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Abstract

This work presents early-stage research on the classification of sedimentary
particles in microscope images from samples spanning different geological
epochs. The overarching goal is to enable a quantitative assessment of past
environmental changes using a fast and unbiased annotation method. Since
particle labels are available for only a small subset of images, we focus on un-
supervised learning. The workflow consists of two stages: first, particles are
segmented using a combination of thresholding methods and the pre-trained
SAM?2 model (Ravi et al. [2024]); second, segmented particles are grouped
through zero-shot classification using the pre-trained DINOv2 model (Oquab
et al. [2023]). Initial qualitative results show that most particles are suc-
cessfully segmented. However, the resulting clusters contain heterogeneous
mixtures of particle types, highlighting the challenges of unsupervised classi-
fication in this domain. Future work will incorporate available labeled data
to improve the classification results.
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1 Introduction

Understanding past environmental conditions is essential for studying climate
evolution, mapping natural resources, and developing sustainable energy solu-
tions. One of the key approaches for reconstructing such environments relies
on the identification and classification of microscopic organic particles (palyno-
facies) preserved in rocks (e.g., Tyson [1995], Dybkjer et al. [1996], Dybkjaer
[2004], Dybkjaer et al. [2019], Nghr-Hansen et al. [2021]). Several common par-
ticle types are shown in Fig. 1, which in this work are grouped into eight cate-
gories.

The traditional workflow involves preparing microscope slides by removing
rock minerals through acid and heavy-liquid treatments, mounting the remain-
ing organic residue, and analyzing it under transmitted-light microscopy. Dur-
ing this process, particles are manually identified and assigned to predefined
categories within a selected area. Typically, analysis continues until a target
number of particles is counted (commonly around 300, out of the thousands
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Figure 1: Examples of typical organic particles. A) Well preserved bisaccate
pollen; B) Large fragment of a bisaccate pollen; C) Dinocyst; D) Non saccate
pollen; E) Spore; F) Dinocyst; G) Amorphous organic matter; H) Phytoclast
(fragment of black wood); I) Freshwater algae (Botryococcus). Note that parti-
cles C and F belong to the same category.

often present on a slide). However, the counting area is rarely precisely de-
fined, making it difficult to reproduce the analysis or correct initial annotations
without repeating the entire procedure. Furthermore, the accuracy of particle
identification depends on the analyst’s experience, which introduces variability
and complicates data integration across different studies.

To address these limitations, our project introduces a digital, standardized
workflow designed to enhance transparency, reproducibility, and efficiency in the
analysis of sedimentary organic particles. This approach makes it possible to
extract high-quality environmental information from complex microscopic data
in a more consistent and scalable manner.
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2 Related work

Automatic particle recognition and classification have become integral to a wide
range of scientific disciplines, including biology, materials science, and the life
sciences Roseman [2004], Timmins et al. [2012], Zhu et al. [2017], Sachs et al.
[2023], Bals and Epple [2023].

Much of the existing research in automatic particle classification has relied
on task-specific supervised models, designed for particular datasets or narrow
application domains. While successful in controlled settings, these models often
struggle to generalize to new or unseen sample types.

In this context, self-supervised learning methods Chen et al. [2020], Rad-
ford et al. [2021], Oquab et al. [2023] hold particular promise. By learning
transferable feature representations directly from large collections of unlabeled
images, they reduce the dependence on extensive manual annotations. Applied
to palynofacies, such approaches could enable robust classification of organic
particles across diverse geological samples, paving the way for more scalable
and reproducible paleoenvironmental reconstructions.

3 Workflow

Stage 1: Particle Segmentation and Extraction

The first stage focuses on the automatic detection and extraction of individual
particles from digitized microscope slides. We employ classical image process-
ing techniques, including Gaussian smoothing of grayscale-converted images,
contrast enhancement, and Otsu’s thresholding. For particles that cannot be
confidently segmented using thresholding alone, we leverage the Segment Any-
thing Model v2 (Ravi et al. [2024]) to generate instance masks. This hybrid
approach successfully isolates single particles in most cases, although overlap-
ping particles occasionally cannot be fully separated. The output of this stage
is a set of individual particle images suitable for further analysis.

Stage 2: Feature Extraction and Unsupervised Classification

In the second stage, each segmented particle is represented as a high-dimensional
embedding using the DINOv2 vision transformer model (Oquab et al. [2023]).
Since particle labels are available for only a small subset of images, we focus on
unsupervised learning. To this end, we use pre-trained DINOv2 features as-is,
i.e., with a frozen backbone, no fine-tuning, and no learned classification head.
The resulting embeddings are then clustered using k-means, an unsupervised
algorithm that partitions the feature space into a predefined number of clusters
McQueen [1967]. Each cluster serves as a pseudo-label, grouping visually simi-
lar particles together. This produces a structured dataset in which images are
organized according to intrinsic visual properties, enabling further analysis in
the absence of ground-truth annotations.
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Figure 2: Examples of particle classifications using the DINOv2 model.
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An implementation of the particle segmentation and classification workflow is
publicly available at https://github.com/nikolai-andrianov/palynofacies.

Preliminary Results and Outlook

Initial clustering demonstrates that visually similar particles are generally gro-
uped together, but each cluster still contains a mixture of particle types. Some
particles were assigned to multiple clusters, though they ideally belong to a
single category. For example, Cluster 4 effectively identified black wood particles
but also included particles from other types. Clustering appears to be influenced
primarily by color and shape, resulting in certain clusters dominated by rounded
or darker particles regardless of their true classification. Cluster 6 grouped
overlapping particles that should ideally have been treated as separate entities.

These observations highlight both the potential and current limitations of
unsupervised, feature-based clustering for palynofacies analysis. While this ap-
proach provides a rapid and unbiased method to organize particles, further re-
finement—such as incorporating semi-supervised learning with available labeled
data or adding additional morphological descriptors—could improve cluster pu-
rity and better reflect true particle categories. Overall, our results demonstrate
the feasibility of constructing structured, visually informed datasets without ex-
tensive manual annotation, paving the way for scalable and reproducible studies
of past environmental conditions.
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