building characteristics. The dataset is split into
training, validation, and test using stratified sampling. The data can be down-
loaded from https://mosquito-risk.github.io/Nacala.

(a)
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Figure 1: Examples of different spatial distribution characteristics of buildings
in our dataset. (a) well-separated buildings (b) Buildings are close but still
separable using segmentation methods. (c) Ambiguous boundaries that make
individual buildings difficult to segment

Breeding sites. We gathered drone imagery of the Dar es Salaam region in
Tanzania, across all 20 sampled locations, with an area of 27.27 km2. A cumu-
lative area of 4.60 km2 within 20 sampled locations was annotated manually.
The proxy annotations for breeding sites are tires, water tanks, and buckets or
jerry cans. Fig. 2 shows buildings with different roof materials with building
characteristics. The labeled drone imagery was split into training, validation,
and test set.

Methods. We trained a U-Net [Ronneberger et al., 2015] kind of model
with a ResNet34 [He et al., 2016] backbone on both datasets. The final weight
configuration and hyperparameters for each model were selected based on the
highest IoU score on the validation dataset.

3 Results and Discussion
Table 1 and Table 2 present the results for the two applications. The mean and
standard deviation of five trials are reported in both tables. The main chal-
lenge in both tasks is class imbalance: the roof material dataset contains fewer
samples of concrete roofs and no-roof cases, while the breeding sites dataset
includes very few small objects such as buckets and tires. Another issue in the
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Figure 2: Annotations on drone imagery on the left side of the image, with an
image captured from the ground at the highlighted location on the image

Class IoU (Mean ± SD)

Metal Sheet 0.819 ± 0.012
Thatch 0.880 ± 0.004
Asbestos 0.514 ± 0.025
Concrete 0.306 ± 0.091
No Roof 0.650 ± 0.029

Macro Average 0.634 ± 0.032

Table 1: Results on the roof mate-
rial test set

Class IoU (Mean ± SD)

Buckets 0.309 ± 0.012
Tires 0.374 ± 0.193
Water Tanks 0.677 ± 0.013

Macro Average 0.453 ± 0.073

Table 2: Results on the test set for
detecting breeding sites

roof material dataset is object separation—accurately segmenting individual ob-
jects and classifying their roof materials is crucial. We have explored different
approaches to address these challenges; see [Guthula et al., 2025] for details.
The roof material dataset from Mozambique is publicly accessible1, the larval
habitat datasets can be provided upon request.

4 Conclusions
We collected high-resolution drone imagery from two African cities and trained
a U-Net model to monitor key risk factors, roof materials that indicate housing
quality and containers that serve as breeding sites for Aedes mosquitoes. In
future work, we plan to identify additional risk factors from both drone and
satellite imagery and integrate these results with ground data.

1https://mosquito-risk.github.io/Nacala/



Acknowledgments. This work is part of the project Risk-assessment of Vector-
borne Diseases in African Cities Based on Deep Learning and Remote Sensing
funded by the Novo Nordisk Foundation (grant number NNF21OC0069116).

References
N. Dlamini, M. S. Hsiang, N. Ntshalintshali, D. Pindolia, R. Allen, N. Nhla-

bathi, J. Novotny, M.-S. Kang Dufour, A. Midekisa, R. Gosling, A. LeMenach,
J. Cohen, G. Dorsey, B. Greenhouse, and S. Kunene. Low-quality housing
is associated with increased risk of malaria infection: A national population-
based study from the low transmission setting of Swaziland. Open Forum
Infectious Diseases, 4(2):ofx071, 2017.

V. B. Guthula, S. Oehmcke, R. Chilaule, H. Zhang, N. Lang, A. Kariryaa,
J. Mottelson, and C. Igel. Drone imagery for roof detection, classification,
and segmentation to support mosquito-borne disease risk assessment: The
Nacala-Roof-Material dataset. Science of Remote Sensing, 2025. In press.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. In Computer Vision and Pattern Recognition (CVPR), pages 770–778,
2016.

E. Jatta, M. Jawara, J. Bradley, D. Jeffries, B. Kandeh, J. B. Knudsen, A. L.
Wilson, M. Pinder, U. D’Alessandro, and S. W. Lindsay. How house de-
sign affects malaria mosquito density, temperature, and relative humidity: an
experimental study in rural Gambia. The Lancet Planetary Health, 2(11):
e498–e508, 2018.

