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Abstract
Climate change poses a significant threat to ecosystems and human soci-
ety. Accurate climate projections are crucial for developing effective policies
for mitigating extreme weather events that are expected to increase due to
global warming. However, traditional climate models have limitations, in-
cluding biases and high computational costs. Under the Helmholtz Founda-
tion Model Initiative (HFMI), we propose a new data-driven climate model,
namely HClimRep, which uses foundation model principles and machine
learning to analyze diverse climate datasets. This approach enables flexible
and customizable outputs, providing a versatile tool for climate applications.
Keywords: Foundation Model, AI Model, Deep Learning, Climate Mod-
elling, Climate Simulations

1 Introduction
Artificial Intelligence (AI) and Deep Learning (DL) have recently emerged as
powerful alternatives to traditional numerical methods for weather forecasting.
Since 2023, these models have demonstrated operational value, such as the Ar-
tificial Intelligence/Integrated Forecasting System (AIFS) [Lang et al., 2024],
by achieving comparable or superior accuracy at far lower computational cost
compared to conventional numerical models that are based on equation solvers.
However, extending AI methods from medium-term weather prediction to long-
term climate projections remains an open challenge. Unlike weather forecasts,
climate projections require a consistent representation of very complex feed-
back processes across several components of the Earth system and additionally
at very long timescales.

Several promising approaches highlight the feasibility of AI-driven climate
modeling. For instance, cBottle model [Brenowitz et al., 2025] employs a U-Net
architecture and a diffusion-based generative algorithm with super-resolution
capabilities for high-resolution climate projections, while in the Deep Learning
Earth System Model (DLESyM) [Cresswell-Clay et al., 2025] model, a U-Net ar-
chitecture combined with an efficient training strategy to couple atmosphere and
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ocean has been employed. Spherical Fourier Neural Operators (SFNO) [Bonev
et al., 2023] have been the backbone of the architectures in some works such as
the Spherical DYffusion model [Cachay et al., 2024] that integrates SFNO to
achieve thousands of years of stable climate simulation, and the lightweight un-
coupled climate emulator LUCIE [Guan et al., 2025] that has been trained on as
few as 2 years of training data. Despite these significant advances, most of these
studies either omit feedback mechanisms involving atmospheric chemistry (such
as greenhouse gases), the stratosphere, or sea ice, or they are limited to seasonal
timescales. In addition, they are not trained on diverse sources of multi-modal
data and observations but exclusively on biased climate data, precluding them
from being considered foundation models.

Our early-stage research project HClimRep, as part of the Helmholtz Foun-
dation Model Initiative, aims to deliver an AI foundation model for climate
that complements the WeatherGenerator initiative (an EU-funded effort led by
the European Centre for Medium-Range Weather Forecasts (ECMWF) with
strong involvement of Forschungszentrum Jülich). The prototype is designed
to ingest heterogeneous datasets — including reanalyses, climate simulations,
satellite records, and in-situ observations — and to support downstream ap-
plications, such as hydrological downscaling, climate scenarios interpolation, a
forecasting system for stratospheric tracers and warming as well as a simulation
of counterfactual scenarios of recent marine heatwaves.

Key distinguishing features of HClimRep compared to the aforementioned
works include the incorporation of stratospheric dynamics, tracers such as ozone,
a fully interactive ocean component with deep layers, and explicit handling of
external forcings (e.g., CO2 pathways) while allowing forecasting on a longer
horizon. This scope is unique worldwide and specifically addresses limitations
in existing AI models. Our approach employs a two-stage training strategy:
pretraining on high-quality observational and reanalysis datasets, followed by
fine-tuning on climate simulations. This ensures fidelity in near-term dynamics
while enabling the model to learn to distinguish among climate-forcing scenarios.

2 Model
The WeatherGenerator (WGen) architecture [Lessig et al., 2025] is designed
to flexibly process diverse data sources while minimizing the need for external
preprocessing, allowing the majority of the data to be used in its original form.
Figure 1 illustrates the architecture of the model.