U.-k. Mustafa, K. S. Kreppel, and E. Sauli. Dengue virus transmission during
non-outbreak period in dar es salaam, tanzania: a cross-sectional survey.
BMC Infectious Diseases, 24(1):1–14, 2024.

C. N. Mweya, S. I. Kimera, G. Stanley, G. Misinzo, and L. E. Mboera. Cli-
mate change influences potential distribution of infected aedes aegypti co-
occurrence with dengue epidemics risk areas in Tanzania. PLOS One, 11(9):
e0162649, 2016.

Y. Ramphal, H. Tegally, J. E. San, M. L. Reichmuth, M. Hofstra, E. Wilkinson,
C. Baxter, C. Consortium, T. de Oliveira, and M. Moir. Understanding the
transmission dynamics of the Chikungunya virus in Africa. Pathogens, 13(7):
605, 2024.

O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical Im-
age Computing and Computer-assisted Intervention (MICCAI), pages 234–
241. Springer, 2015.



S. Situma, L. Nyakarahuka, E. Omondi, M. Mureithi, M. M. Mweu, M. Muturi,
A. Mwatondo, J. Dawa, L. Konongoi, S. Khamadi, E. Clancey, E. Lofgren,
E. Osoro, I. Ngere, R. F. Breiman, B. Bakamutumaho, A. Muruta, J. Gachohi,
S. O. Oyola, M. K. Njenga, and D. Singh. Widening geographic range of Rift
Valley fever disease clusters associated with climate change in East Africa.
BMJ Global Health, 9(6):e014737, 2024.

L. S. Tusting, C. Bottomley, H. Gibson, I. Kleinschmidt, A. J. Tatem, S. W.
Lindsay, and P. W. Gething. Housing improvements and malaria risk in sub-
Saharan Africa: a multi-country analysis of survey data. PLoS Medicine, 14
(2):e1002234, 2017.

L. S. Tusting, D. Bisanzio, G. Alabaster, E. Cameron, R. E. Cibulskis,
M. Davies, S. Flaxman, H. S. Gibson, J. B. T. Knudsen, C. M. Mbogo,
F. O. Okumu, L. von Seidlein, D. J. Weiss, S. W. Lindsay, P. W. Gething,
and S. Bhatt. Mapping changes in housing in sub-Saharan Africa from 2000
to 2015. Nature, 568(7752):391 – 394, 2019.

L. S. Tusting, P. Gething, H. Gibson, B. Greenwood, J. Knudsen, S. Lindsay, and
S. Bhatt. Housing and child health in sub-Saharan Africa: A cross-sectional
analysis. PLoS Medicine, 17:e1003055, 03 2020.

F. Vairo, L. E. G. Mboera, P. D. Nardo, N. M. Oriyo, S. Meschi, S. F. Ru-
misha, F. Colavita, A. Mhina, F. Carletti, E. Mwakapeje, M. R. Capobianchi,
C. Castilletti, A. D. Caro, E. Nicastri, M. N. Malecela, and G. Ippolito. Clin-
ical, virologic, and epidemiologic characteristics of dengue outbreak, dar es
salaam, tanzania, 2014. Emerging Infectious Diseases, 22(5):895–899, 2016.

P. Venkatesan. The 2023 WHO world malaria report. The Lancet Microbe, 5
(3):e214, 2024.

D. Weetman, B. Kamgang, A. Badolo, C. L. Moyes, F. M. Shearer, M. Coulibaly,
J. Pinto, L. Lambrechts, and P. J. McCall. Aedes mosquitoes and aedes-borne
arboviruses in Africa: current and future threats. International Journal of
Environmental Research and Public Health, 15(2):220, 2018.

WHO. Surveillance and control of arboviral diseases in the who African region:
assessment of country capacities. https://www.who.int/publications/i/
item/9789240052918, 2022. (Accessed on 04/09/2025).

WHO. World malaria report 2023. https://www.who.int/publications/i/
item/9789240086173, 2023. (Accessed on 05/16/2024).