WGen consists of five core modules: stream (i.e., dataset) embedding, local
assimilation engine, global assimilation engine, forecasting engine, and predic-
tion heads. In the stream embedding stage, the model learns interactions be-
tween different state variables within the same data source. The local engine
reorganizes data from different sources onto a common Hierarchical Equal Area
isoLatitude Pixelization (HEALPix) [Górski et al., 2005] grid representation
and learns cross-source interactions locally, i.e., within each cell. The global en-
gine then assimilates information across all cells, capturing global interactions.



Figure 1: The HClimRep prototype using WeatherGenerator’s architecture.

The forecasting engine performs dynamic stepping by predicting future latent
states, while the prediction heads are target-agnostic, offering the flexibility to
specify target coordinates and data sources for which the user requires predic-
tions. This modular design enables multiple applications, including fine-tuning
on heterogeneous datasets, zero-shot and supervised downscaling (from global to
regional scales), nonlinear interpolation, and atmospheric state reconstruction
from data gaps (e.g., satellite observations). These features distinguish WGen
from existing models.

The HClimRep prototype builds directly on the WGen but differs in its ob-
jectives. While WGen is primarily designed for medium-term weather forecast-
ing, HClimRep extends the scope to seasonal and decadal timescales. Achieving
skillful predictions on these horizons requires coupling across multiple compo-
nents of the Earth system, i.e., atmosphere, stratosphere, ocean, and sea ice,
thereby enabling the model to learn energy exchanges and feedbacks among
these interacting subsystems.

Figure 2: Forecasting over 10 days (i.e., 40 6h-steps) for the 2m-temperature.

3 Results
The HClimRep project is currently focusing on advancing each Earth system
component individually. We are conducting and testing three major tasks in
parallel as part of our early development: extending the WeatherGenerator



(a) Ground truth of global O3 on the
100th pressure level with 6h-lead.

(b) Prediction of global O3 on the 100th

pressure level with 6h-lead.

Figure 3: Current progress on capturing stratospheric tracers.

(a) Predicted SST (b) Prediction bias on SST

Figure 4: Forecast map of sea surface temperature values and bias plot.

model forecast horizon on ERA5 atmospheric reanalysis data [Hersbach et al.,
2020], integrating a unique dataloader for Finite-Element/volumE Sea ice-Ocean
Model (FESOM) oceanic data [Danilov et al., 2017], and studying the model’s
capability to capture stratospheric tracer dynamics.

We train the model on 40 years of ERA5 atmospheric data (1979-2020) for
the atmospheric component, 200 years of oceanic simulation data for the oceanic
component, and 20 years of CAMS data (2003-2024) for the stratospheric com-
ponent. We pretrain the model with two 6h-forecast steps (over 24 hours 64
epochs) and finetuning with 9 6h-forecast steps (over 36 hours 32 epochs) on
JUWELS Booster on 2 nodes with 2xIntel Xeon Platinum 12 CPUs, and 8
NVIDIA A100 GPUs. The code is published and can be found in the Weather-
Generator GitHub repository. The trainable parameters of the model are half
a billion parameters.

Progress has been made on the first task, gradually extending forecast skill
from an initial 2-day horizon to 14 days for the atmosphere and 1 year for the
ocean over the course of 4–5 months of continuous development, see Figure 2. We



are currently focusing on significantly extending the forecast of the atmospheric
component, which is more challenging.

Experiments that target modelling of the dynamics of the stratospheric trac-
ers have also been successful. Specifically, we have now a dedicated stream has
been integrated into the model to capture Copernicus Atmosphere Monitoring
Service (CAMS) greenhouse reanalysis data [Inness et al., 2019]. Finetuning
on those components is still in progress but the first training experiments have
been completed, see Figure 3.

The development of the ocean component focuses on processing ocean data,
which inherently have more challenging spatial structures than atmospheric
data. A dedicated stream embedding component has been developed and in-
tegrated into the model, allowing training on oceanic inputs in parallel with
atmospheric inputs (e.g., from ERA5). Prediction runs of ocean states have
demonstrated promising results, with precise capture of SST, see Figure 4.

The next steps in the project will be to increase the forecast length to several
months and enable stable rollouts over at least a decade. The various compart-
ments (i.e., ocean, troposphere, and stratosphere) will be coupled together to
allow for the investigation and evaluation of various climate feedback processes.
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